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ABSTRACT
In the quest for sustainable urban development, precise quantification of urban green
space is paramount. This research delineates the implementation of a Cosine
Adaptive Particle Swarm Optimization Long Short-Term Memory (CAPSO-LSTM)
model, utilizing a comprehensive dataset from Beijing (1998–2021) to train and test
the model. The CAPSO-LSTMmodel, which integrates a cosine adaptive mechanism
into particle swarm optimization, advances the optimization of long short-term
memory (LSTM) network hyperparameters. Comparative analyses are conducted
against conventional LSTM and Partical Swarm Optimization (PSO)-LSTM
frameworks, employing mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE) as evaluative benchmarks. The
findings indicate that the CAPSO-LSTM model exhibits a substantial improvement
in prediction accuracy over the LSTM model, manifesting as a 66.33% decrease in
MAE, a 73.78% decrease in RMSE, and a 57.14% decrease in MAPE. Similarly, when
compared to the PSO-LSTM model, the CAPSO-LSTM model demonstrates a
58.36% decrease in MAE, a 65.39% decrease in RMSE, and a 50% decrease in MAPE.
These results underscore the efficacy of the CAPSO-LSTM model in enhancing
urban green space area prediction, suggesting its significant potential for aiding
urban planning and environmental policy formulation.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Urban green area, Cosine adaptive, Particle swarm optimization, Long-short term
memory, Long series prediction

INTRODUCTION
Urban green spaces manifest as critical elements within the urban fabric, contributing
significantly to both ecological sustainability and human well-being. These verdant areas
offer a multitude of benefits, ranging from environmental amelioration to social and
psychological advantages. Ecologically, urban greenery plays a pivotal role in enhancing
biodiversity, providing habitats for various species, and maintaining ecological balance
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within urban ecosystems. This biodiversity is not only vital for ecosystem health but also
contributes to the resilience of urban areas against environmental stressors. Rao et al.
(2022) evaluates the accessibility of urban green spaces in 254 Chinese cities using the two-
step floating catchment area method, revealing significant disparities in accessibility both
within and between cities, especially within walking or cycling distances. It associates
higher social status, reflected in housing prices, with greater access to green space services,
highlighting pronounced inequities. The research offers targeted recommendations to
improve the distribution and use of urban green spaces, aiming to enhance their ecological,
social, and economic benefits in urban ecosystems.

From an environmental perspective, green spaces are instrumental in mitigating urban
pollution. Ghahramani et al. (2021) undertook a novel application of Artificial Intelligence
(AI) techniques in the realm of urban green spaces (UGS) assessment by implementing a
unified topic modeling approach. Investment in park green space can improve the quality
of life for urban residents. Paul et al. (2020) conducted a study on large cohorts in Ontario,
Canada that found that increased exposure to urban green space is associated with a
reduced risk of developing major neurological conditions, specifically dementia and stroke.
Stuhlmacher, Kim & Kim (2022) conducted a study to analyze the relationship between the
development of park and non-park green spaces and the likelihood of gentrification in
Chicago, using satellite imagery and demographic data, revealing that green space
investments’ impact on gentrification varies with time and neighborhood characteristics.
Hu et al. (2022) investigates the relationship between residential green space,
neighborhood walkability, and atherosclerosis in urban settings, analyzing data from 2021
adults with suspected coronary heart disease (CHD). Utilizing advanced statistical
methods, the study evaluates the impact of green space and walkability on coronary artery
calcium scores, highlighting the complex interplay between urban development,
environmental factors, and cardiovascular health. Hogendorf et al. (2020) found that while
increasing distance to green spaces slightly reduced leisure walking time and slightly
increased walking for active commutes among Dutch adults, there was no significant
association with cycling, indicating a limited impact of green space proximity on walking
and cycling behaviors. Basu & Nagendra (2021) found that public spaces like parks exhibit
significant gender and income inequalities, resulting in uneven access to green space. Jiang,
Stickley & Ueda (2021) explored the relationship between green spaces and suicide
mortality in Japan, revealing that the protective impact of greenery against suicide varies
with urbanity and demographic factors, indicating the potential of green spaces in suicide
prevention strategies.

RELATED WORK
The development of urban green spaces is influenced by various factors. Kwartnik-Pruc &
Trembecka (2021) examines the involvement of local governments in shaping public green
spaces, essential to sustainable urban development, with a specific focus on Poland. It
analyzes municipal strategies in property acquisition, legal frameworks, and policy
formulation for green space enhancement, using data from the Polish Central Statistical
Office to track the progression of public green spaces in major Polish cities, notably
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Krakow. The study not only (Aly & Dimitrijevic, 2022) investigated the distribution and
types of green spaces in Krakow but also assessed the municipality’s initiatives in
expanding and safeguarding these areas against urban development, emphasizing the
significance of green space accessibility for residents. The findings provide a
comprehensive evaluation of Krakow’s management of green spaces and reflect broader
trends in public green space development, offering valuable insights for future urban
environmental policies and sustainable planning practices. Feltynowski & Kronenberg
(2020) investigates the proportion and types of urban green spaces in five towns in Poland,
comparing various data sources to reveal discrepancies in the perception and management
of green spaces, especially highlighting the underestimation of green areas in smaller towns
when relying solely on public statistics.

