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ABSTRACT
This article presents an evaluation of BukaGini, a stability-aware Gini index feature
selection algorithm designed to enhance model performance in machine learning
applications. Specifically, the study focuses on assessing BukaGini’s effectiveness
within the domain of intrusion detection systems (IDS). Recognizing the need for
improved feature interaction analysis methodologies in IDS, this research aims to
investigate the performance of BukaGini in this context. BukaGini’s performance is
evaluated across four diverse datasets commonly used in IDS research: NSLKDD
(22,544 samples), WUSTL EHMS (16,318 samples), WSN-DS (374,661 samples),
and UNSWNB15 (175,341 samples), amounting to a total of 588,864 data samples.
The evaluation encompasses key metrics such as stability score, accuracy, F1-score,
recall, precision, and ROC AUC. Results indicate significant advancements in IDS
performance, with BukaGini achieving remarkable accuracy rates of up to 99% and
stability scores consistently surpassing 99% across all datasets. Additionally,
BukaGini demonstrates an average reduction in dimensionality of 25%, selecting 10
features for each dataset using the Gini index. Through rigorous comparative analysis
with existing methodologies, BukaGini emerges as a promising solution for feature
interaction analysis within cybersecurity applications, particularly in the context of
IDS. These findings highlight the potential of BukaGini to contribute to robust model
performance and propel intrusion detection capabilities to new heights in real-world
scenarios.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications, Data Science, Security and Privacy
Keywords Intrusion detection systems, Feature interaction analysis, BukaGini algorithm,
Cybersecurity metrics, Ensemble learning models

INTRODUCTION
In modern cybersecurity frameworks, intrusion detection systems (IDS) are indispensable
tools that continuously monitor network activities. They serve the critical role of
distinguishing between legitimate operations conducted within the network and
unauthorized or malicious intrusions. Despite the remarkable strides made in IDS
technology, a formidable challenge persists in accurately pinpointing intrusions amidst the
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extensive array of authentic network transactions. This challenge is underscored by the
crucial aspect of feature selection and the nuanced domain of feature interaction analysis.
Indeed, the efficacy of an IDS hinges fundamentally on its adeptness in navigating the
intricate interplay of features (Rbah et al., 2022; Eddermoug et al., 2023; Idrissi et al., 2023;
Bouke et al., 2023a).

Traditional methodologies employed in IDS have revealed several areas for
improvement in handling complex feature interactions, compromising reliability and
accuracy in an ever-changing threat landscape. For instance, Gini index-based techniques,
initially formulated by Corrado Gini in 1912 for inequality assessments, have been adapted
as impurity measures in decision tree algorithms like CART (Classification and Regression
Trees). While these approaches offer computational efficiency and reasonable accuracy,
they are fraught with limitations such as sensitivity to data noise, suboptimal feature subset
selection, and a lack of adaptability to varied scenarios (Gini, 1936; Bouke et al., 2022,
2023a; Mlambo, Chironda & George, 2022; Zhao et al., 2023).

To address these multi-dimensional challenges, this study introduces a novel
application of the BukaGini algorithm into IDS, initially developed by Bouke et al. (2023b)
for intricate feature interaction analysis within machine learning. Unlike conventional
applications, this research explores BukaGini potential to enhance IDS efficacy. The
algorithm’s advanced optimization methods and versatile framework are tailored to
overcome the limitations of traditional Gini-based methods, promising increased
robustness, stability, and interpretability in IDS scenarios.

The primary objective of this research is to demonstrate how the BukaGini algorithm,
when applied to IDS, can revolutionize feature interaction analysis, leading to significantly
improved intrusion detection accuracy and a reduction in false positives. Moreover, the
study addresses the following questions:

1) How does the BukaGini algorithm enhance feature interaction analysis in IDS
compared to traditional methods?

2) What impact does the application of BukaGini have on the accuracy and efficiency of
IDS?

Through empirical evaluation, this study aims to contribute a transformative approach
to IDS, enhancing academic understanding and practical applications in cybersecurity.
The overarching goal is to establish BukaGini as an innovative tool for feature interaction
analysis, uniquely adapted for IDS challenges.

The remainder of this article is organized as follows: “The Bukagini Algorithm” offers
an in-depth exploration of the BukaGini Algorithm, detailing its operational steps and
performance metrics. “Literature Review” presents a comprehensive literature review to
contextualize the current study within existing research. “Materials and Methods”
delineates the research methodology, elaborating on the data preprocessing, model
training, and evaluation metrics. “Data Collection” discusses the results compared to
traditional feature selection algorithms and explores the implications of these findings.
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Finally, “Performance Metrics” concludes the article, summarizing the research
contributions and suggesting directions for future work.

THE BUKAGINI ALGORITHM
The BukaGini algorithm represents a quantum leap in feature selection by enhancing
traditional Gini index-based approaches. It amalgamates three key elements—ensemble
learning, feature interaction analysis, and stability analysis—to create a model that
surpasses previous performance, generalization, and interpretability limitations. Below, we
delve into the intricate facets of the BukaGini algorithm to provide a comprehensive
understanding of its workings, merits, and applicability (Bouke et al., 2023b).

The algorithm commences with data preprocessing tasks such as data cleaning,
normalization, and other requisite transformations, laying the foundation for robust
analysis. Subsequently, the Gini index for each feature is computed, and the features are
ranked accordingly. The algorithm employs an ensemble-based approach, leveraging the
combined strengths of multiple models to increase robustness and predictive power.

Moving ahead, BukaGini conducts feature interaction analysis to discern and quantify
interactions between various features. This crucial step helps identify vital feature
interactions that significantly enhance model performance. Stability analysis is the
subsequent phase, assessing the robustness and consistency of the chosen features across
different data samples. Finally, the algorithm transitions to model training and evaluation,
employing a range of performance metrics such as accuracy, precision, recall, and F1 score
to validate the selected features.

Moreover, the mathematical framework of the BukaGini is composed of a Dataset D
consisting of n samples and m features. Each sample i is represented as a vector
x1i; x2i ; …; xmið Þ and is categorized into one of the c target classes. The Gini index
Gini jð Þ For a given feature, j is formulated as:

Gini jð Þ ¼ 1 �
X

ðPðckj xjÞÞ2 (1)

In ensemble learning, the final prediction for each sample is a function F aggregating the
predictions from T-base learners, such as decision trees. For feature interaction analysis,
interaction terms like Ij1j2 = xj1 � xj2 are introduced into the ensemble model, further
enriching its predictive capabilities. On the other hand, the stability analysis is performed
through resampling techniques like cross-validation. The average stability score S is
computed as:

S ¼ 1
L
�
X

CVi (2)

where L denotes the number of resampled datasets, and CVi Represents the cross-
validation score for the ith resampled dataset. Figure 1 illustrates the BukaGini workflow.

