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The advancement of graph neural networks (GNNs) has enhanced the accuracy of
predicting metabolic sites. However, research in this domain remains scarce, with only a
few preliminary investigations conducted thus far on the eûcacy of fundamental GNNs.
Moreover, research indicates that the fusion of GNNs with XGBOOST exhibits superior
performance, yet such experimentation has not been attempted in the realm of metabolic
site prediction. Additionally, most metabolic site prediction tasks only focus on bonds and
atoms, often neglecting information on the overall molecular structure. Even GNNs merely
depict the local environment of atoms. Therefore, it is imperative to establish a more
rational and eûcient model for predicting metabolic sites. In this study, we have devised a
novel tool named D-CyPre, which amalgamates atom, bond, and molecule information via
two directed message-passing neural networks (D-MPNN) and employs XGBOOST to
predict the metabolic sites (SOM) of nine cytochrome P450 (CYP450) enzymes. D-CyPre
has two modes: Precision Mode, which emphasizes high precision, and Recall Mode, which
emphasizes high recall, catering to diûerent user needs. In both the validation and test
sets, D-CyPre's performance consistently surpasses that of existing models. Our results
indicate that the features of molecules may play a positively impactful role in predicting
metabolic sites.
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18 ABSTRACT

19 The advancement of graph neural networks (GNNs) has enhanced the accuracy of predicting 
20 metabolic sites. However, research in this domain remains scarce, with only a few preliminary 
21 investigations conducted thus far on the efficacy of fundamental GNNs. Moreover, research 
22 indicates that the fusion of GNNs with XGBOOST exhibits superior performance, yet such 
23 experimentation has not been attempted in the realm of metabolic site prediction. Additionally, 
24 most metabolic site prediction tasks only focus on bonds and atoms, often neglecting information 
25 on the overall molecular structure. Even GNNs merely depict the local environment of atoms. 
26 Therefore, it is imperative to establish a more rational and efficient model for predicting 
27 metabolic sites. In this study, we have devised a novel tool named D-CyPre, which amalgamates 
28 atom, bond, and molecule information via two directed message-passing neural networks (D-
29 MPNN) and employs XGBOOST to predict the metabolic sites (SOM) of nine cytochrome P450 
30 (CYP450) enzymes. D-CyPre has two modes: Precision Mode, which emphasizes high precision, 
31 and Recall Mode, which emphasizes high recall, catering to different user needs. In both the 
32 validation and test sets, D-CyPre's performance consistently surpasses that of existing models. 
33 Our results indicate that the features of molecules may play a positively impactful role in 
34 predicting metabolic sites.