Long short-term memory (LSTM) models are used in traffic flow prediction (Bharti,
Redhu & Kumar, 2023). In 2020, Stessens et al. (2020) developed a GIS-based model to
infer the perceptions of naturalness, quietness, and spaciousness by users of public green
spaces based on the attributes of the green spaces. Das (2022) examined factors
contributing to the environmentally unjust development and management of organized
green spaces in three Indian cities (Bhubaneswar, Cuttack, and Kolkata), and evaluated
various strategies aimed at achieving environmental justice. Huang, Wu & Cheng (2021)
demonstrated that a strategically designed ecological network effectively augments
landscape connectivity and curtails fragmentation, consequently elevating the quality of
the urban ecological environment and fostering the sustainability of urban green spaces.

Predicting the area of urban green spaces is critically important for several
interconnected reasons. Accurate green space predictions are vital for public health and
well-being, as these areas provide essential spaces for recreation, relaxation, and
socializing, thereby enhancing the mental and physical health of city residents. Long
short-term memory models are often used for predicting tasks like landslide displacement
(Duan, Su & Fu, 2023) and air pollutant prediction (Luo & Gong, 2023). Zhou, Zuo & Zhao
(2022) proposed a large-scale urban land subsidence prediction method. Usharani (2022)
introduced an improved loss function within an LSTM neural network to enhance the
accuracy of sea surface temperature predictions at various time horizons around India. Luo
& Gong (2023) developed an innovative ARIMA-WOA-LSTM model, aimed at enhancing
the precision in predicting air pollutants, thereby optimizing air pollution management. By
employing ARIMA to process the linear components of pollution data and utilizing a
whale optimization algorithm-enhanced LSTM (WOA-LSTM) for predicting non-linear
elements, the research significantly advances the model’s efficacy. The study further
substantiates the superiority of the ARIMA-WOA-LSTMmodel over various counterparts
in terms of pollutant prediction accuracy, model prediction precision, and stability,
through comparative analyses with several other models. Du et al. (2022) proposed a
Particle Swarm Optimization (PSO) based LSTM model for urban water demand
forecasting.

This has also catalyzed research on enhanced particle swarm algorithms. Metaheuristics
methods (Aranha et al., 2022; Sörensen, 2015) based on a diverse range of natural, artificial,
and social behaviors or patterns. These methods are often used to solve optimization
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problems in various fields (Velasco, Guerrero & Hospitaler, 2022, 2024). For instance, Guo
et al. (2024) proposed a novel dynamic learning method for breast cancer image
classification. In 2022, Guo et al. (2022), Tian et al. (2022) discussed novel strategies for
swarm intelligence. In 2023 and 2024, novel metaheuristic methods (Guo et al., 2023a,
2023b; Zhou et al., 2024) are proposed for single-objective optimization problems.

To increase the accuracy of prediction, this article presents a novel cosine adaptive
particle swarm optimization-based long short-term memory model for urban green spaces
prediction. The major contribution of this article can be summarized as follows:

1. A new cosine adaptive strategy applied to the evolution of particle swarm algorithms
enhances the search capability of traditional particle swarm algorithms. The cosine
adaptive strategy enhances the particle swarm’s ability to escape local optima and increases
the diversity of the particle swarm.

2. The Cosine Adaptive Particle Swarm Optimization (CAPSO)-LSTM is used in urban
green area prediction, and experimental results demonstrate that the proposed CAPSO-
LSTM can accurately predict the area of urban green spaces, providing significant
assistance in urban construction planning.

MATERIALS AND METHODS
Cosine adaptive particle swarm optimization
The particle swarm optimization (PSO) algorithm has the characteristics of strong
generality and simple principle and has received a lot of attention from researchers since it
was proposed. However, the algorithm also has some drawbacks, such as easy to fall into
local optimal. To address these shortcomings, we propose the CAPSO, in which the
velocity update formula of particles in the algorithm is consistent with the PSO algorithm.
But when updating the positions of the particles, we add an adaptive mechanism to it,
which can achieve a better balance between exploration and exploitation. In the CAPSO,
the velocity and position of the particle will be updated by Eq. (1).

vtþ1ðiÞ ¼ w � vtðiÞ þ c1 � r � ðpbesttðiÞ � xtðiÞÞ þ c2 � r � ðgbestt � xtðiÞÞ
xtþ1ðiÞ ¼ xtðiÞ þ ð1þ cos i ��= expðiÞð Þð Þ � vtðiÞ

(1)

where vtþ1ðiÞ is the velocity of the ith particle at the t + 1 iteration, w is the weight of the
velocity, c1 and c2 are the learning factor of the particle, r is a random number from 0 to 1,
which can improve the randomness of the search. In the t iteration, pbest and gbest
represent the position of the particle and the best position of the global particle
respectively. expðÞ is the oscillation coefficient of the t evolution and cosðÞ is the cosine
function.

