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ABSTRACT
Due to the increasing number of Internet users and the volume of information
exchanged by software applications, Internet packet traffic has increased significantly,
which has highlighted the need to accelerate the processing required in network systems.
Packet classification is one of the solutions implemented in network systems. The most
important issue is to use an approach that can classify packets at the speed of the network
and show optimum performance in terms of memory usage. In this study, we evaluated
the performance in packet classification of two of the most important data structures
used in decision trees, i.e. the skip list and splay tree. Our criteria for performance were
the time of packet classification, the number of memory accesses, and memory usage of
each event. These criteria were tested by the ACL and IPC rules with different numbers
of rules as well as by different packet numbers. The results of the evaluation showed
that the performance of skip lists is higher than that of splay trees. By increasing the
number of classifying rules, both the difference in the speed of packet classification and
the superiority of the performance of the skip list over that of the splay tree become
more significant. The skip list also maintains its superiority over the splay tree in lower
memory usage. The results of the experiments confirm the scalability of this method in
comparison to the splay tree method.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications
Keywords Skip list, Splay tree, Firewall, Memory, Time, Perforrmance

INTRODUCTION
The Internet is the largest packet-switching network. In this network, information is
transmitted in the form of packets from the source to the destination. With the increase in
the number of users and the volume of information exchanged by applications, Internet
packet traffic has increased significantly. For this reason, in order to accelerate the processing
required in network systems such as routers, a basic process called packet classification is
used (Baboescu & Varghese, 2001; Taylor, 2005; Perez et al., 2014). Classification of network
packets refers to the different streams of packets in network systems (Bontupalli et al.,
2018; Harada, Tanaka & Mikawa, 2018; Inoue et al., 2018; Li et al., 2018; Bi, Luo & Sun,
2019). Many network systems use packet routing and guiding policies as well as quick
implementation of packet classification policies to carry out traffic management policies
(Li et al., 2013; Lin et al., 2016; Tessier et al., 2018). Using these basic processes, packet flow
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processing has become possible at a very high speed, and the same rules can be applied to
all packets belonging to the same traffic stream (Comer, 2004). Network applications that
require packet classification are of three types, i.e., security operations, traffic management
and quality of service (QOS), and policy-based routing. Several studies have analytically or
experimentally have benchmarked the different algorithms of packet classification (Gao,
Tan & Gong, 2006; Qi et al., 2009; Lim, 2010; Nagpal et al., 2015). A commonly accepted
categorization of the packet classification algorithms is the one presented by Taylor (2005).
According to this categorization, the packet classification fall into four classes which are
explained below.

Exhaustive search
In this type of algorithm, all elements within a list are checked to match the search query
argument. The main disadvantage of these algorithms is the linear dependence of time
complexity on the number of filters (Trabelsi & Zeidan, 2011).

Decomposition
In decomposition-based algorithms, two processing steps are followed. In the first step,
the search is performed individually on the filter set based on each field. In the second
step, the results of all searches on the different fields are merged through intersection (Neji
& Bouhoula, 2008). Therefore, it is obvious that these algorithms have great potential for
parallelism. However, the large size of the data structures required in these algorithms
makes them inefficient in terms of memory usage.

Tuple spaces
In this method, the filters are divided by the number of bits specified in the prefixes of
the search query, and the search space is thus partitioned into several sub-spaces. During
classification, the input packets are carefully matched and checked against the generated
tuples using the simple or tree-based search algorithm on the prefix fields of interest
(Kirschenhofer, Martínez & Prodinger, 1995). When matching a packet with a tuple is
successful, only those filters are evaluated that are in the equivalent sets of the tuple with
regard to their matching with other fields of the packet. The memory complexity of these
algorithms is less than the decomposition-based algorithms (Srinivasan, Suri & Varghese,
1999).

Decision tree
In these algorithms, the set of filters is stored in search trees based on the binary patterns
in the prefix fields of the filters. To make a decision tree based on several fields, a tree
is created in which the leaves contain a specified filter or a subset of filters that have an
intersection in the traversed prefix from the root to the leaves. In these algorithms, the best
filter corresponding to the input package is found through the binary contents of the fields
in question on the search tree (Sen, 1991).

