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ABSTRACT
In the rapidly evolving landscape of transportation infrastructure, the quality and
condition of road networks play a pivotal role in societal progress and economic
growth. In the realm of road distress detection, traditional methods have long
grappled with manual intervention and high costs, requiring trained observers for
time-consuming and expensive data collection processes. The limitations of these
approaches are compounded by challenges in adapting to diverse road surfaces and
handling low-resolution data, particularly in early automated distress survey
technologies. This article addresses the critical need for efficient road distress
detection, a key component of ensuring safe and reliable transportation systems.
Effectively addressing these challenges is crucial for enhancing the efficiency,
accuracy, and safety of road distress detection systems. Leveraging advancements in
object detection, we introduce the Innovative Road Distress Detection (IR-DD), a
novel framework that integrates the YOLOv8 algorithm to enhance the accuracy and
real-time capabilities of road distress detection, catering to applications such as smart
cities and autonomous vehicles. Our approach incorporates bidirectional feature
pyramid network (BiFPN) recursive feature fusion and bidirectional connections to
optimize the utilization of multi-scale features, addressing challenges related to
information loss and gradients encountered in traditional methods. Comprehensive
experimental analysis demonstrates the superior performance, efficiency, and
robustness of our integrated approach, positioning it as a cost-effective and
compelling alternative to conventional road distress detection methods. Our findings
demonstrate the superior performance of our approach compared to other state-of-
the-art methods across various evaluation metrics, including precision, recall, F1
score, and mean average precision (mAP) at different intersection over union (IoU)
thresholds. Specifically, our method achieves notable results with a precision of 0.666,
F1 score of 0.630, mAP@0.5 of 0.650, all while operating at a speed of 86 frames per
second (FPS). These outcomes underscore the effectiveness of our approach in real-
time road distress detection. This article contributes to the ongoing innovation in
object detection techniques, emphasizing the practicality and effectiveness of our
proposed solution in advancing the field of road distress detection.
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INTRODUCTION
In today’s rapidly evolving world, efficient and safe transportation infrastructure plays a
pivotal role in ensuring societal progress and economic growth. The quality and condition
of road networks are not only essential for the seamless movement of people and goods but
also significantly impact road safety, vehicle maintenance costs, and overall economic
vitality. However, the long-term sustainability and viability of transportation
infrastructure hinge on the proactive management, preservation, and rehabilitation of road
pavements. Advanced pavement distress detection methods are essential for timely
identification and resolution of issues like cracking and surface defects. Leveraging cutting-
edge technologies such as 2D high-resolution cameras, convolutional neural networks
(CNN), and automated imaging systems, these methods accurately assess pavement
conditions, contributing to informed decision-making in infrastructure maintenance
(Nguyen et al., 2023). By overcoming the limitations of manual inspection, they offer
efficient, automated solutions, enhancing the resilience and longevity of transportation
networks.

Object detection, a vital aspect of computer vision, entails identifying and pinpointing
objects in images or videos. The primary goal is to precisely locate and classify objects,
assigning them the appropriate labels. This versatile technique finds applications in various
domains such as predicting stock values (Rather, Agarwal & Sastry, 2015) intrusion
detection (Kim et al., 2016), landslide detection (Mezaal et al., 2017), gene expression
(Quang & Xie, 2016), data handling (Liao et al., 2017), aspect-based sentiment analysis
(Sirisha & Bolem, 2022), and generating captions from videos (Xu et al., 2018). Specifically,
in the context of road distress detection, object detection models leverage deep learning
architectures and algorithms to identify and categorize road-related anomalies and issues
in real-world scenarios.