35 INTRODUCTION

36 Cytochrome P450 (CYP450) enzymes are responsible for the metabolism of approximately 
37 90% of FDA-approved medicines and play a vital role in the Phase I metabolism of drugs(Nebert 
38 & Russell, 2002). As the primary and most convenient route of administration, oral intake 
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39 invariably results in alterations to the molecular structures of drugs(Hou et al., 2007; Xu et al., 
40 2012; Wang & Hou, 2015). The metabolism of drugs is closely linked to their bioavailability, 
41 bioactivity, and toxicology. When a drug is rapidly metabolized upon entering the body, only a 
42 small amount of the original compound remains, leading to reduced bioactivity and 
43 bioavailability. Furthermore, if the metabolites produced are toxic, drug use will be restricted. 
44 Hence, predicting how CYP450 will metabolize drugs can help us modify the drug's molecular 
45 structure to avoid such undesired situations. In conclusion, predicting drug metabolism by 
46 CYP450 isoforms is crucial for drug design and discovery(Jianing et al., 2011).
47 Several in silico metabolism prediction tools have been developed to discover and design 
48 drugs more effective, such as CyProduct(Tian et al., 2021), CypReact(Tian et al., 2018), 
49 FAME2(�ícho et al., 2017) and FAME3(�ícho et al., 2019a). However, all these models rely on 
50 fixed rules to generate the features of the site of metabolism (SOM) or bond of metabolism 
51 (BOM). While graph neural networks (GNNs) are less prevalent in silicon metabolism prediction 
52 tasks, they have already demonstrated their efficacy in replacing conventionally handcrafted 
53 molecular features generated by fixed rules in other molecular-related research domains. 
54 Recently, GNNs have shown a promising effect on molecular property prediction(Gilmer et al., 
55 2017; Yang et al., 2019) and drug discovery(Stokes et al., 2020; Jin et al., 2021). The commonly 
56 used GNNs in these studies are message passing neural networks (MPNN) (Gilmer et al., 2017; 
57 Jo et al., 2020) and directed MPNN (D-MPNN)(Yang et al., 2019; Stokes et al., 2020; Jin et al., 
58 2021; Han et al., 2022). Both networks use message-passing to aggregate the chemical 
59 information from the entire molecule and learn how to generate better features. The difference 
60 between them lies in the types of messages: MPNN aggregates information from related vertices 
61 (atoms), while D-MPNN aggregates information from directed edges (bonds). Compared to the 
62 MPNN, the D-MPNN can avoid loops in message-passing (Yang et al., 2019).
63 In many studies predicting SOMs or BOMs, models often include information about 
64 neighboring atoms or bonds when creating features for atoms or bonds (He et al., 2016; �ícho et 
65 al., 2017, 2019b; de Bruyn Kops et al., 2019, 2021; Tian et al., 2021). However, this step is very 
66 subjective, and it is difficult to determine which features of adjacent structures are required by 
67 the model. So there is room for improvement in models that are based on these features. In 
68 contrast, the D-MPNN requires only the features of the target atom or bond, and which features 
69 of neighboring structures are important will be determined by the neural network. Also, the 
70 neural network does not just screen the features but transforms the features, which may generate 
71 some new features that are more effective for determining SOMs. In summary, the D-MPNN has 
72 shown excellent results in other fields and has an objective and powerful ability for feature 
73 generation. We believe that it may achieve better results than existing models in silico 
74 metabolism prediction.
75 We have taken note of recent studies wherein researchers have systematically examined the 
76 performance of GNNs in predicting metabolic sites (Porokhin, Liu & Hassoun, 2023). However, 
77 the GNNs that was scrutinized lacks the incorporation of the novel D-MPNN and has not 
78 evolved into a user-friendly tool for scientific researchers. Furthermore, training stable models 
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79 for molecular property prediction using a multi-layer perceptron may prove to be challenging. 
80 Study have suggested that employing a GNNs in conjunction with XGBOOST for training yields 
81 superior predictive performance (Deng et al., 2021). Furthermore, the overall structure of the 
82 molecule is a crucial factor. This study also examines the impact of fusing traditional molecular 
83 features or features generated based on D-MPNN with those generated from the bonds and atoms 
84 within the molecule using D-MPNN. This study holds distinctive significance in terms of 
85 developing a novel metabolic site prediction model with better performance or aiding non-
86 computational personnel in their research within the field of metabolism.
87 In this study, we established D-CyPre, an in silico metabolism predictor capable of 
88 predicting any of the nine most significant human CYP450 enzymes (Phase I metabolism) 
89 (Zanger & Schwab, 2013). As shown in Figure 1, D-CyPre can be divided into two parts. The 
90 first part is to generate the features by D-MPNN, and the second part is to predict metabolic sites 
91 by these features. Finally, D-CyPre visually displays the predicted results (Figure 1). The darker 
92 the red in the figure, the higher the probability of metabolism of this site. Additionally, the 
93 probability value is written on the target atom or bonding atom of the target bond. It�s worth 
94 noting that D-CyPre only displays valuable sites with a probability greater than 50%. 

95 MATERIALS AND METHODS

96 2.1 Data Sets.