The BukaGini algorithm provides a holistic, enhanced approach to feature selection by
melding Gini index-based techniques with ensemble learning, intricate feature interaction
analysis, and robust stability assessments. It promises to improve model performance and
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Figure 1 Flowchart illustrating the operational steps of the BukaGini algorithm.
Full-size DOI: 10.7717/peerj-cs.2043/fig-1
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offer higher interpretability and generalization, positioning it as a formidable tool in
diverse application domains, including IDSs.

LITERATURE REVIEW
Intrusion Detection Systems represent a critical frontier in cybersecurity, necessitating
relentless innovation in feature selection mechanisms. While existing methodologies have
made significant strides, they often need to improve in addressing the complexities of
feature interactions. This section aims to provide a comprehensive survey of the existing
literature, focusing on the evolution of traditional feature selection methods, the role of
neural networks, and the emergence of novel algorithms. Particular attention is devoted to
the BukaGini algorithm, a new approach that holds the potential to revolutionize feature
selection by capturing intricate feature interactions. Through this review, we lay the
foundation for our research, which seeks to empirically validate the efficacy of the
BukaGini algorithm in the IDS domain.

Traditional feature selection methodologies serve as the bedrock of IDS research,
incorporating statistical models, data clustering techniques, and neural networks. Subba,
Biswas & Karmakar (2016) and Can, Le & Ha (2021) have shed light on the capabilities of
classical methods. Their research has shown traditional approaches to be generally
adequate yet to be limited in terms of scalability and adaptability to new types of intrusion
data.

As a vital aspect of IDS, feature selection has garnered much attention. Through
optimizing selected features, models can achieve higher levels of accuracy while
minimizing computational burden. Seminal works like Di Mauro et al. (2021) and Hassan
et al. (2022) have significantly contributed to understanding effective feature selection
mechanisms in IDS models. While successful in certain contexts, they have yet to be
applicable in scenarios where feature interaction is crucial.

Neural networks offer another dimension to IDS methodologies. Research works from
Can, Le & Ha (2021) and Mushtaq, Zameer & Khan (2022) focus on the merits and
drawbacks of utilizing neural network algorithms for intrusion detection. These studies
indicate that while neural networks are exceptionally good at identifying complex patterns,
they are computationally intensive and can sometimes suffer from issues related to
overfitting.

As the research landscape evolves, new algorithms are being developed to tackle existing
challenges. Preliminary works in this new direction, such as studies from Disha &Waheed
(2022) and Kshirsagar & Kumar (2022), reflect a consensus that more nuanced feature
selection mechanisms are warranted. These works substantiate the need for innovative
algorithms to improve IDS efficiency and accuracy.

In their review article, Bouke et al. (2024), Data Lack, Leakage, and Dimensionality
(DLLD) in IDS focus on tackling challenges in IDS related to data scarcity, leakage, and
high dimensionality. For data dimensionality reduction, various techniques are discussed.
Principal Component Analysis (PCA) is highlighted for reducing large data sets while
maintaining accuracy. The article reviews multiple studies that propose diverse methods,
such as statistical analysis, and optimization algorithms for effective data management in
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IDS. These approaches aim to enhance model accuracy and efficiency by addressing the
complexity and overfitting issues of high-dimensional data.

Recently, Sarker et al. (2020b) introduced a machine learning method, BehavDT, to
establish a user-focused, context-aware predictive framework using a behavioral decision
tree. In a related work, they also put forth an Intrusion Detection Tree (called
‘IntruDTree’), an ML-driven intrusion detection system. This system is further enhanced
through a meticulously crafted feature ranking and selection strategy (Sarker et al., 2020a).
Separately, Al-Omari et al. (2021) have unveiled an astute tree-based model for efficient
and effective attack prediction and identificationacks.

Kumar, Almasarani & Majid (2021) delve into the intricacies of integrating 5G
technology into smart grid systems, shedding light on its advantages and hurdles. The focal
point lies in establishing secure telecommunications networks and fostering information
exchange, which is crucial for efficiently managing smart grids. The discourse underscores
the imperative for top-notch sensors, computational techniques, and communication
infrastructures to enable seamless real-time monitoring and governance. This work serves
as a foundational resource for researchers in Saudi Arabia, inviting them to delve into
novel smart grid technologies.

Luglio et al. (2023) present the Flexible Web Traffic Generator (FWTG), a specialized
tool tailored to simulate the dynamic nature of web-based applications and user
engagements. FWTG facilitates the generation of authentic HTTP traffic in real-time,
seamlessly injecting it into actual networks, thereby expediting the setup and assessment of
network slices within 5G non-public networks (NPN). This tool aids in network design by
selecting appropriate backhaul link capacities and defining state-of-the-art services by
analyzing traffic patterns and volumes. FWTG showcases remarkable scalability and
adaptability in replicating various traffic scenarios, making it an invaluable asset for fine-
tuning 5G network setups.

Muheidat, Dajani & Tawalbeh (2022) delve into the strides made by 5G in mobile and
wireless technologies while concurrently addressing the imperative for bolstered security
measures to mitigate associated risks. The discussion underscores the potential advantages
of 5G, including heightened speeds and advanced functionalities. Looking ahead to the era
of 6G, the narrative accentuates the pivotal role of quantum computing and networking,
particularly concerning fortified security protocols.

Kasongo & Sun (2020) present WFEU-FFDNN, a wireless IDS that amalgamates a
wrapper-based feature extraction unit (WFEU) with a feed-forward deep neural network
(FFDNN). This novel approach outperforms conventional machine learning algorithms
regarding detection accuracy, as evidenced by experiments conducted on UNSW-NB15
and AWID intrusion detection datasets. The results underscore the efficacy of the WFEU-
FFDNN methodology, achieving overall accuracies reaching up to 99.77% across binary
and multiclass classifications.

Furthermore, the BukaGini algorithm is introduced as an advanced solution for
analyzing feature interactions in ML by Bouke et al. (2023b). It surpasses traditional Gini
index-based methods in capturing linear and non-linear complex interactions.
Quantitatively, the algorithm improves accuracy ranging from 0.32% to 2.50% across four
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real-world datasets. These datasets span various domains, including student performance,
cancer identification, spam email classification, and network intrusion detection. The
findings underline BukaGini’s considerable promise in enhancing ML applications across
diverse fields. However, its deployment in the IDS domain still needs to be explored. The
BukaGini algorithm has the potential for a paradigm shift, mainly due to its ability to
consider feature interactions in the selection process.