In recent years, significant progress has been made in object detection, particularly
through the evolution of deep learning techniques, which can be broadly categorized into
two stages. Firstly, the two stage object detection involves an initial object region proposal
phase, followed by object classification and bounding box regression. Notably, detectors
following this approach, including R-CNN (Girshick et al., 2014), Faster-RCNN (Ren et al.,
2015), and Mask-RCNN (Zhang, Chang & Bian, 2020) algorithms, exhibit higher accuracy
despite being relatively slower. On the other hand, one stage object detection skips the
object region proposal step and directly predicts bounding boxes from images, resulting in
faster processing. However, these detectors may struggle with detecting smaller objects.
Noteworthy examples of single stage detectors, such as Single Shot Multibox Detector
(SSD) (Liu et al., 2016), You Only Look Once (YOLO) (Liu et al., 2018a), EfficientDet
(Tan, Pang & Le, 2020), are known for their rapid inference speed, making them practical
for various applications. In recent research endeavors, the need for automated detection of
road pavement damages has been addressed, employing a tire noise propagation-based
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multi-modal approach (Li et al., 2024). The proposed method introduces innovative
features, demonstrating superior performance in robustness and generalizability. The
proposed scheme (Wen et al., 2024), including PCD software for real-time crack detection,
aligns with the overarching goal of enhancing road infrastructure management for safety,
efficiency, and environmental responsibility.

Effectively representing and processing multi-scale features poses a significant challenge
in object detection. Early detectors often relied on making predictions directly from the
pyramidal feature hierarchy extracted from backbone networks (Liu et al., 2016; Cai et al.,
2016; Sermanet et al., 2013). The feature pyramid network (FPN) (Lin et al., 2017)
introduced a top-down pathway to integrate multi-scale features, pioneering this
approach. Subsequent advancements include PANet (Liu et al., 2018b), which added a
bottom-up path aggregation network to FPN, STDL (Zhou et al., 2018), introducing a
scale-transfer module for cross-scale feature utilization, M2det (Zhao et al., 2019),
proposing a U-shape module for multi-scale feature fusion, and G-FRNet (Amirul Islam
et al., 2017), which incorporated gate units to control information flow across features.
More recently, NAS-FPN (Ghiasi, Lin & Le, 2019) employed neural architecture search to
automatically design the topology of the feature network. While achieving superior
performance, NAS-FPN demands thousands of GPU hours during the search process, and
the resulting feature network can be irregular and challenging to interpret.

In this article, we introduce Innovative Road Distress Detection (IR-DD), a novel
framework that utilizes the You Only Look Once version 8 (YOLOv8) model, enhancing
accuracy while enabling real time detection—crucial for applications such as smart cities
and autonomous vehicles. YOLOv8, the latest addition to the YOLO series released on
January 10th, 2023, demonstrates improved speed and accuracy compared to its
predecessor. It employs an anchor-free architecture, simplifying training across various
datasets without relying on anchor boxes (Jocher, Chaurasia & Qiu, 2023). This
progression underscores the continual refinement and innovation within the YOLO series,
making notable contributions to real-time object detection in diverse applications. We also
incorporate Bidirectional Feature Pyramid Network (BiFPN) for recursive feature fusion
and bidirectional connections, optimizing the utilization of multi-scale features. BiFPN
strives to enhance the fusion of multi-scale features through a more intuitive and
principled optimization approach. Our road distress detection model’s peak performance
is evident through thorough experimental analysis. The integration of YOLOv8 and BiFPN
in our object detection framework signifies a substantial advancement in road distress
scenarios. By leveraging the strengths of BiFPN and YOLOv8 model, our approach
achieves superior performance, enhancing accuracy, real-time capabilities, and overall
efficiency in detecting anomalies with precision and speed. The seamless fusion of
YOLOv8’s object detection capabilities with BiFPN’s feature fusion optimizes multi-scale
feature capture, addressing the complexities of road distress detection tasks effectively. Our
comprehensive evaluation demonstrates the effectiveness of this integrated approach in
minimizing information loss, preserving critical details, and setting a new standard for
intelligent transportation systems focused on advanced object detection in road distress
scenarios.