97 The data set used for training model in this study was EBoMD data set from 
98 CyProduct(Tian et al., 2021). This public data set includes BOMs of 679 substrates on nine of 
99 the most important human CYP450 isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, 

100 CYP2C19, CYP2D6, CYP2E1, CYP3A4) created from the Zaretzki Data set (Zanger & Schwab, 
101 2013; Zaretzki, Matlock & Swamidass, 2013). The Zaretzki Data set has been used in several 
102 related studies of in silico metabolism predictor (Tian et al., 2018, 2021; �ícho et al., 2019a; 
103 Dang et al., 2020). Tian, S et al. converts SOMs in Zaretzki Data set to BOMs during the 
104 creation of the EBoMD, while correcting some errors (Tian et al., 2021). Finally, the EBoMD 
105 mainly consists of the following nine Phase I reactions: Oxidation, Cleavage, EpOxidation, 
106 Reduction, Hydroxylation, S(sulfur)-Oxidation, N(nitrogen)-Oxidation, P (phosphorus)-
107 Oxidation, and Cyclization (Tian et al., 2021).
108 To evaluate D-CyPre�s performance and compare it with CyProduct�s performance we used 
109 EBoMD2, which comes from CyProduct and contains 68 extracted reactants and 30 known non-
110 CYP450 reactants as a test data set (Tian et al., 2021).
111 2.2 Atoms and Bonds of Metabolism

112 CyProduct came up with BOM, and Tian, S et al. argue BOM is more clearly defined and 
113 classified more systematically than SOM (Tian et al., 2021). According to the structure of D-
114 CyPre, a new definition is made based on the BOM. This definition does not necessarily perform 
115 well in other models, but it is suitable for D-CyPre. Because with regards to D-Cypre, the 
116 features of atoms and bonds are both descended to the same dimensions by neural networks, 
117 there may be some common knowledge about the features of both. In this study, we still refer to 
118 these defined atoms and bonds as SOMs. The specific rules are described as follows:
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119 (1) i-j: i and j represent any two non-H atoms currently connected by an existing chemical 
120 bond. We define the bond formed by these two atoms as the SOM that D-CyPre should 
121 recognize.
122 (2) i-H: i represents any non-H atom, and hydrogen atoms on i will be replaced with 
123 heteroatoms. We define atom i and the bond formed between i and H as SOMs that D-CyPre 
124 should recognize because this reaction involves both i and its bonds with H.
125 (3) SPN: When new bonds are generated on S, P, or N by sharing their lone pair electrons, 
126 we define these atoms as SOMs that D-CyPre needs to recognize because this reaction only 
127 involves atoms (S, P, or N).
128 Instead of creating a model for each type of bond, as CyProduct does (Tian et al., 2021), we 
129 used only one model to identify all types of SOMs of one CYP450 isoform. We do not even treat 
130 atoms and bonds separately but use the same discriminator to determine whether they are SOMs. 
131 The reason why we determine atoms and bonds by the same model is that the information of 
132 them can be well crossed and fused in the process of message-pass of D-MPNN, and the model 
133 is likely to learn more positive information without distinguishing them. The distribution of 
134 SOMs for nine CYP450 isoforms is shown in Table 1.
135 2.3 Feature Generation.

136 D-CyPre includes nine atom descriptors and four bond descriptors (Table 2), with details of 
137 these descriptors available in Table S1. It is important to note that the data used for training and 
138 testing primarily consists of C, H, O, N, S, and P. To prevent a large number of dimensions that 
139 cannot be learned, we assign the same value to all other types of atoms when calculating the 
140 Atomic Number.
141 2.4 D-CyPre

142 D-CyPre consists of D-MPNN and XGBOOST, where D-MPNN outputs the features of 
143 atoms and bonds while XGBOOST identifies SOMs based on these features. We will discuss 
144 these two structures in detail next.
145 2.4.1 D-MPNN

146 The D-MPNN is built based on ComboNet�s MPN, which originally came from the 
147 Chemprop Software (Yang et al., 2019; Jin et al., 2021) that is open source and available at 
148 https://github.com/chemprop/chemprop. First, we�re going to fuse the information about the 
149 directed bonds and their starting atoms.

150                                                                                                               (1)/ 0ÿý = ÿ(ÿÿýÿý(ýÿ,ÿÿý))

151 Where  is a learned matrix,  splice together , the feature ÿÿ * =/ × /ÿ ýÿý(ýÿ,ÿÿý) * =/ÿ ÿÿý
152 of a directed bond, and , the feature of the initial atom of the bond. Then,  is the LeakyReLU ýÿ ÿ
153 activation function (Xu et al., 2015). After that, the message-pass begins

154                                                                                                                    ÿý + 1ÿý = 3ý * {ý(ÿ)\ý}
/ ýýÿ

155 (2)

156                                                                                                  /ý + 1ÿý = ýÿýý(ÿ(/ 0ÿý + ÿÿÿý + 1ÿý ))

157 (3)
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158 Where  is a learned matrix, and  is the Dropout layer (Srivastava et al.). ÿÿ * =/ × / ýÿýý
159 The message-pass will be repeated  times, which represents the depth of message-pass, that is, ÿ
160 the greater the , the farther the message will pass. Then, calculate the features of bonds and ÿ
161 atoms from the message.