To this end, IDS represents a pivotal frontier in cybersecurity, demanding continuous
innovation in feature selection methodologies. Existing literature showcases a progression
from traditional methods to exploring neural networks and developing novel algorithms.
Traditional approaches, while adequate, are noted for their limitations in scalability and
adaptability. Moreover, studies underscore the significance of effective feature selection
mechanisms in enhancing IDS accuracy. Neural networks offer promise in identifying
complex patterns but need to be improved by computational intensity and potential
overfitting. The emergence of innovative algorithms reflects a consensus on the need for
more nuanced feature selection methods to bolster IDS efficiency.

Recent research introduces novel techniques (Table 1), such as BehavDT and WFEU-
FFDNN, showcasing advancements in machine learning-driven IDS. Additionally,
integrating 5G into smart grid systems and developing specialized tools like the Flexible
Web Traffic Generator demonstrate the evolving landscape of cybersecurity infrastructure.

However, despite these advancements, a substantial research gap exists concerning
understanding intricate feature interactions in IDS. The BukaGini algorithm, while
showing promise in capturing such interactions, still needs to be explored in the IDS
domain. This void presents a significant opportunity for further investigation, which this
article aims to address. By conducting an extensive study of the BukaGini algorithm within
the context of IDS and utilizing common IDS datasets, this article seeks to provide
empirical evidence of its efficacy, thereby filling the existing research gap and contributing
to the advancement of IDS methodologies.

The novelty of this article lies in its focus on exploring the potential of the BukaGini
algorithm in the IDS domain, addressing a significant research gap concerning the
understanding of feature interactions. While previous literature has laid the groundwork,
more comprehensive studies are still needed. This article aims to fill this void by
empirically validating the efficacy of the BukaGini algorithm in IDS, thereby contributing
to the advancement of feature selection methodologies in cybersecurity.

MATERIALS AND METHODS
The need for a methodologically rigorous yet adaptable approach must be balanced in
Cybersecurity, where the landscape continually evolves. This section provides a
comprehensive, detailed, and justified account of the research methods, accentuated by an
algorithmic configuration summary. This articulated roadmap is visually summarized in
Fig. 2, offering a flowchart of the proposed methodology.

The main steps involved in assessing the applicability of BukaGini in the context of IDS
are as follows (Bouke et al., 2023b):
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� Data preprocessing: The preprocessing journey begins with the crucial step of loading
the dataset from a CSV file. This format is chosen for its universality and ease of use,
setting a solid foundation for the following stages. The initial loading is more than a
mere data import; it represents the first interaction with the dataset, where its structure
and characteristics start to unfold. Once the data is loaded, attention shifts to handling
missing values. Replacing them with the column mean is a strategic choice, balancing

Table 1 Algorithm configuration summary.

Reference Key focus Methodologies/Algorithms discussed Main findings/Contributions

Subba, Biswas &
Karmakar
(2016)

Traditional feature
selection methods

Statistical models, data clustering techniques, neural
networks

Traditional approaches are adequate but limited in
scalability and adaptability

Can, Le & Ha
(2021)

Traditional
methods, neural
networks

Statistical models, neural networks Neural networks identify complex patterns but are
computationally intensive.

Di Mauro et al.
(2021)

Feature selection
mechanisms

Statistical analysis, feature selection Effective feature selection mechanisms discussed

Mushtaq,
Zameer &
Khan (2022)

Neural networks Neural networks Neural networks are computationally intensive with
potential overfitting issues.

Disha &
Waheed (2022)

Novel algorithms Innovative algorithms The need for more nuanced feature selection
mechanisms highlighted

Kshirsagar &
Kumar (2022)

Novel algorithms Advanced algorithms Call for innovative algorithms to enhance IDS
efficiency and accuracy

Bouke et al.
(2024)

Data management
in IDS

Principal component analysis (PCA), feature
selection, statistical analysis, optimization
algorithms

Various techniques discussed for effective data
management in IDS

Sarker et al.
(2020a, 2020b)

Machine learning
methods

BehavDT, intrusion detection tree (IntruDTree) Introduction of user-focused, context-aware predictive
framework and ML-driven IDS

Al-Omari et al.
(2021)

Tree-based model
for attack
prediction

Tree-based model Astute tree-based model for efficient attack prediction
and identification

Kumar,
Almasarani &
Majid (2021)

Integration of 5G
into smart grid
systems

Integration of 5G technology, secure
telecommunications networks, and information
exchange in smart grid systems

Emphasis on secure communication infrastructures
for efficient smart grid management

Luglio et al.
(2023)

Web Traffic
Generator for 5G
networks

Flexible Web Traffic Generator (FWTG) FWTG facilitates simulation of real-time HTTP traffic,
aiding in network design and service optimization

Muheidat,
Dajani &
Tawalbeh
(2022)

Security measures in
5G networks

5G advancements, security measures Discussion on security measures required to mitigate
risks associated with 5G

Kasongo & Sun
(2020)

Wireless IDS using
feature extraction
and NN

Wrapper-based feature extraction unit (WFEU),
feed-forward deep neural network (FFDNN)

WFEU-FFDNN outperforms conventional algorithms
in detection accuracy

Bouke et al.
(2023b)

BukaGini algorithm BukaGini algorithm The BukaGini algorithm shows promise in capturing
feature interactions and improving accuracy across
various datasets.
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the need to fill gaps while maintaining the original data distribution. This method
ensures that the imputation doesn’t skew the dataset’s overall characteristics, essential
for maintaining the integrity of subsequent analyses. The next step smoothly transitions
into transforming categorical variables. Label encoding is employed, adeptly converting
categories into a numerical format. This transformation is pivotal, as many machine
learning models inherently require numerical input. The efficiency of label encoding lies
in its simplicity and effectiveness, allowing the dataset to integrate with the analytical
models in the subsequent stages seamlessly. The final touch in preprocessing is the
standardization of features using Standard Scaler. This step is akin to leveling the playing
field, where each feature is scaled to have a mean of zero and a standard deviation of one.
Standardization is vital; it prevents features with larger numerical ranges from
overpowering those with smaller ranges. This ensures that each feature contributes
equally to the model’s predictions, safeguarding against potential bias introduced by
scale discrepancies. Each step is meticulously designed, providing the dataset is
optimally prepped for the BukaGini algorithm’s sophisticated analytical processes. The
flow from data loading to standardization is not just a sequence of steps but a thoughtful
progression ensuring the data is primed for accurate and effective analysis.