Awan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2038 3/26

http://dx.doi.org/10.7717/peerj-cs.2038
https://peerj.com/computer-science/


The following are the key contributions of this article:

. In this article introduces IR-DD, an innovative framework for road distress detection,
utilizing the YOLOv8 algorithm. This novel object detection approach enhances
accuracy while enabling real time detection, crucial for applications like smart cities and
autonomous vehicles. The cost-effective nature of our proposed method positions it as a
compelling alternative to traditional road distress detection methods.

. This novel approach, incorporating BiFPN recursive feature fusion and bidirectional
connections, optimizes the utilization of multi-scale features. By addressing information
loss and gradients, traditionally encountered in FPN, our method enhances the
robustness of feature representations, resulting in improved efficiency and effectiveness
for object detection models.

. Our road distress detection system’s optimal performance is rigorously demonstrated
through comprehensive experimental analysis. The integration of YOLOv8 and BiFPN
not only yields superior accuracy and real-time capabilities, as evidenced by our results
but also underscores the efficiency and robustness of our approach. The comprehensive
analysis further emphasizes its efficacy in mitigating information loss. This empirical
evidence solidly supports the assertion that our integrated approach stands as an optimal
and highly effective solution for advanced object detection in road distress scenarios.

The remainder of this article is organized as follows. “Related Work” undertakes a
comprehensive review of pertinent literature, offering insights into prior work in the field.
Moving forward, “Proposed Method” elucidates the proposed approach, providing a
detailed explanation of the methodology. “Implementation and Evaluation” is dedicated to
presenting and analyzing the experimental results. In “Conclusion and Future Works”, the
article concludes by summarizing key findings and delineates potential directions for
future research.

RELATED WORK
The You Only Look Once (YOLO) series of object detection algorithms has played a
crucial role in advancing real-time detection capabilities. These algorithms have been
transformative by introducing a pioneering single-shot detection approach. This approach
involves processing an entire image in a single pass through a convolutional neural
network (CNN). Notably, it eliminates the need for separate stages of region proposal
generation and object classification, significantly enhancing inference times. The success of
YOLO algorithms extends across various applications, particularly in the field of self-
driving cars. The inaugural YOLO algorithm, YOLOv1, was introduced in 2015 (Redmon
et al., 2016). Comprising 24 convolutional layers and two fully connected layers, YOLOv1
demonstrated unprecedented speed, outperforming contemporaneous object detectors like
Fast R-CNN. Despite its real-time capabilities, YOLOv1 faced challenges in accurately
detecting and localizing small objects.

In 2016, YOLOv2 addressed these limitations, offering enhanced accuracy while
maintaining rapid inference speeds (Redmon & Farhadi, 2017). Subsequently, YOLOv3
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aimed for heightened accuracy through the integration of larger CNNs, employing a
Darknet-53 backbone with 53 convolutional layers (Redmon & Farhadi, 2018). YOLOv4,
proposed by Bochkovskiy, Wang & Liao (2020), further advanced the algorithm’s structure
and optimization methods, incorporating the CSPDarknet-53 backbone for improved
efficiency and accuracy (Bochkovskiy, Wang & Liao, 2020). YOLOv5, introduced in the
same year, prioritized speed without compromising accuracy. While similar to YOLOv4,
YOLOv5 adopted the PyTorch framework instead of DarkNet (Jocher et al., 2020).
YOLOv6 (2022) introduced advancements to the network structure by incorporating
RepVGGEfficientRep and Rep-PAN as the foundation. Utilizing an Efficient Decoupled
Head, YOLOv6 optimized object detection efficiency without compromising accuracy (Li
et al., 2022). Released in July 2022, YOLOv7, built upon the YOLOv4 architecture,
introduced enhancements through the Extended Efficient Layer Aggregation Network (E-
ELAN), surpassing its predecessors in both speed and accuracy (Wang, Bochkovskiy &
Liao, 2023).