The existing methods have not been able to balance the time and memory consumption.
On the other hand, binary trees work well when the elements enter accidentally, but
they become inefficient in cases where the operations are sequential. Tree algorithms
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use different data structures for searching. Two of the most important data structures of
decision trees are the splay tree (Sleator & Tarjan, 1985) and the skip list (Kaufmann, 2007).
The performance of a splay tree depends on the history of accesses to its elements. On
the other hand, the performance of a skip list depends on an independent randomization
of the height of links that lead to specific elements. Therefore, probabilistic methods
are used to analyze the operation of splay trees and skip lists. We refer the reader
to references (Papadakis, 1993; Pugh, 1990; Sen, 1991; Papadakis, 1993; Kirschenhofer,
Martínez & Prodinger, 1995) for probabilistic analysis of the complexity of these algorithms.

In this paper, we intend to evaluate and compare the performance of packet-classifying
tree algorithms using these two different data structures. For this purpose, we will use
the criteria of time complexity and memory complexity. Time complexity depends on
the number of algorithmic references to memory to classify each packet and memory
complexity depends on the amount of memory used by the data structure of the algorithm.

The structure of the paper is organized as follows. First, we review the history of packet-
classifying tree algorithms and related previous works for evaluating their performance.
The third section describes the general structure of the tree algorithms based on skip lists
and splay trees along with their implementation. In the fourth section, after introducing
the tools used to produce filters and packets, the evaluation criteria are presented and the
results of the evaluation of the performance of the two approaches are compared. The final
section draws conclusions and indicates directions for further research.

Background
The main aim of the paper is to compare the performance of the skip list and splay tree data
structures when adapted to multidimensional search on the rule set of a packet classifier.
The nature of the search, insert and update of such data structures lets tree-based packet
classifiers to reduce the number of required memory during search and hence reduce the
complexity of classification.

A review of recent research suggests that no study so far has conducted to make an
in-depth comparison of the performance of packet-classifying tree algorithms operating
with skip lists and splay trees. Previous works simply aimed at optimizing these algorithms
without comparing their performance.

Pan et al. (2016) used the skip list in 2016 to improve the time performance of
information retrieval algorithms in local lists. In their design, given that a packet might
share a prefix with previous packages, search in the skip list starts from the closest node
previously obtained from this prefix. Therefore, a significant amount of time is saved.
Extensive evaluations show that their design can triple the speed of the original design on
a 32-bit machine.

In 2015, Trabelsi et al. (2015) proposed a multi-stage and dynamic packet filtering
mechanism to enhance the performance of the firewall. Their proposed mechanism is
implemented by splay tree filters and uses traffic features to minimize packet filtering time.
It can decide whether or not dynamic updates of the splay tree filters are needed to filter
the next network traffic window and predict the best customized pattern for the tree. In
this method of input packet filtering, the initial acceptance of the packet is done using
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splay tree data structure, which is dynamically updated according to the traffic streams of
the network. As a result, frequent packets have less memory access and, therefore, the total
packet filtering time is reduced.

In 2013, Zhong, Geng & Zhao (2013) focused on a simple and very important form of
remote authentication problem. In this form, membership requests for a dynamic set of n
data elements which are stored in unknown directories are verified. In their study, some of
the available methods for confirming membership requests such as the Merkle hash tree,
skip list, and RSA tree were examined for the first time. In all of these methods, the data
structures used by the algorithm to update the data are not fast enough andmay have a high
complexity time. It could also be possible to reconstruct a range of data structures during
the update process. Therefore, they used the B+ tree data structure with RSA accumulators
for the authentication scheme, which requires lower computational costs for membership
queries in a dynamic data set.

Trabelsi & Zeidan (2012) provided in 2012 a mechanism to improve the filtering time of
firewall packets by optimizing the comparison order of the matched security-rule fields to
decide on the early rejection of incoming packets. Their proposed mechanism was based
on changing the order of filtering fields according to traffic statistics. It also allowed to use
multi-level classifying filters. Therefore, their proposed mechanism can be considered as a
mechanism for protecting the device against denial-of-service attacks (DoS). Early packet
acceptance is accomplished through the use of splay trees and changes dynamically with
respect to traffic streams. Therefore, frequent packets have less memory access, thereby
reducing the matching time. The purpose of their proposed method was to overcome
some of the limitations of the previous technique called Self-adjusting Binary Search on
Prefix Length (SA-BSPL). The numerical results of the simulation show that their proposed
mechanism can improve the firewall performance in terms of total packet processing time
compared to the SA-BSPL method.