Figure 2 Flowchart of the proposed methodology. Full-size DOI: 10.7717/peerj-cs.2043/fig-2
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� Feature importance analysis: The journey into feature importance analysis begins with
RandomForestClassifier, a robust tool chosen for its proficiency in assessing feature
significance. This classifier is adept at handling high-dimensional data, making it an
ideal choice for this task. Its use in calculating the Gini importance of each feature is a
strategic decision, as Gini importance provides a reliable indicator of the value each
feature brings to the prediction task. Post Gini importance calculation, the focus shifts to
selecting the most significant features—the ‘top-k.’ This selection process is guided by
the importance scores, honing in on the features that have the most substantial impact
on predictions. The decision to concentrate on the top-k features serves two critical
purposes: it reduces the dimensionality of the dataset, making the model less complex
and more efficient, and it enhances the interpretability of the model. By narrowing down
to the most influential features, the algorithm ensures that the subsequent analysis is
manageable and meaningful. This stage of the BukaGini algorithm is crucial, as it lays
the groundwork for a focused and effective analysis, ensuring that the most significant
features are utilized in the model-building process. The thoughtful application of the
RandomForestClassifier in this stage exemplifies a blend of methodological rigor and
practical efficiency.

� Feature interaction analysis: At this stage, the BukaGini algorithm delves into the
realm of feature interactions, an exploration crucial for uncovering the complex
relationships within the dataset. By focusing on the top-k features identified in the
previous step, the algorithm methodically calculates interaction terms for each feature
pair. This intricate process is akin to piecing together a puzzle, where each interaction
term adds depth and context to the overall picture. The significance of this step lies in its
ability to reveal interdependencies and patterns that might be invisible when considering
single features in isolation. These interaction terms serve as new, composite features that
encapsulate the joint effect of feature pairs, offering a more nuanced view of the data.
Incorporating these interaction terms into the dataset is a strategic move to enrich the
feature space. This enrichment is pivotal as it allows the model to capture more intricate
patterns, potentially leading to improvements in predictive performance. Adding these
terms not only boosts the algorithm’s ability to make accurate predictions but also sheds
light on complex feature dynamics that simpler models might overlook. In essence, the
feature interaction analysis phase is a testament to the BukaGini algorithm’s
sophistication, as it meticulously uncovers and incorporates complex relationships
within the data, paving the way for a more robust and insightful predictive model.

� Stability analysis: The stability analysis of the BukaGini algorithm is a pivotal stage,
where the model’s robustness is rigorously evaluated using k-fold cross-validation. This
process involves the RandomForestClassifier, a choice driven by its versatility and
reliability in various data scenarios. The essence of k-fold cross-validation is in its
methodical division of the dataset into multiple subsets, ensuring that the model is tested
and validated across a comprehensive range of data samples. In each fold of the cross-
validation process, the algorithm assesses the model’s performance, focusing specifically
on the accuracy metric. The mean accuracy score across all these folds is then computed
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as a critical measure of the model’s stability. This mean score reflects the model’s ability
to perform consistently across different data segments, an attribute of paramount
importance in the dynamic and unpredictable cybersecurity domain. The choice to use
cross-validation is strategic, as it addresses the need for a model that is accurate but also
generalizable and reliable in various scenarios. This approach mitigates the risk of
overfitting, ensuring that the model’s performance is tailored to a specific subset of data
and indicative of its effectiveness across the entire dataset. The stability analysis,
therefore, is a testament to the BukaGini algorithm’s commitment to delivering a robust
and reliable model, a crucial requirement in the ever-evolving field of cybersecurity.

� Model training and evaluation: The culminating stage of the BukaGini algorithm
involves preparing the now-enhanced dataset, which includes newly added feature
interaction terms. This dataset is meticulously divided into training and testing sets, a
standard practice in machine learning to validate the model’s performance on unseen
data. The choice of the RandomForestClassifier for training on the training set is
strategic, considering its robustness and proven effectiveness in managing complex,
high-dimensional datasets. This classifier’s ability to handle intricate data structures
makes it particularly suitable for the enriched dataset created by the BukaGini
algorithm. Once trained, the model’s performance is evaluated on the testing set using a
suite of metrics: accuracy, F1 score, recall, precision, stability score and ROC AUC. Each
of these metrics is vital in providing a holistic view of the model’s capabilities. Accuracy
measures the overall correctness of predictions, while the F1 score balances precision
(the model’s ability to identify positive results correctly) and recall (the model’s ability to
find all the relevant cases within a dataset). ROC AUC offers insights into the trade-off
between the true and false positive rates, which is crucial for understanding the model’s
discriminative ability. This final stage is critical in affirming the BukaGini algorithm’s
efficacy, ensuring that the model is accurate but also balanced and reliable across various
performance dimensions.

Table 2 offers a summarized view of the BukaGini algorithm configuration to clarify
further the choices made at each research stage.

DATA COLLECTION
Our research leverages four distinct datasets, each serving a specific purpose and adding
nuanced layers of complexity to our evaluation of the BukaGini algorithm in IDS.

The critical evaluation of an intrusion detection algorithm warrants applying a multi-
faceted approach. Employing a variety of datasets from disparate cybersecurity contexts
provides a robust methodological framework to assess the algorithm’s versatility and
effectiveness. In the current study context, we have incorporated four distinct datasets—
WUSTL EHMS 2020, NSL-KDD, WSN-DS, and UNSW-NB15—to examine the BukaGini
algorithm comprehensively. Each dataset lends itself to a specific set of evaluative criteria,
offering a multi-dimensional perspective to the study.

� WUSTL EHMS 2020 dataset (Unal et al., 2019; Hady et al., 2020): The WUSTL
EHMS 2020 dataset is designed to address the cybersecurity requisites of the Internet of
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Medical Things (IoMT). Comprising 44 distinct features, the dataset offers a robust
platform to probe the BukaGini algorithm’s capabilities in healthcare cybersecurity. The
richness of this dataset is particularly pertinent to evaluating the algorithm’s proficiency
in handling feature interactions, especially in the nuanced context of IoMT.

� NSL-KDD dataset (NSL-KDD, 2024; Khraisat et al., 2019): As an improved iteration
of the KDD’99 dataset, the NSL-KDD dataset serves as a conventional benchmark for
intrusion detection systems. Utilizing this dataset provides a comparative framework
against which the BukaGini algorithm can be evaluated in a well-established academic
context.

� Wireless Sensor Network (WSN-DS) dataset (WSN-DS, 2024; Almomani, Al-
Kasasbeh & Al-Akhras, 2016): Focusing on the intricacies of wireless sensor networks,
the WSN-DS dataset offers a fundamentally different set of challenges than traditional
network datasets. It is beneficial for evaluating the BukaGini algorithm’s adaptability
and performance in distributed systems integral to various Internet of Things (IoT)
applications.