Long short-term memory cosine adaptive particle swarm optimization
Long short-term memory (LSTM) networks, a pivotal subset of recurrent neural networks
(RNNs), are designed to overcome the limitations of traditional RNNs in learning long-
term dependencies. Distinct for their unique architecture, LSTMs are equipped with
specialized units called gates: the forget gate, input gate, and output gate. These gates
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effectively regulate the flow of information, allowing the network to retain or discard data
over intervals of varying lengths. This capability is particularly beneficial in tasks involving
sequential data, such as natural language processing, time series analysis, and speech
recognition. By addressing the issue of vanishing gradients, a common problem in
standard RNNs, LSTMs facilitate more efficient and robust learning of dependencies
across extensive time lags, making them a fundamental tool in the field of deep learning.
The architecture diagram of LSTM is shown in Fig. 1.

In the domain of LSTM neural networks, it has been demonstrated that the accuracy of
prediction outcomes can be enhanced through the modification of the learning rate and
the neuronal count. The CAPSO-LSTM algorithm is introduced, representing an
amalgamation of LSTM with the CAPSO algorithm. This integration is achieved by
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Figure 1 Architecture diagram LSTM. The image depicts an LSTM (long short-term memory) neural
network architecture, illustrating the flow and transformation of data within. It shows the internal gating
mechanisms—forget, input, and output gates—of an LSTM cell, how they process the input X, and
generate an output Y. The LSTM layer connects to a fully connected layer that integrates the features,
leading to the final output layer where the result is produced.

Full-size DOI: 10.7717/peerj-cs.2048/fig-1
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employing CAPSO to optimize both the learning rate and the neuron quantity within the
LSTM framework, thereby augmenting the precision of the prediction model. The
algorithm’s methodology encompasses the following specific steps:

. Step 1: Normalization is performed by Eq. (2), which ranges from 1 to −1. Normalization
eliminates the undesirable effects caused by odd sample data and improves the
convergence of the training network.

X0¼ 2 � ðX�minðxÞÞ=ðmaxðxÞ�minðxÞÞ�1 (2)

where X is the input data, min(x) is the minimum value of input data, max(x) is the
maximum value of input data, X′ is the result after normalization.

. Step 2: In the CAPSO algorithm part, the optimization objects are the initial learning
rate and the number of neurons of LSTM, and the fitness function is a mean square
error (MSE). The fitness function of the CAPSO is shown in Eq. (3):

MSE ¼ 1
n

Xn
i¼1

ðYi � Yi
0Þ2 (3)

where n is the number of samples, The Yi is the true value and Yi
0 is the predicted value.

. Step 3: In the LSTM training process, the optimal number of neurons and the initial
learning rate obtained by the CAPSO algorithm will be used as parameters in the LSTM.

. Step 4: Start model prediction and calculate model prediction error.

The flowchart of CAPSO-LSTM is shown on Fig. 2.

EXPERIMENTS
Data preparation
Urban green spaces are correlated with several socio-economic and environmental factors.
These include the local population size, the area allocated to park green spaces, the overall
water supply provision, the expanse of road infrastructure, and the urban Gross Domestic
Product (GDP). For the purpose of forecasting the area covered by urban green spaces, a
dataset spanning 24 years (1998 to 2021) pertaining to Beijing has been extracted from the
China Statistical Yearbook. Seven distinct indicators have been identified as inputs for the
predictive model: General public budget revenue (PBR), general public budget expenditure
(PBE), household population (HP), park green area (PGA), total water supply (TWS), road
area (RA), and GDP, along with the measured green area (GA). These datasets are
delineated in Tables 1 and 2. The temporal division of the dataset assigns the years 1998 to
2016 for the training phase of the model, whereas data from 2017 to 2021 are reserved for
the validation of the predictive accuracy of the model.

To validate the predictive superiority of the CAPSO-LSTMmodel for urban green space
quantification, the LSTM and PSO-LSTM models are utilized as baselines within the
control group of the experiment. The uniformity in the selection of parameters and the
delimitation of the optimization objectives for each model was preserved to ensure the
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integrity and comparability of the experimental outcomes, as detailed in Table 3 and
follows.