Two-stage algorithms follow a process wherein they initially generate a set of candidate
bounding boxes as samples and subsequently classify these samples using a convolutional
neural network (CNN). Notable examples of such algorithms encompass Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2015), Cascade RCNN (Cai & Vasconcelos,
2018), and others. Nie & Wang (2018) introduced a crack detection model based on Faster
R-CNN, leveraging transfer learning through parameter fine-tuning to identify various
pavement issues like cracks, looseness, and deformation. Hascoet et al. (2020) employed
Faster-RCNN for crack detection, improving detection performance through techniques
like label smoothing, and shared insights into deploying their model on local road
networks. In contrast, one-stage algorithms approach object detection as a regression task,
directly predicting bounding boxes and categories for multiple locations across the entire
image. Examples of one-stage algorithms include SSD (Redmon & Farhadi, 2018), the
YOLO series (Bochkovskiy, Wang & Liao, 2020; Wang, Bochkovskiy & Liao, 2023),
Centernet (Duan et al., 2019), and EfficientDet (Tan, Pang & Le, 2020).

In this article (Wang et al., 2024), the introduction of SwinCrack, a groundbreaking
pavement crack detection model built on the Swin-Transformer architecture, is presented.
SwinCrack effectively overcomes the drawbacks of CNN-based networks, achieving
enhanced accuracy and efficiency in crack detection. Leveraging modules such as CPEL,
CSTB, DFN, and CAGSC, SwinCrack excels in capturing spatial context and fine-tuning
crack boundaries. This work signifies a notable advancement in automated pavement crack
detection methodologies. Furthermore, recent research has presented a groundbreaking
approach to detecting renal cell hydronephrosis using a novel deep convolutional neural
network (DCNN) architecture (Islam et al., 2024). The study evaluates the DCNN against
established models (VGG16, ResNet50, InceptionV3), demonstrating its superior
performance. Key contributions include the innovative DCNN design, comprehensive
architecture comparisons, and detailed reproducibility information. This research not only
advances hydronephrosis detection but also underscores the broader potential of deep
learning in medical diagnostics. In this article (Xu et al., 2024) the authors addresses
challenges in tunnel crack width identification, focusing on a large subway tunnel and
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utilizing a tunnel rail inspection car equipped with industrial cameras. The proposed
method integrates laser rangefinders for precise measurements, corrects three-dimensional
cracks, and employs the YOLOv8 algorithm for intelligent extraction of crack morphology.
Results show close alignment between YOLOv8-based crack detection and manual
methods. The approach, using a tunnel inspection vehicle and YOLOv8, proves feasible for
accurate crack recognition on the tunnel tube sheet, offering potential applications and
serving as a valuable reference for crack assessments.

In the realm of road distress detection, previous research has laid the groundwork for
innovative approaches. Notably, advancements in object detection have been witnessed
with the integration of sophisticated models such as YOLOv8 (You Only Look Once
version 8). YOLOv8 has proven instrumental in achieving superior accuracy and real-time
capabilities, making it a prominent choice in the field. The significance of leveraging state-
of-the-art technologies, such as YOLOv8, is evident in enhancing the accuracy and
efficiency of road distress detection systems.

PROPOSED METHOD
In this article, we present our IR-DD deep learning approach, designed to address the
challenges of accuracy, real-time performance, and scalability in road distress detection. To
achieve this balance, we leverage YOLOv8, a cutting-edge one-stage and one-scale object
detection model (Talaat & ZainEldin, 2023) renowned for its accuracy and efficiency.
YOLOv8 signifies a noteworthy advancement in the realms of object detection, image
categorization, and instance segmentation. Developed by Ultralytics, it streamlines the
developer experience and introduces a key change by directly predicting object centers
instead of anchor-box offsets. This innovation accelerates Non-Maximum Suppression,
simplifies box configuration forecasting, and brings changes to the convolutional structure,
including modifications to building blocks and kernel sizes. YOLOv8 also reduces tensor
size and parameters through direct neck feature concatenation, improving accuracy.
Furthermore, it incorporates mosaic augmentation, enhancing the model’s ability to detect
objects in different environments and handle partial occlusions. To optimize feature
extraction, we leverage the EfficientNet backbone (Tan & Le, 2019). Our approach
commences with feature extraction from input video/images, focusing on critical elements
like crack orientation, background context, brightness variations, and distress area extent.
Figure 1 illustrate the YOLOv8 general architecture (Solawetz & Francesco, 2023). The
integration of BiFPN enhances multi-scale feature fusion, particularly beneficial for
accurately detecting small defects in complex visual backgrounds. These advantages
collectively position YOLOv8 and BiFPN as a powerful and balanced combination,
addressing the unique demands of speed, accuracy, and flexibility in road distress
detection.