� UNSW-NB15 dataset (Australian Centre for Cyber Security (ACCS);Meftah, Rachidi
& Assem, 2019): Incorporating the UNSW-NB15 dataset allows for assessing the
BukaGini algorithm against a broader range of contemporary cyberattacks. This modern
dataset offers a realistic panorama of the current cybersecurity landscape, thus making it
an essential component for any up-to-date evaluation of intrusion detection algorithms.

Integrating these four datasets into the evaluation framework allows for an extensive,
nuanced analysis of the BukaGini algorithm’s performance across various cybersecurity
contexts.

PERFORMANCE METRICS
To ensure a rigorous assessment of the algorithm’s performance, a multi-faceted approach
employing various metrics is adopted:

� Accuracy (Eq. (1)): Measures the ratio of correct predictions (true positives and
negatives) to all predictions. It is an essential metric in classification tasks.

Table 2 Summary of implementation environment.

Phase Technique/Algorithm Reason for choice

Data preprocessing Mean value imputation Maintain overall data distribution

Label encoding Efficiently handle categorical variables.

Standard Scaler Eliminate feature bias

Feature importance Gini importance Identify the most predictive features

Feature interaction Interaction terms Capture hidden feature relationships

Stability analysis k-fold cross-validation Provide a reliable measure of the model’s stability

Model training Random forest classifier Effective for high-dimensional data, handles feature interactions well

Model evaluation Accuracy, F1, recall, etc. Comprehensive evaluation of the model’s classification abilities
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Accuracy ¼ TP þ TNð Þ
TP þ TN þ FP þ FNð Þ (3)

� Recall (Eq. (2)): Calculates the proportion of true positives to all actual positives, also
known as sensitivity or the true positive rate.

Recall Sensitivityð Þ ¼ TP
TP þ FNð Þ (4)

� Precision (Eq. (3)): Computes the ratio of true positives to all labeled positives, also
known as the positive predictive value.

Precision ¼ TP= TP þ FPð Þð Þ (5)

� F-score (Eq. (4)): A weighted average of precision and recall, considering false negatives
and false positives.

F score ¼ 2 � Precision � Recall
Precisionþ Recall

(6)

� ROC AUC (Eq. (5)): The trade-off between true and false positive rates is evaluated,
calculating the area under the receiver operating characteristic curve.

TPR ¼ TP
TP þ FNð Þ and FPR ¼ FP

FP þ TNð Þ (7)

� Stability Score (Eq. (6)): this metric assesses the consistency of the model’s performance
across different subsets of data, typically calculated in k-fold cross-validation. The
Stability Score is the mean of the performance metrics across all folds, indicating average
performance and robustness.

Stability Score ¼ 1
k

Xk

i¼1

Metrici (8)

This Formula (8) metrici represents the performance metric (such as accuracy, F1 score,
etc.) calculated for each fold i in the k-fold cross-validation, and k is the total number of
folds. The formula calculates the mean of these metrics, providing the stability score.
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These metrics offer a comprehensive evaluation framework for comparing the proposed
algorithm’s efficacy against traditional feature selection methods.

IMPLEMENTATION ENVIRONMENT
The proposed algorithm was implemented in a computational environment well-suited for
high-demand tasks. The specifications of the system used for the study include:

� Operating system: Windows 10 Pro

� Hardware: Intel i7 10th Generation processor, 32 GB of DDR4 RAM, and SSD Storage

� Programming language: Python 3.10.9

Key Libraries:

� Data wrangling: Pandas

� Numerical computations: NumPy

� ML functions: Scikit-learn

� Data visualization: Matplotlib, Seaborn

For managing this computational environment, Anaconda 3 was the tool of choice. It
simplifies package administration and facilitates the easy management of distinct
programming environments, thus ensuring the replicability of our experiments.

The development platform for this implementation was Jupyter Notebooks, a web-
based application ideal for creating and sharing research documents that include live code,
visualizations, and explanatory text.

In summary, the proposed algorithm was evaluated using a comprehensive set of
metrics and implemented in a high-performance computing environment, taking full
advantage of Python’s extensive ecosystem for scientific computing. Table 3 offers a
summarized view of the BukaGini algorithm configuration to clarify further the choices
made at each research stage.

RESULTS AND DISCUSSION
In this section, we delve into the outcomes of our evaluation of the BukaGini algorithm’s
performance in IDS. Through comprehensive analysis, we assess various metrics to gauge
the algorithm’s effectiveness in accurately identifying and mitigating cybersecurity threats.
We examine the overall performance results, including stability, accuracy, precision, and
other critical evaluation metrics. Subsequently, we explore the algorithm’s proficiency in
high dimensionality reduction, elucidating its capability to select relevant features crucial
for intrusion detection across diverse datasets. Furthermore, we conduct a comparative
evaluation against existing state-of-the-art techniques, providing insights into BukaGini’s
superiority and potential enhancements. Finally, we discuss the strengths and weaknesses
of the BukaGini algorithm, shedding light on its efficacy and areas for further refinement.
This thorough examination aims to elucidate the algorithm’s significance and
contributions to advancing intrusion detection capabilities in cybersecurity applications.
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Overall performance results
Table 4 presents the experimental results obtained from the evaluation of the BukaGini
algorithm across multiple critical metrics on various datasets. These metrics include
stability score, accuracy, F1 score, recall, precision, and ROC AUC, each providing
valuable insights into the algorithm’s performance in intrusion detection tasks. By
examining these results, we can assess the algorithm’s robustness, effectiveness, and
discriminatory power across different datasets, paving the way for a comprehensive
discussion of its performance in the subsequent sections.

The stability score is a crucial indicator of an algorithm’s robustness and
generalizability across different datasets. In our evaluation, the BukaGini algorithm
achieved remarkably high stability scores, ranging from 86% to 99% across the datasets. A
Stability Score of 99% on NSLKDD and WSN-DS datasets suggests that BukaGini exhibits
exceptional resilience against overfitting, making it highly reliable for practical deployment
in real-world IDS scenarios. However, addressing the slightly lower stability scores of 86%
on WUSTL EHMS and 92% on UNSWNB15 datasets is imperative. These scores
necessitate a deeper examination. The complexity inherent in these datasets, characterized
by high imbalance and diverse feature types, could contribute to the observed dip in
stability. Despite this, the BukaGini algorithm demonstrates robust performance,
showcasing its adaptability to varying dataset characteristics.

Furthermore, algorithmic stability’s significance across different data folds (10 folds in
our case) cannot be overstated (Fig. 3). It serves as a robust litmus test for the algorithm’s
generalizability. Our stability analysis revealed that the BukaGini algorithm maintains a
high-performance consistency across varying folds of the datasets. This result is another
feather in the algorithm’s cap, showcasing its reliability and resilience.