Number of particles (50): The number of particles determines the coverage of the search
space. Choosing 50 particles represents a compromise between computational resources
and search efficiency. Fewer particles might not explore the search space sufficiently, while

Normalize the input data

Initialize particle velocity and position

Begin

Reach iterations

Calculate particle fitness

Output the optimal parameters of LSTM

No
Yes

Update the individual optimum and the 

global optimum by CAPSO

Predicte green area by LSTM

Figure 2 Flowchart of CAPSO-LSTM. The process begins with normalizing the input data, followed by
initializing the particle velocity and position. It then calculates the particle fitness and checks if the
predefined number of iterations has been reached. If not, it updates the individual and global optima
using CAPSO. This loop continues until the iteration condition is met. Once completed, the process
outputs the optimal parameters for the LSTM model, which are then used to predict the green area. The
flow is sequential and iterative, with a decision point that loops back until the stopping criterion is
satisfied. Full-size DOI: 10.7717/peerj-cs.2048/fig-2
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more particles increase computational costs. Fifty particles are considered as a reasonable
number to provide good search coverage within a reasonable timeframe.

Number of iterations (100): The number of iterations determines the length of the
optimization process. One hundred iterations allow the PSO and CAPSO algorithms
enough time to adjust the positions of its particles to find the optimal solution. This figure
is based on experimental tuning and experience, aiming to balance between convergence
speed and computational cost.

Range of neurons (10, 50): The number of neurons directly affects the model’s
complexity and capacity. Too few neurons might lead to underfitting, while too many
neurons can cause overfitting and unnecessary computational burden. Choosing a range of
10 to 50 offers sufficient flexibility to find an optimal balance between performance and
complexity.

Range of learning rates (0.001, 0.15): The learning rate is a key hyperparameter that
determines the speed at which a model learns. A smaller learning rate (e.g., 0.001) ensures

Table 1 Specific data of public budget revenue (PBR), general public budget expenditure (PBE),
household population (HP), park green area (PGA).

Indicators PBR PBE HP PGA
Unit Billion yuan Billion yuan Peaple Square hectometer

1998 1.3345E+06 1.3460E+06 9.8186E+06 4.9540E+03

1999 1.0692E+06 1.4747E+06 1.0527E+07 4.9890E+03

2000 1.5755E+06 1.8829E+06 9.7414E+06 5.5130E+03

2001 4.5417E+06 5.5911E+06 9.8810E+06 7.0697E+03

2002 5.2433E+06 6.0728E+06 1.0670E+07 9.5771E+03

2003 5.8155E+06 7.0580E+06 1.0792E+07 1.0826E+04

2004 7.3159E+06 8.6225E+06 1.0929E+07 1.2446E+04

2005 9.0897E+06 1.0174E+07 1.1106E+07 1.1365E+04

2006 1.1061E+07 1.2476E+07 1.1269E+07 1.4234E+04

2007 1.4778E+07 1.5942E+07 1.1454E+07 1.1821E+04

2008 1.8216E+07 1.8941E+07 1.1611E+07 1.2316E+04

2009 2.0075E+07 2.2192E+07 1.1763E+07 1.8070E+04

2010 2.3312E+07 2.6119E+07 1.1910E+07 1.9020E+04

2011 2.9787E+07 3.1239E+07 1.2101E+07 1.9728E+04

2012 3.2838E+07 3.5487E+07 1.2291E+07 2.1178E+04

2013 3.6257E+07 4.0050E+07 1.2467E+07 2.3223E+04

2014 3.9883E+07 4.3550E+07 1.2631E+07 2.3223E+04

2015 4.7239E+07 5.7377E+07 1.2737E+07 2.9503E+04

2016 5.0813E+07 6.4067E+07 1.3595E+07 3.0069E+04

2017 5.4308E+07 6.8195E+07 1.3605E+07 3.1019E+04

2018 5.7859E+07 7.4675E+07 1.3737E+07 3.2619E+04

2019 5.8171E+07 7.4083E+07 1.3921E+07 3.5157E+04

2020 5.4839E+07 7.1162E+07 1.3955E+07 3.5720E+04

2021 5.9323E+07 7.2051E+07 1.4088E+07 3.6397E+04
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stability in the learning process but may require more time to converge. A larger learning
rate (e.g., 0.15) can accelerate the learning process but might also lead to overshooting and
instability. This range is chosen to provide enough flexibility for the PSO and CAPSO
algorithms to find the best balance between stability and convergence speed.

Table 2 Specific data of total water supply (TWS), road area (RA), gross domestic product (GDP),
and the green area (GA).

Indicators TWS RA GDP GA
Unit Million cubic meters Million cubic meters Million yuan Square hectometer