162                                                                                                             (4)ýÿý = -(ÿÿÿÿ(/ ÿÿý,/ ÿýÿ))

163                                                                                  (5)ýÿ = -(ýÿýý(ÿ(ÿýýÿý(ýÿ,3ÿ*ý(ÿ)
/ ÿÿý)))

164 Where  is calculate the average value of the two directions of same bond, and  is the ÿÿÿÿ -
165 Batch Normalization (Ioffe & Szegedy, 2015). Also,  is a learned matrix and ÿý * =/ × /ÿ ýÿý(ýÿ
166 . Note that the same Batch Normalization layer is used for both atoms and ,3ÿ*ý(ÿ)

/ ÿÿý) * =/ÿ
167 bonds. After that, we feed  and  into a single-layer neural network, and for each bond and ýÿ ýÿý
168 atom, we end up with two values, the positive probability and the negative probability. We then 
169 use the cross-entropy to calculate the loss of the model.
170                                                                                                         (6)ýýýý = ÿ × ýýýýý + ÿ × ýýýýÿ
171 Where  and  are the loss of atoms and bonds that are truly labeled positive and ýýýýý ýýýýÿ
172 negative, respectively. Then,  and  are two self-defined parameters, which respectively ÿ ÿ
173 represent the importance that we attach to the  and . These two parameters are ýýýýý ýýýýÿ
174 adjusted when training models of the different CYP450 isoforms.
175 2.4.2 XGBOOST

176 XGBOOST was proposed by Tianqi Chen (Chen & Guestrin, 2016) and has demonstrated 
177 excellent results in several studies (Yu et al., 2019; Chen et al., 2021; Zhang, Hu & Yang, 2022). 
178 Daiguo Deng et al. showed that the DMPNN+XGBOOST model can effectively improve the 
179 prediction of various molecular properties . Therefore, this study adopts the (Deng et al., 2021)

180 similar idea to train models. In general, we trained an XGBOOST model based on  and  ýÿý ýÿ
181 and output Jaccard Score (TP/(TP+FP+FN), Precision (TP/(TP+FP)), Recall (TP/(TP+FN)) and 
182 F1 (2 Precision Recall/(Precision+Recall)) in each epoch of D-MPNN. The objective and × ×

183 Feval for XGBOOST are set to �binary: logistic� and Jaccard Score, respectively. Other 
184 parameters for XGBOOST such as �n estimators�, �reg lambda�, �max depth� and �colsample 
185 bytree� are tuned for different isoforms.
186 2.4.3 Molecular Features

187 Molecular features play a crucial role in identifying SOMs. For instance, two atoms or 
188 bonds in similar conditions may react differently with CYP450 due to their molecular structure, 
189 one may react while the other may not. Such bonds or atoms are hard to identify without 
190 molecular features. This study considers two types of molecular features. The first type is 
191 generated by a new D-MPNN (Yang et al., 2019), while the second type is directly calculated 
192 according to specific rules (MolWt; NumHAcceptors; NumHDonors; MolLogP; TPSA; 
193 LabuteASA). Details of these descriptors can be found in Table S1.
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194 In this study, when we use the molecular features, the molecular features will be directly 
195 concatenated with the features of the atoms and bonds contained in that molecule. Although 
196 molecular features are a significant priority, their introduction did not necessarily improve the 
197 Jaccard Score of all models in this study. There are two main reasons for this. First, the model 
198 used in this study is already complex enough and introducing molecular features may not further 
199 improve it or could even cause more severe overfitting. Second, because the data set is not large 
200 enough, the model can only learn a small amount of molecular information which may become a 
201 disturbance for some isoforms of CYP450. Figure 2 illustrates the structure of D-CyPre that 
202 incorporates molecular features.
203 2.4.4 Precision Mode and Recall Mode

204 D-CyPre has two modes of high precision and high recall. The difference between the two 
205 is that in Precision Mode, XGBOOST�s �scale pos weight� is set to the default, while in Recall 
206 Mode, this parameter is set to (c Positive/Negative), where c is a parameter that can be ×

207 adjusted.
208 2.4.5 Training model.