Zeidan & Trabelsi (2011) in 2011 provided amechanism to improve firewall performance
through the rejection of denial-of-service attacks. To do this, they used a security policy of
filtering as well as a statistical traffic plan that was implemented in the form of multi-level
filter, splay tree, and hash tables. The proposed design rejects unwanted traffic and repetitive
packets in the early stages and, therefore, less memory is used. As a result, packet matching
time is generally reduced. The results of the evaluation of this method indicate that the
proposed mechanism significantly reduces the processing time of DoS traffic.

Trabelsi & Zeidan (2011) explored firewall packet rejection techniques in 2011. Two
of these techniques include FVSC and PBER that introduce the concept of approximate
policy instead of using the full policy provided by the administrator. The benefit of such
policies is that they are quicker at evaluating and adapting to dynamic traffic. The third
technique, which is called SA-BSPL, uses the splay tree data structure. This data structure
dynamically changes according to traffic behavior so that, when a node containing highly
matching rules with packets is located close to the root, necessary actions on the packet
are possible at a faster rate. These techniques allow the maximum number of packets to be
processed as quickly as possible, thereby reducing the time of filtering process.
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Neji & Bouhoula (2008) presented a dynamic packet routing algorithm in 2008. They
considered a self-regulating tree by combining a binary search pattern on the prefix length
with a splay tree. Using a set of hash tables and a splay tree, packet filtering was done
according to the destination address. Their research paid particular attention to packets
driven by the default path because it covered a major part of routers’ traffic. Their design
was better than previous models, especially for very diverse inputs, and had a logarithmic
time cost for doing its tasks.

In 1995,Kirschenhofer, Martínez & Prodinger (1995) decided tomark the elements whose
keys had been compared in the search algorithm in order to avoid unnecessary comparisons
of the keys during the search in the skip list. Their evaluation criterion in this study was a
detailed analysis of the total search cost (expectation and variance) so that the search cost
would be calculated based on key-to-key comparisons and the results would be compared
with standard search results. Their comparison shows that the cost of their method is much
less than the standard search cost.

Algorithms and tools
This section describes how the algorithms in question operate. Consider the sample rules
in Table 1. This set of rules is arranged in descending order based on the fixed length
of the source addresses, and if the source addresses are equal, the sorting operations are
performed according to the destination addresses. Thus, the address placed at the top of
the table has a higher priority than other addresses.

The set of the source and destination prefix addresses of the rules must be converted
into a range of integers (Trabelsi & Zeidan, 2012). For this purpose, the upper and lower
boundaries are first calculated for each prefix in the set of source addresses, as shown in
Table 2. For the sake of simplicity, the prefix addresses are displayed in a six-bit format.

Splay tree
For each field including the source address, destination address, source port number,
destination port number, and protocol type, a splay tree should be created (Trabelsi &
Zeidan, 2011; Trabelsi & Zeidan, 2012; Trabelsi et al., 2015). In addition to pointers to the
left and right children as well as the parent node, each node of the tree contains a value and
a counter to hold the number of times the node is matched with the input packets and a
list for storing the rules. Initially, the counter of all nodes is set to zero. In the protocol tree,
each node contains a list of rules whose protocol field has a value is equal to the value of the
node, but in other trees each node contains a list of rules in which the lower boundary is
less than or equal to the value of the node and the upper boundary is greater than or equal
to the value of the node. As the values of the fields of source address, destination address,
source port number, and destination port number have both upper and lower boundaries,
they should be inserted into the corresponding trees in two steps (Trabelsi & Zeidan, 2011;
Trabelsi et al., 2015).

In the first step, the lower boundary is inserted into the tree. If the lower boundary is
less than the root value, it is inserted under the left tree, and if it is greater than the root
value, it will be inserted under the right tree. Then the value of the lower boundary node
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Table 1 An example of a set of rules. Each row of the table is a rule of a rule set. Each rule is represented
as constraints on source IP, destination IP, source port number, destination port nummber and protocol.