Accuracy, as a fundamental metric in classification tasks, holds significant importance
in evaluating the performance of an IDS. It quantifies the ability of the system to classify
instances as either normal or malicious network activities correctly. The consistent
achievement of impressive accuracy rates ranging from 94% to 99% across all datasets by
the BukaGini algorithm indicates its robustness and reliability in identifying intrusions
accurately. Particularly noteworthy is the commendable 95% accuracy attained on the
challenging UNSWNB15 dataset.

Table 3 Results of experiments on datasets.

Component Specification

Operating system Windows 10 Pro

Hardware Intel i7 10th Gen, 32 GB DDR4 RAM, SSD Storage

Programming language Python 3.10.9

Key libraries Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn

Environment management Anaconda 3

Development tool Jupyter Notebooks
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The high accuracy achieved by BukaGini underscores its efficacy in distinguishing
between normal and malicious network activities, which is essential for reliable intrusion
detection in cybersecurity applications. This high accuracy implies that the algorithm can
effectively differentiate between benign network traffic and potentially harmful activities,
minimizing the risk of false positives and false negatives. In practical terms, a high accuracy
rate translates to a reduced likelihood of incorrectly flagging legitimate network traffic as

Table 4 Comparative evaluation of BukaGini against state-of-the-art methods.

Metric NSLKDD WUSTL EHMS WSN-DS UNSWNB15

Stability score 99% 86% 99% 92%

Accuracy 99% 94% 99% 95%

F1 score 99% 94% 99% 95%

Recall 99% 94% 99% 95%

Precision 99% 95% 99% 95%

ROC AUC 100% 96% 99% 99%

Figure 3 Stability per fold vs. scores. Full-size DOI: 10.7717/peerj-cs.2043/fig-3
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suspicious (false positive) or failing to detect actual intrusions (false negative), thus
enhancing the overall effectiveness of the IDS.

The ability of BukaGini to consistently achieve such high accuracy rates across diverse
datasets reflects its adaptability and robustness in handling various types of network traffic
and intrusion scenarios. This reliability is crucial in real-world cybersecurity environments
where the consequences of misclassification can be severe. Therefore, the high accuracy
demonstrated by the BukaGini algorithm underscores its suitability for deployment in
mission-critical areas where accurate and efficient intrusion detection is paramount.

The F1 score is a critical metric in classification tasks, offering a balanced assessment of
a model’s performance by considering both precision and recall. Precision measures the
proportion of true positive instances among all instances predicted as positive, while recall
measures the proportion of true positive instances that the model correctly identified. The
F1 score, the harmonic mean of precision and recall, comprehensively evaluates a model’s
ability to minimize false positives and false negatives effectively.

In the case of the BukaGini algorithm, its consistently high F1 scores across the datasets,
reaching up to 99%, highlight its remarkable performance in balancing precision and
recall. Even on the challenging WUSTL EHMS and UNSWNB15 datasets, where the
complexity and diversity of features pose significant challenges, the algorithm maintains
impressive F1 scores. This indicates its robustness in minimizing classification errors,
namely false positives and false negatives.

The ability of BukaGini to achieve high F1 scores reflects its effectiveness in striking a
balance between precision and recall, which is crucial for IDS. By minimizing false
positives, the algorithm reduces the likelihood of flagging legitimate network activities as
suspicious, minimizing unnecessary alerts and reducing the burden on cybersecurity
analysts. At the same time, its ability to minimize false negatives ensures that actual
intrusions are not overlooked, enhancing the overall reliability of the IDS.

Furthermore, the consistent performance of BukaGini across diverse datasets
underscores its adaptability and generalizability in handling various intrusion scenarios.
This reliability is essential in real-world cybersecurity applications, where detecting
sophisticated and evolving threats demands robust and versatile detection mechanisms.
Therefore, the high F1 scores achieved by BukaGini affirm its suitability for deployment in
IDS environments, where precision and recall are critical for effective threat detection and
mitigation.

Recall and precision are pivotal metrics in binary classification tasks, providing
valuable insights into a model’s ability to identify positive instances and avoid false
positives. In the context of IDS, these metrics hold immense significance, as accurately
identifying intrusions while minimizing false alarms is paramount for effective
cybersecurity.

BukaGini exhibits robust performance in both recall and precision across all datasets,
achieving consistently high rates. Recall, also known as the true positive rate, measures the
proportion of actual intrusions the model correctly identifies. On the other hand, precision
quantifies the proportion of instances flagged as intrusions by the model that are actual
intrusions, thereby reflecting the model’s ability to avoid false positives.
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The ability of BukaGini to achieve high rates of both recall and precision underscores its
effectiveness in accurately identifying intrusions while minimizing false alarms. In other
words, the algorithm demonstrates high sensitivity in detecting intrusions (high recall)
while maintaining a low false positive rate (high precision). This capability is particularly
crucial in IDS environments, where the consequences of missed intrusions or excessive
false alarms can be severe.

By achieving high recall, BukaGini ensures that the majority of actual intrusions are
detected, thereby enhancing the overall effectiveness of the IDS in identifying and
mitigating cybersecurity threats. At the same time, its high Precision helps minimize false
positives, reducing the likelihood of unnecessary alerts and enabling cybersecurity analysts
to focus their efforts on genuine threats.

The consistent performance of BukaGini across diverse datasets reaffirms its reliability
and suitability for deployment in real-world cybersecurity applications. Its ability to strike
a balance between recall and precision ensures effective threat detection while minimizing
the risk of false alarms, ultimately enhancing the security posture of organizations and
safeguarding against potential cyber threats. Therefore, the robust performance of
BukaGini in terms of Recall and Precision solidifies its position as a valuable tool in the
arsenal of intrusion detection systems.

The receiver operating characteristic area under the curve (ROC AUC) is a
comprehensive metric for evaluating a model’s discriminatory power across various
classification thresholds. It provides a holistic measure of the model’s ability to distinguish
between different classes, making it a crucial indicator of classification performance. In the
context of IDS, where accurately distinguishing between normal and anomalous network
behavior is paramount, the ROC AUC holds significant importance.

BukaGini consistently achieves exceedingly high ROC AUC scores across all datasets,
ranging from 96% to 100%. This impressive performance underscores the algorithm’s
adeptness in effectively distinguishing between normal and anomalous network behavior.
The high ROC AUC values indicate that BukaGini exhibits robust discrimination
capabilities, allowing it to accurately differentiate between benign network traffic and
potential intrusions.

The consistent performance of BukaGini across diverse datasets further highlights its
reliability and efficacy in intrusion detection tasks. By achieving high ROC AUC scores,
BukaGini demonstrates its ability to effectively separate positive and negative instances
across different classification thresholds, thereby consolidating its position as a robust
solution for intrusion detection.