209 For any CYP450 isoform, we divide the EBoMD into a train set and validation set in a ratio 
210 of 8:2 (since the features of SOMs are affected by the entire molecular structure, we use 
211 molecules rather than SOMs as the minimum unit when dividing the data set). Based on these 
212 data, we adjust the model parameters to obtain those with high Jaccard Score in both the training 
213 and validation sets.
214 During this process, we train D-MPNN using data from all isoforms and then train 
215 XGBOOST using data from only the target isoform (Figure 3). This improves both Jaccard Score 
216 and generalization ability of the model because we believe there is common knowledge among 
217 metabolism of nine isoforms. Although learning more knowledge from other isoform may 
218 introduce some noise into the model, this knowledge and moderate noise enhance its 
219 generalization ability (supplementary files 1). Finally, based on parameters with high Jaccard 
220 Score in both training and validation sets, we use the same method to train final D-CyPre and test 
221 it with test set.

222 EXPERIMENTAL RESULTS AND DISCUSSION

223 3.1 Training model

224 3.1.1 Precision Mode

225 Training results are shown in Table S2. The Jaccard Score of D-CyPre-val for nine CYP450 
226 enzymes was higher than that of CyProduct. Similarly, D-CyPre-val showed higher Precision 
227 and F1 for eight enzymes other than 2C8. However, since D-CyPre-Val and CyProducts use 
228 different validation sets and methods, this result does not prove that D-CyPre necessarily has 
229 better predictive power than CyProduct.
230 3.1.2 Recall Mode

231 According to results shown in Table S3, D-CyPre-val has higher Jaccard Score, Recall and 
232 F1 for nine CYP450 enzymes. This indicates that D-CyPre has good predictive power.
233 3.2 The results of testing
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234 3.2.1 Precision Mode

235 The results of our analysis are presented in Table S4. Utilizing Precision Mode, D-CyPre 
236 enhances Precision (WAvg) by 39% on the test set in comparison to CyProduct. Likewise, D-
237 CyPre sustains higher Jaccard Score (WAvg) and F1 (WAvg), with increases of 15% and 11%, 
238 respectively. The outcomes of the train set are displayed in Table S2, with D-CyPre exhibiting 
239 exceptionally high Precision values for several enzymes among the nine CYP450 enzymes in 
240 both the train set and test set. For instance, the Precision values for 2A6 and 2E1 in the training 
241 and test sets surpassed 0.8 and 0.9, respectively.
242 Regrettably, D-CyPre in Precision Mode does not exhibit strong performance across all 
243 enzymes. Despite the fact that D-CyPre performs well for 2B6 and 2C8 in the validation set 
244 (Table S2), their results in the test set indicate severe overfitting (Table S4). We observed that 
245 CyProduct also encounters this issue, with the models for 2B6 and 2C8 performing well in the 
246 validation set but poorly in the test set. Consequently, to further investigate the underlying 
247 causes, we employed t-SNE to visualize the SOMs based on features generated by D-MPNN 
248 (van der Maaten & Hinton, 2008). We visualize the SOMs in train set, validation set and test set 
249 of these models. The green box in Figure 4.A represents potential false negatives in the test set 
250 that reduce Recall for the 2B6 model. The part enclosed by the box in Figure 4.B is the possible 
251 FN in test set, which reduces the Recall of the model of 2B6. Similarly, Figure 4.C and Figure 
252 4.D illustrate possible sources of error for 2C8. From these results, it can be inferred that there 
253 may be two reasons for poor generalization ability of these models on the test set. First, it could 
254 be due to an insufficient size of their train sets which leads to some bonds or atoms with similar 
255 structures to SOMs in the test set being misclassified as positive while some actual SOMs that 
256 are unfamiliar are misclassified as negative. 
257 The second is that the 2B6 and 2C8 having almost the largest Non-SOMs/SOMs (Table S5) 
258 in their respective test sets which makes Precision more sensitive to errors, and perhaps the test 
259 results of the model will perform more closely to the validation set on larger test sets. 
260 Furthermore, we observed that neither test nor validation sets were distributed within regions 
261 lacking training data which implies that there were no atoms or bonds present in either set that 
262 had not been previously encountered by our models and thus D-CyPre�s chemical space based on 
263 its training data is sufficiently large.
264 3.2.2 Recall Mode