1998 1.0905E+05 3.6206E+03 1.7810E+07 1.8682E+04

1999 1.1074E+05 3.6850E+03 1.8246E+07 1.9070E+04

2000 1.0934E+05 4.1988E+03 2.3323E+07 2.0600E+04

2001 1.4091E+05 5.9168E+03 2.6979E+07 2.9365E+04

2002 1.3899E+05 7.6450E+03 3.1245E+07 4.2592E+04

2003 1.2882E+05 1.0570E+04 3.5573E+07 4.8496E+04

2004 1.5021E+05 1.1213E+04 4.1610E+07 4.9298E+04

2005 1.4476E+05 1.6227E+04 6.7656E+07 4.4384E+04

2006 1.4264E+05 9.8580E+03 7.7374E+07 5.3163E+04

2007 1.4263E+05 7.7340E+03 9.2076E+07 4.4840E+04

2008 1.4251E+05 8.9410E+03 1.0325E+08 4.6993E+04

2009 1.5182E+05 9.1790E+03 1.1972E+08 6.1695E+04

2010 1.5556E+05 9.3950E+03 1.3904E+08 6.2672E+04

2011 1.5836E+05 9.1640E+03 1.6014E+08 6.3540E+04

2012 1.5965E+05 1.3509E+04 1.7617E+08 6.5540E+04

2013 1.8748E+05 1.3884E+04 1.9213E+08 6.8438E+04

2014 1.8242E+05 1.3834E+04 2.1019E+08 6.8438E+04

2015 1.8252E+05 1.4302E+04 2.3015E+08 8.1305E+04

2016 1.9137E+05 1.4316E+04 2.5669E+08 8.2113E+04

2017 1.8828E+05 1.3960E+04 2.8015E+08 8.3501E+04

2018 1.9198E+05 1.4098E+04 3.0320E+08 8.5286E+04

2019 1.5767E+05 1.4318E+04 3.5371E+08 8.8704E+04

2020 1.4779E+05 1.4702E+04 3.6103E+08 9.2683E+04

2021 1.5014E+05 1.4800E+04 4.0270E+08 9.3127E+04

Table 3 Parameters in experiments of the particle swarm optimization (PSO) and cosine adaptive
PSO (CAPSO).

Parameter PSO CAPSO

Populations 50 50

Iterations 100 100

Range of neurons (10, 50) (10, 50)

Range of learning rate (0.001, 0.15) (0.001, 0.15)
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Evaluation criteria
The mean absolute error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE) have been selected as the evaluative indices for the experimental
outcomes of each algorithm. The equations for MAE, RMSE and MAPE are shown in
Eq. (4).

MAE ¼ 1
n

Xn
i¼1

jPrei�Reaij

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðPrei�ReaiÞ2
s

MAPE ¼ 1
n

Xn
i¼1

Prei�Reai
Reai

����
����

(4)

where n means the total number of sample, Prei means the prediction value of i and Rea
means the reality value of i.

RESULTS AND DISCUSSION
Prediction results are shown in Table 4. In the year 2017, the LSTM model exhibited the
least prediction error at 0.22%, but this error margin escalated progressively over the years,
culminating at 16.92% in 2021. This trend may indicate a degradation in the LSTM
model’s long-term prediction capability or its inability to adapt effectively to evolving
trends in the data.

The PSO-LSTM model shows an initial error of 0.63% in 2017, increasing to 11.57% by
2021. Despite its fluctuating error rates across the observed years, the PSO-LSTM generally
outperforms the standalone LSTM model, suggesting that Particle Swarm Optimization
(PSO) contributes to a more refined parameter selection for the LSTM, thus improving its
predictive accuracy.

Overall, the CAPSO-LSTM model exhibits consistently stable and superior predictive
performance, with error rates decreasing from 2.09% in 2017 to 1.02% in 2021. This
improvement signifies the success of the CAPSO in optimizing the hyperparameters of the
LSTM, thereby enhancing the model’s ability to capture the trends in urban green space
area changes. Notably, in the year 2021, the CAPSO-LSTM model’s prediction error is

Table 4 Prediction results of LSTM, PSO-LSTM and CAPSO-LSTM.

Year Reality LSTM PSO-LSTM CAPSO-LSTM

Prediction Errors Prediction Errors Prediction Errors

2017 8.350E+04 8.332E+04 0.22% 8.298E+04 0.63% 8.525E+04 2.09%

2018 8.529E+04 8.507E+04 0.25% 8.658E+04 1.52% 8.898E+04 4.33%

2019 8.870E+04 8.428E+04 4.99% 8.513E+04 4.03% 9.151E+04 3.17%

2020 9.268E+04 7.995E+04 13.74% 8.191E+04 11.62% 9.067E+04 2.18%

2021 9.313E+04 7.737E+04 16.92% 8.236E+04 11.57% 9.218E+04 1.02%
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significantly lower than that of the other models, highlighting its potential and practicality
in handling such data.

Results of mean absolute error (MAE), root mean square error (RMSE) and mean
absolute percentage error (MAPE) are shown in Table 5. The performance of the LSTM,
PSO-LSTM, and CAPSO-LSTM models was comprehensively evaluated. It was observed
that the CAPSO-LSTM model consistently outperformed the other models, as evidenced
by its significantly lower MAE (2,242.83), RMSE (2,431.38), and MAPE (0.03), indicating a
superior predictive accuracy. The improvements in forecasting precision can be attributed
to the optimization of hyperparameters using the CAPSO algorithm, which has been
demonstrated to enhance the LSTM model’s capability to predict urban green space areas
more reliably. Conversely, the LSTMmodel, devoid of optimization techniques, was found
to have the highest error rates, suggesting a lesser degree of reliability in its predictions.
The PSO-LSTM model, which utilized Particle Swarm Optimization, showed a moderate
performance improvement over the standard LSTMmodel, as reflected by its intermediate
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Figure 3 Train and prediction results of LSTM. The black line indicates the predicted values generated
by an LSTM model, while the green line represents the actual observed values.
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Table 5 Results of mean absolute error (MAE), root mean square error (RMSE) and mean absolute
percentage error (MAPE).