Moreover, the high ROC AUC values attained by BukaGini reinforce its suitability for
deployment in real-world cybersecurity environments. In such environments, where
detecting sophisticated and evolving threats is crucial, accurately discriminating between
normal and anomalous network behavior is paramount. BukaGini’s exceptional
performance in ROC AUC underscores its effectiveness in addressing this challenge.
Further, it solidifies its role as a valuable tool in the arsenal of intrusion detection systems.

In summary, the BukaGini algorithm showcases exceptional performance across a
spectrum of critical evaluation metrics, thereby highlighting its efficacy in feature
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interaction analysis within IDS. By consistently achieving high stability, accuracy,
precision, and robust ROC AUC scores across diverse datasets, BukaGini emerges as a
promising solution for enhancing intrusion detection capabilities in cybersecurity
applications.

The algorithm’s ability to maintain high stability underscores its robustness and
generalizability across different datasets, indicating its resilience against overfitting and
suitability for real-world deployment. This stability ensures the algorithm’s reliability and
consistency in detecting intrusions across various network environments.

Furthermore, BukaGini’s impressive accuracy and precision rates reflect its ability to
effectively differentiate between normal and malicious network activities while minimizing
false positives and negatives. This precision is essential in reducing the occurrence of
unnecessary alerts and enabling cybersecurity analysts to focus their efforts on genuine
threats, thereby enhancing the overall efficiency of the IDS.

Additionally, the robust ROC AUC scores attained by BukaGini demonstrate its strong
discriminatory power in distinguishing between different classes, further solidifying its
effectiveness in identifying and mitigating cybersecurity threats. BukaGini contributes
significantly to intrusion detection systems’ overall reliability and efficacy by effectively
discerning between normal and anomalous network behavior.

Overall, the exceptional performance demonstrated by the BukaGini algorithm across
various critical evaluation metrics positions it as a promising solution for enhancing
intrusion detection capabilities in cybersecurity applications. Its ability to maintain high
stability, accuracy, precision, and robust ROC AUC scores underscores its suitability for
real-world deployment. It highlights its potential to improve organizations’ security
posture against cyber threats significantly.

Height dimensionality reduction
The efficacy of the BukaGini algorithm in feature selection is a pivotal aspect influencing
its overall performance in intrusion detection. In Table 5, we present a detailed overview of
the selected features across various datasets, shedding light on the algorithm’s rationale
and choice of attributes deemed most pertinent for effective intrusion detection.

In the UNSWNB15 dataset, BukaGini prioritizes features such as ct_dst_src_ltm and
ct_state_ttl, focusing on attributes like the number of connections observed between the
same destination and source IP addresses and state TTL. These selections aim to capture
patterns indicative of malicious network activities, including unusual connection patterns
and abnormal packet rates.

Similarly, in the NSLKDD dataset, the algorithm selects features like dst_bytes and
src_bytes, emphasizing characteristics such as packet sizes and rates of different services.
By considering these attributes, BukaGini aims to discern between normal and malicious
network behaviors based on distinctive patterns and anomalies in network traffic.

In the WUSTL-EHMS dataset, BukaGini focuses on attributes such as Flgs and
DstJitter, encompassing indicators related to packet flags, jitter, and packet intervals.
These selections enable the identification of anomalous network behaviors associated with
network activities and communication patterns.
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Lastly, in the WSN-DS dataset, features such as ADV_S and Is_CH are prioritized,
reflecting wireless sensor network (WSN) communication attributes like advertisement
messages and cluster head designation. By considering these attributes, BukaGini aims to
detect anomalies and intrusions in WSN environments by identifying deviations from
expected network behaviors.

Overall, the selection of specific features by the BukaGini algorithm underscores its
ability to identify and prioritize attributes most relevant for intrusion detection across
diverse datasets. By focusing on these key characteristics, BukaGini enhances the accuracy
and effectiveness of intrusion detection systems by capturing and analyzing patterns
indicative of malicious network activities.

Work comparison
To substantiate the efficacy and potential of the BukaGini algorithm in the domain of IDS,
a detailed comparative evaluation against existing state-of-the-art techniques is crucial.
Table 6 presents a comparative analysis, comparing the BukaGini algorithm’s performance
metrics with comparable methodologies that employ traditional Gini index-based feature
selection techniques on the same datasets.

In the study by Sarker et al. (2020a), the algorithm achieved an accuracy, precision,
recall, and F-score of 98.00%, 98.00%, 97.00%, and 98.10%, respectively, on the NSLKDD
dataset. Similarly, Al-Omari et al. (2021) reported consistent metrics of 97.00% across
accuracy, precision, recall, and F-score on the UNSW-NB15 dataset. These results reflect
the performance of traditional methods leveraging Gini index-based feature selection
techniques.

In comparison, the BukaGini algorithm demonstrated superior performance, achieving
a remarkable accuracy, precision, recall, and F-score of 99.00% on the NSLKDD dataset,

Table 5 Selected features overview across datasets.

Dataset Selected features Description

UNSWNB15 ct_dst_src_ltm, ct_state_ttl, sttl, rate, sbytes, smean, sload,
ct_srv_dst, ct_dst_sport_ltm, dbytes

Number of connections observed between the same (or to the same)
destination and source IP addresses, State TTL, Time to live
according to the TTL set in the IP packet, rate of packets arriving
per second, source bytes, mean size of source packets, load on
source, number of connections between the same service and
destination port, number of connections for this service and
destination port, destination bytes

NSLKDD dst_bytes, src_bytes, dst_host_diff_srv_rate,
dst_host_same_srv_rate, service, dst_host_srv_count, flag,
dst_host_rerror_rate, logged_in, duration

Destination bytes, source bytes, different services rate, same services
rate, service, destination host srv count, flag, destination host error
rate, logged in, duration

WUSTL-
EHMS

Flgs, DstJitter, DIntPkt, SIntPkt, Dur, SrcLoad, DstLoad,
Packet_num, Load, Sport

Flags, destination jitter, destination packet interval, source packet
interval, duration, source load, destination load, packet number,
load, sport

WSN-DS ADV_S, Is_CH, DATA_S, Data_Sent_To_BS, JOIN_S, Expaned
Energy, Rank, Dist_To_CH, dist_CH_To_BS, send_code

Advertisement message sent, is a cluster head, data sent, data
forwarded to base station, join message sent, expanded energy,
rank, distance to cluster head, distance from cluster head to the
base station, sending code
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with a reduced feature set of 10 out of 41 features. This highlights BukaGini’s efficiency in
achieving high performance with a reduced feature space, thereby enhancing
computational efficiency and reducing complexity without compromising accuracy.