265 As per the results presented in Table S6, in comparison to CyProduct, D-CyPre exhibits a 
266 17% increase in Jaccard Score (WAvg), a 22% increase in Precision (WAvg), a 5% increase in 
267 Recall (WAvg), and a 13% increase in F1 (WAvg). Additionally, the Jaccard Scores for 2B6 and 
268 2C8 also improved under Recall Mode. Overall, our models successfully maintained non-low 
269 Jaccard Scores while achieving high Recall.
270 3.3 D-CyPre with the Molecular Features

271 Initially, we compared the effects of two molecular features on 1A2 and 2B6 (Table S7) and 
272 found that molecular features calculated by D-MPNN exhibited some advantages over those 
273 calculated using fixed rules. As such, we employed the same methodology to construct a version 
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274 of D-CyPre that incorporates molecular features calculated by D-MPNN. However, this version 
275 of D-CyPre did not exhibit better performance across all isoforms when compared with the 
276 original version of D-CyPre (Table S8 and S9). Subsequently, we synthesized optimal models 
277 from both versions of D-CyPre (with or without molecular features) to obtain new Precision 
278 Mode (Table 3) and Recall Mode (Table 4). Among them, 1A2, 2A6, 2B6, 2C8, 2C9 and 2C19 
279 enzymes were all ultimately adopted by models incorporating molecular features under both 
280 modes which suggests that molecular structure may be an important factor affecting metabolic 
281 reactions for these enzymes. In Precision Mode, compared with the Random Predictor and the 
282 CyProduct, the D-CyPre increased Jaccard Score by 590% and 18%, Precision by 845% and 
283 43%, and F1 by 393% and 13%. In Recall Mode, compared with the two models, D-CyPre 
284 increased Jaccard Score by 603% and 20%, Precision by 727% and 25%, Recall by 40% and 5%, 
285 and F1 by 399% and 15%. The parameters for loss function and XGBOOST for all models can 
286 be found in Table S10. Finally, the findings suggest that the molecular features is necessary to 
287 consider.

288 CONCLUSIONS

289 This study proposes a novel SOMs identification tool called D-CyPre. This model is the 
290 pioneer of applying D-MPNN to in silico metabolism prediction and has achieved satisfactory 
291 results with high Precision, Recall and Jaccard Score. D-CyPre comprises a feature generator and 
292 SOMs discriminators and is divided into Precision Mode and Recall Mode. Under both modes, 
293 the model ensures good Jaccard Scores while maintaining Precision and Recall values greater 
294 than 0.7 respectively. As such, D-CyPre�s two modes make it better suited to meet the needs of 
295 various types of work. For example, when conducting a high-throughput study, we may prefer 
296 more accurate results whereas when making predictions for several drugs and comparing their 
297 corresponding metabolites� mass spectra we may prefer to consider all possibilities. 
298 Additionally, the results indicate that the molecular features is necessary to consider in in silico 
299 metabolism prediction.
300 To use the software (supplementary files 3), users simply input a table containing the 
301 SMILES of all target compounds. We believe that the model is sophisticated enough to 
302 distinguish most similar SOMs from non-SOMs and can be further trained on larger datasets to 
303 achieve higher Jaccard Scores and generalization capabilities. Also, it is possible to attempt the 
304 development of a generalized approach for predicting the molecular SOMs of various metabolic 
305 enzymes based on the ideas presented in this study.
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Table 1(on next page)

Distribution of SOMs for nine CYP450 Isoforms in Data Sets.
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1 Table 1. Distribution of SOMs for nine CYP450 Isoforms in Data Sets.