Indicators LSTM PSO-LSTM CAPSO-LSTM

MAE 6,661.71 5,386.48 2,242.83

RMSE 9,272.96 7,024.29 2,431.38

MAPE 0.07 0.06 0.03
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Figure 5 Train and prediction result of CAPSO-LSTM. The black line indicates the predicted values
generated by an CAPSO-LSTM model, while the purple line represents the actual observed values.
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Figure 4 Train and prediction result of PSO-LSTM. The black line indicates the predicted values
generated by an PSO-LSTM model, while the orange line represents the actual observed values.
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values of MAE and RMSE, and a lower MAPE than that of the LSTM model. Train and
prediction results of LSTM, PSO-LSTM, and CAPSO-LSTM are shown in Figs. 3–5.

Compared to traditional metaheuristic algorithms, CAPSO is specifically designed for
the parameter training of recurrent neural networks, utilizing a cosine oscillation strategy
to enhance the particle swarm algorithm’s ability to escape local optima.

Moreover, the dataset for urban green space is collected on an annual basis, leading to a
scarcity of training and testing data. When trained with such limited datasets, the CAPSO-
LSTM model exhibits a distinct advantage over comparative algorithms. However, it is
imperative to acknowledge that a deficiency in training data may precipitate a decline in
model accuracy, accompanied by an escalation in both MAE and RMSE. This presents a
formidable challenge to the CAPSO-LSTM framework, underscoring the importance of
devising strategies for efficient training leveraging short-term data as a critical future
research avenue.

In summary, the CAPSO-LSTM model significantly improves the accuracy of urban
green space area predictions by optimizing the hyperparameters of the LSTM. This has
important practical applications in urban planning and green space management, as
accurate predictions can assist urban planners in making better-informed decisions to
maintain or increase urban greenery.

CONCLUSION
The imperative of accurately forecasting urban green space areas is acknowledged for its
critical role in environmental conservation, urban planning, and ensuring societal well-
being in urban areas. In this study, a new predictive model termed CAPSO-LSTM has been
proposed, utilizing the CAPSO algorithm to fine-tune the hyperparameters of an LSTM
network, thereby augmenting the model’s performance.

In the conducted simulation experiments, the CAPSO-LSTM model’s performance was
found to be superior to that of both the PSO-LSTM and the traditional LSTMmodels. The
specific experimental outcomes revealed that the CAPSO-LSTM model achieved an MAE
of 2,242.83, an RMSE of 2,431.38, and a MAPE of 0.03.

However, it is recognized that the scarcity of training data, due to the annual collection
cycle of urban green space-related data, has resulted in elevated MAE and RMSE among
the algorithms tested. Based on these experimental outcomes, the development of
predictive models capable of achieving high accuracy with limited training samples is
identified as a critical area for future research.

In conclusion, the introduction of the CAPSO-LSTM model marks a significant step
forward in the predictive modeling of urban green spaces. The employment of the CAPSO
algorithm for hyperparameter optimization within the LSTM framework has proven
effective, as evidenced by the simulation results. Future work should aim to address the
identified limitations by exploring more computationally efficient algorithms that
maintain the model’s predictive accuracy while minimizing resource consumption.
Additionally, further studies could investigate the model’s adaptability to various urban
contexts and the integration of additional predictive variables, such as climate patterns or
urbanization rates, to enhance the model’s robustness and applicability to real-world
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scenarios. This future research will be critical for advancing the practical application of the
CAPSO-LSTM model in sustainable urban development and green space management.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Natural Science Foundation of Hubei Province
(2023AFB003) and the Education Department Scientific Research Program Project of
Hubei Province of China (Q20222208). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Natural Science Foundation of Hubei Province: 2023AFB003.
Education Department Scientific Research Program Project of Hubei Province of China:
Q20222208.

Competing Interests
The authors declare that they have no competing interests. Ke Yan is employed by
Construction Third Engineering Bureau Installation Engineering Co., Ltd.

Author Contributions
. Hao Tian conceived and designed the experiments, performed the experiments, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

. Hao Yuan conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, and approved the final draft.

. Ke Yan performed the experiments, analyzed the data, authored or reviewed drafts of the
article, and approved the final draft.

. Jia Guo conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, authored or reviewed drafts of the article,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub and Zenodo:
- https://github.com/GuoJia-Lab-AI/CAPSO-LSTM.
- Guo. (2024). GuoJia-Lab-AI/CAPSO-LSTM: Data (v1.0.0). Zenodo. https://doi.org/10.