In this comprehensive exploration, our article unfolds the intricacies of our proposed
model across various pivotal phases. “The IR-DD Model System” meticulously details the
IR-DD deep learning approach, focusing on its core structure and innovative features
designed to address challenges in accuracy, real-time performance, and scalability in road
distress detection. Transitioning to “The IR-DD Model Algorithm”, we delve into the
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Figure 1 YOLOv8 architecture. Full-size DOI: 10.7717/peerj-cs.2038/fig-1
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IR-DD algorithm, outlining its algorithmic underpinnings, efficiency, and precision in
object detection and image categorization. “Bidirectional Feature Pyramid Network” sheds
light on the BiFPN, emphasizing its role in optimizing feature fusion and enhancing multi-
scale features for accurate road distress detection. Finally, “Anchor-Free Detection”
elucidates the intricacies of anchor-free detection, highlighting its innovative aspects in
achieving accurate and efficient distress detection in diverse environments. Figure 2
illustrate the proposed model architecture.

The IR-DD model system
The IR-DD deep learning approach leverages the YOLOv8 detection model, renowned for
its swift and accurate object detection capabilities, all achieved without the necessity of a
regional proposal network. This system undergoes optimization to streamline the
parameter count required for detection, enhancing its overall efficiency. Employing
computer vision techniques, the IR-DD deep learning approach autonomously identifies
road distress anomalies within images and video streams. Data preprocessing and object
detection are the essential phases of the IR-DD model.

Data preprocessing
In data preprocessing phase, data collection and preparation are integral phases. Data
collection involves acquiring a diverse dataset containing images and videos showcasing
road distress anomalies, along with images lacking such anomalies. Stringent curation
procedures, including duplicate removal and precise labeling, are necessary. Labeling can
be performed manually or aided by automated tools, with a focus on categorizing images as
containing or lacking road distress anomalies. Maintaining a balanced dataset, with an
equitable distribution of both types of images, is crucial to prevent model bias.

Data preparation is equally vital in preparing the dataset for training and testing the
road distress detection system. The process commences with the meticulous labeling of
images and videos, where bounding boxes are delineated around road distress anomalies.
This can be accomplished through manual annotation or labeling tools such as LabelImg.
The annotated data is subsequently partitioned into distinct training and testing subsets,
ensuring they faithfully represent the broader dataset. Additional preprocessing steps, such

Figure 2 Architecture of the proposed IR-DD model. Full-size DOI: 10.7717/peerj-cs.2038/fig-2
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as resizing or normalization, may be applied to enhance data consistency. The ultimate
goal is to cultivate a substantial and balanced dataset capable of robust generalization to
novel data instances.

Object detection

Object detection involved several stages like model selection, training, evaluation,
deployment, integration and maintenance which is illustrated in Fig. 3. In object detection
phase, we initiate the model development process by thoughtfully selecting an object
detection algorithm for training. We evaluate various options, including Faster R-CNN,
SSD and YOLOv8, each having its unique set of advantages and limitations. However, we
have selected YOLOv8 as the algorithm for our model. YOLOv8 is highly esteemed for its
capability to achieve a harmonious balance between speed and accuracy, aligning
seamlessly with the particular requirements of our system. Following the training phase,
we evaluate the model’s performance using crucial metrics such as accuracy, precision,
recall, and F1 score. In the event that the model does not meet expectations, we implement
fine-tuning by adjusting hyperparameters or enhancing the dataset. This iterative process
aims to strike a balance between overfitting and underfitting, ultimately refining the
model’s accuracy and reliability.