Data set type 1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4

EBoMD Reactants 279 109 149 147 237 221 282 144 474
SOMs 1847 615 830 906 1372 1368 1685 863 3139
Non-
SOMs

18760 5951 9914 11322 17481 16387 21596 7458 43597

EBoMD2 Reactants 16 10 11 9 13 13 24 10 41
SOMs 64 49 31 49 64 51 158 48 236
Non-
SOMs

1182 631 596 946 1134 1180 2581 258 3788

2
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Table 2(on next page)

Descriptors of atom and bond.
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1 Table 2. Descriptors of atom and bond.

Atom Descriptors Bond Descriptors

Atomic Number
Bond Type 

(Single/Double/Triple/Aromatic)
Degree Conjugation

Formal Charge Ring Membership
Chirality Stereochemistry

Number Of Bonded Hydrogens (-)
Hybridization (-)
Aromaticity (-)

Ring Membership (-)
Atomic Mass (-)

2
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Table 3(on next page)

Training results (Precision Mode) for nine CYP450 enzymes in EBoMD and EBoMD2.

a: The results of D-CyPre on train set; b: The results of D-CyPre on validation set; c: The
results of D-CyPre on EBoMD; d: The results of D-CyPre on EBoMD2; e: The microaverage
(weighted average, weighted by the number of SOMs) over the nine.
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1 Table 3. Training results (Precision Mode) for nine CYP450 enzymes in EBoMD and EBoMD2.

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 WAvg
e

Jaccard Score TP/(TP+FP+FN)

D-CyPrea 0.845 0.919 0.625 0.832 0.680 0.650 0.545 0.728 0.791 0.733 
D-CyPre-valb 0.475 0.695 0.489 0.500 0.512 0.573 0.550 0.703 0.469 0.527 
D-CyPre-allc 0.826 0.880 0.644 0.760 0.685 0.660 0.560 0.744 0.765 0.722 
D-CyPre-testd 0.593 0.549 0.333 0.281 0.639 0.492 0.548 0.469 0.462 0.497 

Precision TP/(TP+FP)

D-CyPre 0.989 0.994 0.896 0.990 0.831 0.721 0.747 0.860 0.968 0.891 
D-CyPre-val 0.832 0.953 0.830 0.729 0.758 0.662 0.843 0.867 0.769 0.792 
D-CyPre-all 0.978 0.998 0.702 0.983 0.745 0.751 0.759 0.876 0.962 0.871 

D-CyPre-test 0.699 0.933 0.500 0.667 0.852 0.750 0.735 0.958 0.676 0.737 
Recall TP/(TP+FN)

D-CyPre 0.854 0.924 0.674 0.839 0.790 0.869 0.668 0.825 0.812 0.802 
D-CyPre-val 0.526 0.719 0.543 0.614 0.613 0.811 0.613 0.787 0.546 0.618 
D-CyPre-all 0.841 0.881 0.887 0.770 0.896 0.844 0.682 0.832 0.788 0.812 
D-CyPre-test 0.797 0.571 0.500 0.327 0.719 0.588 0.684 0.479 0.593 0.610 

F1 2 Precision Recall/(Precision+Recall)× ×

D-CyPre 0.917 0.958 0.769 0.908 0.810 0.788 0.705 0.842 0.883 0.841 
D-CyPre-val 0.645 0.820 0.657 0.667 0.678 0.729 0.710 0.825 0.639 0.688 
D-CyPre-all 0.904 0.936 0.784 0.864 0.814 0.795 0.718 0.853 0.866 0.835 
D-CyPre-test 0.745 0.708 0.500 0.439 0.780 0.659 0.709 0.639 0.632 0.660 

2 a: The results of D-CyPre on train set; b: The results of D-CyPre on validation set; c: The results 

� of D-CyPre on EBoMD; d: The results of D-CyPre on EBoMD2; e: The microaverage (weighted 

4 average, weighted by the number of SOMs) over the nine.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:92258:0:1:NEW 14 Nov 2023)

Manuscript to be reviewedComputer Science



Table 4(on next page)

Training results (Recall Mode) for nine CYP450 enzymes in EBoMD and EBoMD2.