5281/zenodo.10512386.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2048#supplemental-information.

Tian et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2048 14/16

https://github.com/GuoJia-Lab-AI/CAPSO-LSTM
https://doi.org/10.5281/zenodo.10512386
https://doi.org/10.5281/zenodo.10512386
http://dx.doi.org/10.7717/peerj-cs.2048#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2048#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2048
https://peerj.com/computer-science/


REFERENCES
Aly D, Dimitrijevic B. 2022. Public green space quantity and distribution in Cairo, Egypt. Journal

of Engineering and Applied Science 69(1):221 DOI 10.1186/s44147-021-00067-z.

Aranha C, Villalón CLC, Campelo F, Dorigo M, Ruiz R, Sevaux M, Sörensen K, Stützle T. 2022.
Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intelligence
16(1):1–6 DOI 10.1007/s11721-021-00202-9.

Basu S, Nagendra H. 2021. Perceptions of park visitors on access to urban parks and benefits of
green spaces. Urban Forestry and Urban Greening 57(52):126959
DOI 10.1016/j.ufug.2020.126959.

Bharti, Redhu P, Kumar K. 2023. Short-term traffic flow prediction based on optimized deep
learning neural network: PSO-BI-LSTM. Physica A: Statistical Mechanics and its Applications
625(22):129001 DOI 10.1016/j.physa.2023.129001.

Das DK. 2022. Factors and strategies for environmental justice in organized urban green space
development. Urban Planning 7(2):160–173 DOI 10.17645/up.v7i2.5010.

Du B, Huang S, Guo J, Tang H, Wang L, Zhou S. 2022. Interval forecasting for urban water
demand using PSO optimized KDE distribution and LSTM neural networks. Applied Soft
Computing 122:108875 DOI 10.1016/j.asoc.2022.108875.

Duan G, Su Y, Fu J. 2023. Landslide displacement prediction based on multivariate LSTM model.
International Journal of Environmental Research and Public Health 20(2):1167
DOI 10.3390/ijerph20021167.

Feltynowski M, Kronenberg J. 2020. Urban green spaces—an underestimated resource in third-
tier towns in Poland. Land 9(11):453 DOI 10.3390/land9110453.

Ghahramani M, Galle NJ, Ratti C, Pilla F. 2021. Tales of a city: sentiment analysis of urban green
space in Dublin. Cities 119(2):103395 DOI 10.1016/j.cities.2021.103395.

Guo J, Shi B, Yan K, Di Y, Tang J, Xiao H, Sato Y. 2022. A twinning bare bones particle swarm
optimization algorithm. PLOS ONE 17(5 May):1–30 DOI 10.1371/journal.pone.0267197.

Guo J, Yuan H, Shi B, Zheng X, Zhang Z, Li H, Sato Y. 2024. A novel breast cancer image
classification model based on multiscale texture feature analysis and dynamic learning. Scientific
Reports 14(1):7216 DOI 10.1038/s41598-024-57891-5.

Guo J, Zhou G, Yan K, Sato Y, Di Y. 2023a. Pair barracuda swarm optimization algorithm: a
natural-inspired metaheuristic method for high dimensional optimization problems. Scientific
Reports 13(1):18314 DOI 10.1038/s41598-023-43748-w.

Guo J, Zhou G, Yan K, Shi B, Di Y, Sato Y. 2023b. A novel hermit crab optimization algorithm.
Scientific Reports 13(1):1–26 DOI 10.1038/s41598-023-37129-6.

Hogendorf M, Oude Groeniger J, Noordzij JM, Beenackers MA, van Lenthe FJ. 2020.
Longitudinal effects of urban green space on walking and cycling: a fixed effects analysis. Health
and Place 61(2):102264 DOI 10.1016/j.healthplace.2019.102264.

Hu HB, Hou ZH, Huang CH, LaMonte MJ, Wang M, Lu B. 2022. Associations of exposure to
residential green space and neighborhood walkability with coronary atherosclerosis in Chinese
adults. Environmental Pollution 292(1985):118347 DOI 10.1016/j.envpol.2021.118347.

Huang H, Wu X, Cheng X. 2021. The prediction of carbon emission information in Yangtze River
economic zone by deep learning. Land 10(12):1380 DOI 10.3390/land10121380.

Jiang W, Stickley A, Ueda M. 2021. Green space and suicide mortality in Japan: an ecological
study. Social Science and Medicine 282(2):114137 DOI 10.1016/j.socscimed.2021.114137.

Kwartnik-Pruc A, Trembecka A. 2021. Public green space policy implementation: a case study of
Krakow, Poland. Sustainability (Switzerland) 13(2):538 DOI 10.3390/su13020538.