Rule Source IP
address

Destination
IP address

Source port
number

Destination
port number

Protocol

R1 100* 011* 56,56 1024,65535 16
R2 010* 001* 70,80 20,20 4
R3 010* 01* 0,65535 2688,2688 16
R4 000* 10* 56,80 0,65535 6
R5 * * 0,6553 2688,2688 16

Table 2 An example of converting source prefix addresses to a numerical range. Each prefix at the sec-
ond column of the table is converted to corresponding upper and lower boundaries which are presented
at the third and fourth columns. The fifth and sixth columns corresponds to decimal representation of the
start and end points of the boundary.

Rule Source prefix addresses Lower boundary Upper boundary Start End

R1 100* 100000 100111 32 39
R2 010* 010000 010111 16 23
R3 010* 010000 010111 16 23
R4 000* 100000 101111 32 47
R5 * 000000 111111 0 63

is compared with the upper and lower boundary values of all the rules. When the lower
boundary value lies within the range of a rule, the ID of that rule is added to the list of lower
boundary rules. After being added to the tree, the lower boundary node will be moved to
the root of the tree using the rotation operation. The second step is to insert the upper
boundary into the tree. This step resembles the insertion of the lower boundary.

Figure 1 shows the steps for creating a splay tree for the source address fields of the rules
in Table 2. In Fig. 1A, the R1 rule has been added to the tree. To this end, first the lower
boundary value is inserted. Since the value of 32 lies within the range of R1 and R5, the ID
of these rules is added to the rules list. Then, the value of 39 is inserted and the IDs of R1
and R5 rules are added to its rules list. Finally, 39 is transferred to the root of the tree with a
left rotation. In Fig. 1B, the R2 rule has been added to the tree. In this case, the value of 16
is inserted. First the node 16 is searched in the tree and, if it is not found, it will be inserted
in the correct place and the IDs of R2, R3, and R5 are added to the its rules list. Finally, the
node 16 is transferred to the root through a right rotation between 23 and 39 and a right
rotation between 16 and 32. In Fig. 1C, the value of 23, which is the lower boundary of R2,
is inserted. In the next step, the R2, R3, and R5 rules are added to its list of rules. Then the
node 23 is transferred to the root with through a right rotation between the nodes 23 and
32 and a left rotation between 23 and 16. Finally, the R3 rule is added to the tree. Since its
values have already been added, no change occurs in the tree.

Skip list
To build skip lists (Pan et al., 2016), the set of rules is first transmitted to the program
and the upper and lower boundaries of the rules are calculated. For each of the fields of
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Figure 1 The steps of creating a splay tree. (A) Inserting the R1 rule; (B) inserting the lower boundary of
the R2 rule; (C) inserting the upper boundary of the R2 rule.

Full-size DOI: 10.7717/peerjcs.204/fig-1

source address, destination address, source port number, destination port number, and
protocol type, a skip list must be created. Each skip list contains a value, a list for storing
rules, and a list for storing pointers to subsequent nodes based on the level of each node.
To determine the level of each node, a random function is used which creates an integer in
a specified range (between 0 and 15 in our implementation). In the protocol skip list, each
node contains a list of rules whose protocol field has a value equal to the value of the node,
but in other skip lists each node contains a list of rules in which the lower boundary of the
corresponding field is less than or equal to the value of the node and the upper boundary
of the corresponding field is greater than or equal to the value of the node. As the values
of the fields of source address, destination address, source port number, and destination
port number have both upper and lower boundaries, they should be inserted into the
corresponding skip lists in two steps. In the first step, the lower boundary is inserted into
the skip list. Then the value of the lower boundary node is compared with the upper and
lower boundary values of all the rules.