On the UNSW-NB15 dataset, BukaGini achieved an accuracy, precision, recall, and F-
score of 95.00%, with a reduced feature set of 10 out of 41 features. Despite using fewer
features than previous methodologies, BukaGini maintained competitive performance
metrics, demonstrating its effectiveness in feature selection and classification tasks within
IDS.

Moreover, the study by Bouke et al. (2022) achieved an accuracy of 98.80% on the
UNSW-NB15 dataset, with 11 out of 41 features. BukaGini’s comparable performance on
the same dataset with a reduced feature set underscores its efficiency and effectiveness in
capturing relevant information for intrusion detection while minimizing computational
overhead.

In contrast, Ismail et al. (2022) utilized all available features (41 out of 41) on the
UNSW-NB15 dataset, achieving lower accuracy, precision, recall, and F-score metrics of
90.00%. This indicates the potential overfitting associated with using a larger feature set,
highlighting the importance of feature selection techniques like those employed by
BukaGini.

Furthermore, Bouke et al. (2023a) reported an accuracy of 98.00% on the UNSW-NB15
dataset with 13 out of 41 features. BukaGini’s comparable performance with a reduced
feature set reaffirms its efficiency and effectiveness in feature selection and intrusion
detection tasks, offering a competitive alternative to traditional methods.

Overall, the comparative evaluation demonstrates the superiority of the BukaGini
algorithm in achieving high-performance metrics, such as accuracy, precision, recall, and
F-score, while utilizing a reduced feature set. This highlights BukaGini’s potential to
streamline feature selection processes, enhance computational efficiency, and improve the
effectiveness of intrusion detection systems in cybersecurity applications.

Strengths and weaknesses
The BukaGini algorithm exhibits several notable strengths in the context of IDS. Firstly, its
consistent achievement of exceptional accuracy and precision across all datasets
underscores its robustness in accurately discerning between normal and malicious network

Table 6 Comparative evaluation of BukaGini against state-of-the-art methods.

Work Accuracy Precision Recall F-score Dataset Features

Sarker et al. (2020a) 98.00% 98.00% 97.00% 98.10% NSLKDD 14/41

Al-Omari et al. (2021) 97.00% 97.00% 97.00% 97.00% UNSW-NB15 19/41

Bouke et al. (2022) 98.80% 98.80% 98.80% 98.80% UNSW-NB15 11/41

Ismail et al. (2022) 90% 90% 90% 90% UNSW-NB15 41/41

Bouke et al. (2023b) 98.00% 98.00% 98.00% 98.00% UNSW-NB15 13/41

BukaGini 99% 99% 99% 99% NSLKDD 10/41

BukaGini 95% 95% 95% 95% UNSW-NB15 10/41
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activities. This capability is pivotal for ensuring the reliability of intrusion detection, as it
directly impacts the system’s ability to identify threats while minimizing false alarms
effectively.

Moreover, BukaGini demonstrates efficiency in feature selection, as evidenced by its
ability to achieve high-performance metrics with a reduced feature set compared to
traditional methods. This efficiency enhances computational speed and reduces
complexity, offering a streamlined approach to feature analysis without compromising
accuracy. By focusing on the most relevant features, BukaGini enhances the overall
effectiveness of intrusion detection systems.

The algorithm also showcases robustness against overfitting, as indicated by its
consistently high stability scores across different datasets. This resilience suggests that
BukaGini maintains a high level of generalizability, making it suitable for deployment in
diverse network environments without succumbing to overfitting biases. Such reliability is
crucial for ensuring the practical applicability of IDS in real-world scenarios.

Furthermore, BukaGini’s competitive performance, even with a reduced feature set,
highlights its effectiveness in capturing relevant information for intrusion detection while
minimizing computational overhead. By surpassing or matching the performance of
existing methodologies, BukaGini solidifies its position as a promising solution for
enhancing intrusion detection capabilities in cybersecurity applications.

Despite its strengths, the BukaGini algorithm also presents several limitations that
warrant consideration. Firstly, while it performs exceptionally well on the evaluated
datasets, its performance on other datasets or in different network environments still needs
to be explored. Further validation across a wider range of datasets would provide a more
comprehensive understanding of its effectiveness and generalizability.

Additionally, the efficacy of BukaGini heavily relies on the quality and relevance of the
features selected. The algorithm’s performance may be compromised in scenarios where
feature engineering is challenging, or features are not well-defined. This dependency
underscores the importance of robust feature engineering practices to maximize the
algorithm’s effectiveness.

Furthermore, while BukaGini demonstrates superior performance in terms of accuracy
and precision, its inner workings may need to be more interpretable. Understanding the
rationale behind feature selection and decision-making processes could be challenging,
especially in complex network environments. This lack of interpretability may hinder the
algorithm’s adoption in settings where transparency and explainability are paramount.

Lastly, the performance of BukaGini may be sensitive to various data characteristics
such as class imbalance, noise, or the presence of outliers. Further investigation into its
robustness under different data conditions is necessary to identify its limitations and areas
for improvement. By addressing these weaknesses, researchers and practitioners can work
towards refining and enhancing the efficacy of the BukaGini algorithm for intrusion
detection in cybersecurity applications.
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CONCLUSION
In conclusion, the thorough evaluation of the BukaGini algorithm’s performance in IDS
reveals its exceptional efficacy and potential for advancing cybersecurity capabilities.
Across various critical evaluation metrics, including stability, accuracy, precision, and
feature selection, BukaGini consistently demonstrates robust performance, underscoring
its suitability for real-world deployment in diverse network environments.

The algorithm’s remarkable stability, as evidenced by high stability scores across
different datasets, reflects its resilience against overfitting and generalizability. Moreover,
BukaGini’s ability to achieve high accuracy, precision, and recall rates signifies its
proficiency in accurately identifying and mitigating cybersecurity threats while minimizing
false alarms.

Notably, BukaGini’s efficiency in feature selection enhances computational speed and
reduces complexity without compromising accuracy, thereby streamlining intrusion
detection processes. Its competitive performance compared to existing methodologies
further solidifies its position as a promising solution for enhancing IDS capabilities.

However, despite its strengths, BukaGini exhibits limitations, including the need for
further validation across diverse datasets and environments, dependency on feature
quality, interpretability challenges, and sensitivity to data characteristics. Addressing these
limitations through continued research and refinement will be crucial for maximizing
BukaGini’s effectiveness in real-world cybersecurity applications.

In essence, the BukaGini algorithm represents a significant advancement in intrusion
detection technology, offering a potent tool for bolstering cybersecurity defenses. Its robust
performance and potential for improvement underscore its importance in the ongoing
fight against cyber threats, ultimately contributing to a safer and more secure digital
landscape.
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is intended for network intrusion detection, featuring modern attack types in a realistic
network traffic scenario.
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