Tian et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2048 15/16

http://dx.doi.org/10.1186/s44147-021-00067-z
http://dx.doi.org/10.1007/s11721-021-00202-9
http://dx.doi.org/10.1016/j.ufug.2020.126959
http://dx.doi.org/10.1016/j.physa.2023.129001
http://dx.doi.org/10.17645/up.v7i2.5010
http://dx.doi.org/10.1016/j.asoc.2022.108875
http://dx.doi.org/10.3390/ijerph20021167
http://dx.doi.org/10.3390/land9110453
http://dx.doi.org/10.1016/j.cities.2021.103395
http://dx.doi.org/10.1371/journal.pone.0267197
http://dx.doi.org/10.1038/s41598-024-57891-5
http://dx.doi.org/10.1038/s41598-023-43748-w
http://dx.doi.org/10.1038/s41598-023-37129-6
http://dx.doi.org/10.1016/j.healthplace.2019.102264
http://dx.doi.org/10.1016/j.envpol.2021.118347
http://dx.doi.org/10.3390/land10121380
http://dx.doi.org/10.1016/j.socscimed.2021.114137
http://dx.doi.org/10.3390/su13020538
http://dx.doi.org/10.7717/peerj-cs.2048
https://peerj.com/computer-science/


Luo J, Gong Y. 2023. Air pollutant prediction based on ARIMA-WOA-LSTM model. Atmospheric
Pollution Research 14(6):101761 DOI 10.1016/j.apr.2023.101761.

Paul LA, Hystad P, Burnett RT, Kwong JC, Crouse DL, van Donkelaar A, Tu K, Lavigne E,
Copes R, Martin RV, Chen H. 2020. Urban green space and the risks of dementia and stroke.
Environmental Research 186:109520 DOI 10.1016/j.envres.2020.109520.

Rao Y, Zhong Y, He Q, Dai J. 2022. Assessing the equity of accessibility to urban green space: a
study of 254 cities in China. International Journal of Environmental Research and Public Health
19(8):4855 DOI 10.3390/ijerph19084855.

Stessens P, Canters F, Huysmans M, Khan AZ. 2020. Urban green space qualities: an integrated
approach towards GIS-based assessment reflecting user perception. Land Use Policy 91:104319
DOI 10.1016/j.landusepol.2019.104319.

Stuhlmacher M, Kim Y, Kim JE. 2022. The role of green space in Chicago’s gentrification. Urban
Forestry and Urban Greening 71:127569 DOI 10.1016/j.ufug.2022.127569.

Sörensen K. 2015. Metaheuristics—The metaphor exposed. International Transactions in
Operational Research 22:3–18 DOI 10.1111/itor.12001.

Tian H, Guo J, Xiao H, Yan K, Sato Y. 2022. An electronic transition-based bare bones particle
swarm optimization algorithm for high dimensional optimization problems. PLOS ONE 17(7
July):1–23 DOI 10.1371/journal.pone.0271925.

Usharani B. 2022. ILF-LSTM: enhanced loss function in LSTM to predict the sea surface
temperature. Soft Computing 27:13129–13141 DOI 10.1007/s00500-022-06899-y.

Velasco L, Guerrero H, Hospitaler A. 2022. Can the global optimum of a combinatorial
optimization problem be reliably estimated through extreme value theory? Swarm and
Evolutionary Computation 75:101172 DOI 10.1016/j.swevo.2022.101172.

Velasco L, Guerrero H, Hospitaler A. 2024. A literature review and critical analysis of
metaheuristics recently developed. Archives of Computational Methods in Engineering
31(1):125–146 DOI 10.1007/s11831-023-09975-0.

Zhou G, Du J, Guo J, Li G. 2024. A novel hippo swarm optimization: For solving high-
dimensional problems and engineering design problems. Journal of Computational Design and
Engineering 11(3):12–42 DOI 10.1093/jcde/qwae035.

Zhou D, Zuo X, Zhao Z. 2022. Constructing a large-scale urban land subsidence prediction
method based on neural network algorithm from the perspective of multiple factors. Remote
Sensing 14(8):1803 DOI 10.3390/rs14081803.

Tian et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2048 16/16

http://dx.doi.org/10.1016/j.apr.2023.101761
http://dx.doi.org/10.1016/j.envres.2020.109520
http://dx.doi.org/10.3390/ijerph19084855
http://dx.doi.org/10.1016/j.landusepol.2019.104319
http://dx.doi.org/10.1016/j.ufug.2022.127569
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1371/journal.pone.0271925
http://dx.doi.org/10.1007/s00500-022-06899-y
http://dx.doi.org/10.1016/j.swevo.2022.101172
http://dx.doi.org/10.1007/s11831-023-09975-0
http://dx.doi.org/10.1093/jcde/qwae035
http://dx.doi.org/10.3390/rs14081803
http://dx.doi.org/10.7717/peerj-cs.2048
https://peerj.com/computer-science/

	A cosine adaptive particle swarm optimization based long-short term memory method for urban green area prediction
	Introduction
	Related work
	Materials and Methods
	Experiments
	Results and discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