When the lower boundary value lies within the range of a rule, the ID of that rule is
added to the list of lower boundary rules. Then, based on the node’s level, a list of pointers
is built for the created node. In the second step, we add the upper boundary. This step
resembles the insertion of the lower boundary. Figure 2 shows the steps for creating a skip
list for the source address field in Table 2. In Fig. 2, the R1 rule has been added to the skip
list. First, the lower boundary of 32 at the level 0 is inserted into the skip list. Since the
value of 32 lies within the range of R1 and R5, the ID of these rules is added to the rules
list. Then the upper boundary of 39 at the level 2 is inserted and the IDs of R1 and R5 rules
are added to its rules list. In Fig. 2B, the R2 rule has been added to the skip list. The value
of 16 at the level 3 is inserted and the IDs of R2, R3, and R5 are added to its rules list. Next,
the value of 23 at the level 1 is inserted and the IDs of R2, R3, and R5 are added to its rules
list. In Fig. 2C, the R3 rule is added to the skip list. The values of this rule are repetitive.

Packet classification
With both skip lists and splay trees, packet classification is as following. When a packet is
received, the information of its header including source and destination address, source and
destination port number, and protocol type are extracted. Next, for each of the mentioned
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Figure 2 Steps to create skip list. (A) Inserting the R1 rule; (B) inserting the R2 rule; (C) inserting the R3
rule.

Full-size DOI: 10.7717/peerjcs.204/fig-2

fields in the packet, a skip list or a splay tree is created and searched simultaneously to find
a matching node. Search results on any list or tree include a list of matching rules. In order
to find a common rule between the five lists obtained from the splay trees, an intersection
operation is performed between them. The result of the intersection may be null or contain
several rules. If the result is null, the action associated with the default rule is applied to
the packet; otherwise, the action related to the rule with the highest priority is applied.
Because the rules were initially arranged according to priority, the rule with the smallest
row number has the highest priority.

As mentioned in the previous section, splay trees are binary search trees that self-adjust
so that the deepest met surviving node in any operation becomes the root following the
operation. The splay tree stores no balance or weight information, but it performs many
tree rotations after every access, which makes it less practically efficient than skip lists in
many applications. These rotations can be particularly harmful when nodes are augmented
with auxiliary structures. This situation is present in packet classification. Simple operations
like move-to-root could partially solve this problem and improve the performance of the
splay trees when there is locality of references in the operation sequence. But, it is not
ideal in the case of packet classification where the sequence of the burst operations has no
predictable locality (Sahni & Kim, 2002).

On the contrary, the simplicity of skip list algorithms makes them easier to implement
and provides significant constant factor speed improvements over balanced tree and self-
adjusting tree algorithms like splay trees (Dean & Jones, 2007). Their scheme is designed to
give good expected performance for busty access patterns (Sahni & Kim, 2002). Skip lists
are also very space efficient (Sen, 1991; Kirschenhofer, Martínez & Prodinger, 1995).

To practically investigate the above predictions about the performance of these two
competitor algorithms, we implement and experiment them on several data sets.

Implementation and evaluation
Splay tree and skip list approaches were implemented in C++ and executed ten times on
a system with Intel Core i5 2.30 GHz and 4GB of RAM. The performance criteria were
calculated using average results.
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The two approaches were evaluated based on the number of memory accesses for packet
classification, classification time, and memory usage. The Class Bench tool (Taylor &
Turner, 2007) was used to generate rule sets and packet headers. The ACL and IPC rules
were created in the evaluations to compare the number of memory accesses for packet
classification as well as the times of packet classification with 500, 1 k, and 8 k rules. For
our evaluations, we generated a set of 8 k, 32 k, and 128 k packet headers corresponding to
each of the set of rules. We also used 1000 IPC and ACL rules to determine the amount of
memory usage.

First, we look at packet classification time which is the time span from when a packet
enters the structure of a classifier until the system can find thematching rule for that packet.
The shorter the packet classification time, the more efficient the structure of the classifier
will be. Figure 3 shows the time for classifying a wide variety of packets based on the sets
of 500, 1k, and 8k ACL and IPC rules for the skip list and splay tree. Figure 3A compares
these two approaches for 8 k packets. In these charts, the smallest difference between the
two approaches is observed for 500 rules and the largest difference for 8k rules. The skip list
classifies packets for 500 IPC and ACL rules in 391 and 1,415 ms, respectively, and the splay
tree does this in 1,011 and 2,271 ms, respectively. Also, the packet classification time of the
skip list for 8 k IPC and ACL rules is 805 and 4,231 ms, respectively, while this time for
the splay tree is 684 and 8,131 ms, respectively. It can be concluded that, with an increased
number of rules, the difference in classification time between the performances of the two
approaches becomes greater. In fact, the skip list performs this task more optimally than
the splay tree. Also, the type of rules plays an important role in packet classification time
so that packets are classified in a significantly shorter time when matched with IPC rules.
A decreased number of rules would reduce the time difference while increased number
of rules would increase this difference. Consequently, the choice of the type of rules for
packet classification might affect performance.