a: The results of D-CyPre on train set; b: The results of D-CyPre on validation set; c: The
results of D-CyPre on EBoMD; d: The results of D-CyPre on EBoMD2; e: The microaverage
(weighted average, weighted by the number of SOMs) over the nine.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:92258:0:1:NEW 14 Nov 2023)

Manuscript to be reviewedComputer Science



1 Table �� Training results (Recall Mode) for nine CYP450 enzymes in EBoMD and EBoMD2.

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 WAvg
e

Jaccard Score TP/(TP+FP+FN)

D-CyPrea 0.872 0.915 0.644 0.788 0.688 0.835 0.575 0.729 0.646 0.723 
D-CyPre-valb 0.501 0.708 0.577 0.504 0.554 0.619 0.561 0.709 0.517 0.561 
D-CyPre-allc 0.842 0.907 0.644 0.774 0.685 0.829 0.588 0.742 0.656 0.722 
D-CyPre-testd 0.571 0.636 0.358 0.365 0.580 0.463 0.554 0.500 0.468 0.506 

Precision TP/(TP+FP)

D-CyPre 0.970 0.965 0.689 0.848 0.752 0.923 0.636 0.820 0.728 0.799 
D-CyPre-val 0.798 0.934 0.652 0.702 0.678 0.748 0.664 0.830 0.657 0.719 
D-CyPre-all 0.957 0.956 0.702 0.840 0.745 0.920 0.643 0.837 0.751 0.803 
D-CyPre-test 0.658 0.854 0.463 0.519 0.734 0.660 0.615 1.000 0.570 0.645 

Recall TP/(TP+FN)

D-CyPre 0.897 0.946 0.907 0.918 0.890 0.897 0.857 0.868 0.852 0.882 
D-CypPe-val 0.574 0.746 0.833 0.641 0.752 0.781 0.783 0.830 0.708 0.725 
D-CyPre-all 0.875 0.946 0.887 0.907 0.896 0.894 0.872 0.868 0.838 0.876 
D-CyPre-test 0.813 0.714 0.613 0.551 0.734 0.608 0.848 0.500 0.725 0.720 

F1 2 Precision Recall/(Precision+Recall)× ×

D-CyPre 0.932 0.955 0.783 0.882 0.815 0.910 0.730 0.843 0.785 0.835 
D-CyPre-val 0.668 0.829 0.731 0.670 0.713 0.764 0.719 0.830 0.682 0.717 
D-CyPre-all 0.914 0.951 0.784 0.872 0.814 0.907 0.740 0.852 0.792 0.835 
D-CyPre-test 0.727 0.778 0.528 0.535 0.734 0.633 0.713 0.667 0.638 0.669 

2 a: The results of D-CyPre on train set; b: The results of D-CyPre on validation set; c: The results 
� of D-CyPre on EBoMD; d: The results of D-CyPre on EBoMD2; e: The microaverage (weighted 
� average, weighted by the number of SOMs) over the nine.
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Figure 1
Overview of D-CyPre Metabolism Prediction suite (shown for a speciûc instance of
CYP2A6).
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Figure 2
Illustration of our proposed D-CyPre.

D-CyPre employs two independent message passing processes to capture features of two
kinds of directed bonds from a molecule. It then fuses the features of the two kinds of
directed bonds to derive features of atoms, chemical bonds, and molecules. The features of
atoms and bonds are separately combined with those of the molecule and input into a feed
forward layer to generate prediction probabilities, which in turn update the network.
Moreover, the concatenated features of atoms and bonds are fed into the XGBOOST model to
obtain the actual prediction probabilities.
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Figure 3
Overview of training model (shown for a speciûc instance of CYP1A2).

When adjusting parameters, we only use train set (80% of EBoMD) of 1A2 and all data sets
(100% of EBoMD) of the other isoforms to train the model. All train set (100% of EBoMD) of
1A2 and the other isoforms (100% of EBoMD) will be used when training the ûnal model.
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Figure 4
Visualize (by t-SNE) the SOMs of 2B6 and 2C8.

Visualize (by t-SNE) the SOMs of 2B6 (ignore Train; Negative) (A), 2B6 (ignore Train; Positive)
(B), 2C8 (ignore Train; Negative) (C) and 2C8 (ignore Train; Positive) (D). The green box part
is some data that the model may misjudge.
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