Figure 3B evaluates both the skip list and splay tree for 32k packets. As mentioned in
Fig. 3A, the least difference in packet classification time between ACL and IPC rules is
observed for 500 rules where as the largest difference is observed for 8 k rules. The skip list
classifies packets for 500 IPC and ACL rules in 1,849 and 4,660 ms, respectively, and the
splay tree does this in 5,981 and 7,994 ms, respectively. Also, the packet classification time
of the skip list for 8 k IPC and ACL rules is 3,192 and 3,813 ms, respectively, while this time
for the splay tree is 11,947 and 25,722 ms, respectively. As a result, with the increase in the
number of packets, the skip list still outperforms splay tree in terms of packet classification
time. However, increased number of packets has difference in packet classification time
of the two approaches for 500 ACL rules smaller than that for 500 IPC rules. This means
that, if the number of rules is small enough, an increased number of packets could be best
handled by ACL rules; otherwise, IPC rules should be used for larger numbers of rules. The
difference is particularly significant in classification with 8 k rules. In Fig. 3C, the results of
the classification of 128 k packages are evaluated. In this evaluation, too, the skip list has
a better performance than the splay tree. For the set of IPC rules, the smallest difference
between the two approaches can be observed for 1 k rules. In this case, the skip list classifies
packets in 6,792 ms and the splay tree does this in 11,031 ms. As in the previous part, the
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Figure 3 Packet classification time for the sets of 500, 1k, and 8k ACL and IPC rules for different num-
bers of packets. (A) 8k, (B) 32k, and (C) 128k packets.

Full-size DOI: 10.7717/peerjcs.204/fig-3
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smallest difference between these two approaches is observed for the set of 500 ACL rules
so that the packet classification time of the skip list is 11,846 ms whereas that of the splay
tree is 13,020 ms. The difference in packet classification time between skip list and splay
tree with both IPC and ACL rules is significant. This result can be used to select appropriate
rules for designing a system that is to be efficient in terms of packet classification. Here
again, the greatest difference between the two approaches is manifested in the case of 8 k
rules. With 8 k IPC and ACL rules, the skip list classifies packets in 9,508 and 9,778 ms,
respective, while splay tree does this task in 22,457 and 72,444 ms, respectively. As can
be seen, this time difference for the IPC rules is much smaller than for the ACL rules. In
general, Fig. 3 shows that skip list approach classifies packets in a shorter time. In addition,
the increase in the packet classification time of the skip list due to increased number of
rules is significantly less than that of the splay tree. It can be inferred that skip list has a
better performance than the splay tree in the classification of packets.

One of the most important criteria for the performance of classification approaches is
the speed of search. In the architecture of network processors, memory access is the most
important reason for prolonged execution of commands on packets. Frequent access to
memory reduces system performance. Reduced memory access would decrease packet
classification time and, thus, accelerate the process. Therefore, decreased memory access is
central to the efficiency of an approach.

Figure 3A evaluates the two approaches for 8k packets. As can be seen, in all cases skip list
has fewer memory accesses than splay tree. Also, the minimum number of memory access
is 65,477, which belongs to skip list with 500 IPC rules. Splay tree has 477,664 memory
accesses with 8 k ACL rules, which is the highest number of access in our evaluation. With
the increase in the number of rules, the difference in memory access between the two
approaches increases significantly. With 8 k IPC and ACL rules, the skip list has 104,017
and 98,476 memory accesses, respectively, while the splay tree accesses memory 198,664
and 477,664 times, respectively. The greatest difference in the number of memory accesses
between the skip list and splay tree is observed in the case of 8 k ACL rules in which splay
tree accesses memory 379,188 times more than skip list. Figure 3B compares skip list and
splay tree for 128 k packets. As in previous parts, the skip list outperforms the splay tree in
terms of memory access. In general, the minimum number of memory access is 215,169
which belongs to the skip list with 500 IPC rules. The maximum number is 1890056 which
belongs to the splay tree with 8 k ACL rules. The greatest difference in the number of
memory accesses between the skip list and the splay tree is observed in the case of 8 k ACL
rules in which the splay tree accesses memory 1496966 times more than the skip list. It can
be observed in the chart that the number of memory accesses for both approaches using
IPC rules is much smaller than using ACL rules, which could be a reason for preferring
IPC rules in the design of such systems. Figure 3C compares the skip list and the splay
tree with 128 k packets. The chart shows that, with increase in the number of packets with
different numbers of rules, the skip list has less memory access than does the splay tree. In
this chart, the smallest number of memory access is 1061018 which belongs to the skip list
with 500 IPC rules and the largest number of access is 8024198 which belongs to the splay
tree with 8 k ACL rules. The greatest difference between the two approaches is observed in
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Figure 4 The number of memory accesses for packet classification with sets of 500, 1,000, and 8,000
ACL and IPC rules for different number of packets. (A) 8k, (B) 32k, and (C) 128k packets.

Full-size DOI: 10.7717/peerjcs.204/fig-4

the case of 8 k ACL rules, with the splay tree having accessed memory 6356259 times more
than the skip list. As can be seen in Fig. 4, the skip list has a better performance than the
splay tree in terms of memory access. Also, with increasing number of rules, the increase
in the number of memory accesses for the skip list is much smaller than that of the splay
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Figure 5 Memory usage for 1k ACL and IPC rules. The red and blue bars represent the memory usage of
the splay tree and skip list algorithms respectively.

Full-size DOI: 10.7717/peerjcs.204/fig-5

tree. As a result, the performance of the skip list can be considered as more efficient than
the splay tree. According to the results of the charts in Figs. 3 and 4, another important
point is correspondence in the results of memory access time and number which exactly
confirm each other in all cases.

Given the memory limitations in the majority of systems and the high costs of upgrading
memories, another performance criterion for classification approaches is the amount of
memory usage. As a result, every approach should aim at reducing memory usage. Figure 5
shows the amount of memory used in bytes by skip list and splay tree for classifying packets
with 1 k ACL and IPC rules. As can be seen, the amount of memory used by skip list is
31,700 bytes with IPC rules and 162,960 bytes for ACL rules whereas the memory usage
of splay tree is 30,528 bytes for IPC rules and 158,440 bytes for ACL rules. The amount of
memory used by skip list with both sets of rules is slightly more than splay tree.

This additional amount of space is used to hold pointers in a skip list. Also, the amount of
memory used by both approaches with IPC rules is significantly less than the memory used
with ACL rules. However, this additional space can be reasonably justified by significant
reduction in the number of memory accesses and packet classification time in skip lists.

CONCLUSION
Packet classification is among the basic processes in network processors. The most
important issue is the use of a packet classification approach that can keep up with
the network speed. Such an approach should also optimize memory consumption. The
existing methods have not been able to balance the time and memory consumption. On
the other hand, binary trees work well when the elements enter accidentally, but they
become inefficient in cases where the operations are sequential. In this study, therefore,
we focused on the skip list and the splay tree and evaluated these two approaches with
ACL and IPC rules. Our results suggest that skip list performs better in terms of package

Khezrian and Abbasi (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.204 13/16

https://peerj.com
https://doi.org/10.7717/peerjcs.204/fig-5
http://dx.doi.org/10.7717/peerj-cs.204


classification time and the number of memory accesses. Also, with increase in the number
of rules, packet classification time and memory access increase less in a skip list than in a
splay tree. The amount of memory used by the skip list is slightly more than the splay tree,
which is due to storing the pointers in skip lists. However, this additional space can be
reasonably justified by significant reduction in the number of memory accesses and packet
classification time in skip lists. Accordingly, the skip list can be considered as superior to the
splay tree. Obviously, the data and control dependencies in the algorithms will change their
performance in parallel processing. Therefore, the authors aim to study the parallelization
of both algorithms on graphics processors and evaluate the performance of their parallel
versions in further research.
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