Deployment is a pivotal phase that entails integrating the trained model into a real-time
system for processing live video streams from road cameras. This process demands
significant computing power and GPU support to facilitate real-time analysis. The system
identifies road distress anomalies and utilizes a confidence threshold to manage false
positives, ensuring precise and reliable detection. Integration is another pivotal stage where

Figure 3 Methodology of IR-DD model system. Full-size DOI: 10.7717/peerj-cs.2038/fig-3
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we seamlessly merge the road distress detection system with complementary systems like
emergency response, traffic management, and maintenance alerts. This integration enables
rapid responses, including road closures and maintenance alerts, ultimately optimizing
road safety and response efficiency. Maintenance plays an ongoing role in upholding the
effectiveness of the deployed system. It involves continuous model enhancement, routine
testing, and meticulous upkeep of hardware and software components. These efforts
ensure the system’s ongoing reliability and adaptability to changing conditions, all
contributing to the promotion of road safety.

In the IR-DD model, our approach utilizes computer vision to swiftly identify road
distress anomalies in real-time, whether from live camera feeds or pre-recorded video and
image files. As depicted in Algorithm 1, it leverages a pre-trained YOLOv8 object detection
model, trained on a diverse dataset that includes both road distress and non-distress
images.The model functions by taking a dataset of video/image frames as input and
generating outputs that identify anomalies, covering diverse road distress classes such as
cracks, potholes, or surface damage. This model systematically processes each frame within
the video stream. Before forwarding frames to the YOLOv8 model for object detection, the
system initiates image pre-processing techniques customized for the current frame. If the
model identifies any road distress anomaly, it promptly triggers an alarm and notifies the
relevant authorities without delay. Furthermore, it archives the output video/image, duly
emphasizing the detected road distress anomalies. The IRDD approach stands as a robust
solution for real-time road distress detection, fostering swift and effective responses to
potential road hazards.

Algorithm 1 IR-DD algorithm.

Input: Dataset

Output: Detected Objects

Steps:

1: Initiate the input source for video/image (pre-recorded video/image file or live camera).

2: Start the video/image capture process.

3: while there are frames in the video/image do

4: Implement image pre-processing techniques on the current frame.

5: Send the pre-processed frame to the YOLOv8 model for object detection

6: Examine the identified objects for classes related to road distress, such as cracks, potholes, and surface damage.

7: if A class associated with road distress is identified then

8: Trigger an alarm.

9: Notify the relevant authorities.

10: end if

11: Save the resulting video/image, emphasizing the identified road distress anomalies.

12: end while

13: Halt the process of capturing video or image.
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The IR-DD model algorithm
The IR-DD algorithm, driven by YOLOv8, integrates cutting-edge technology with
systematic workflow to enhance road safety by rapidly identifying and reporting road
distress anomalies. Its systematic approach ensures that distress situations are identified,
addressed, and recorded efficiently, making it a valuable tool in the maintenance and
management of road infrastructure.

The IR-DD algorithm, leveraging the high-performance YOLOv8 object detection
model, unfolds through a meticulously orchestrated sequence of stages, each contributing
to the overall efficacy of the system.

. Defining the video/image source: The initial stage involves the specification of the
video/image source, whether it be a live camera feed capturing real-time data or a pre-
recorded video/image file. This crucial step ensures that the system is appropriately
aligned with the intended application scenario.

. Video/image frame capture: With the video/image source established, the system
commences the video/image capture process. Frame by frame, it systematically processes
each segment of the video/image, ensuring that no pertinent information is overlooked.

. Image pre-processing: Prior to subjecting each video/image frame to object detection,
the system employs a suite of image pre-processing techniques. These techniques aim to
enhance the quality and utility of the input data, which is essential for accurate and
robust detection. The pre-processed frame is then forwarded to the YOLOv8 model for
comprehensive object detection.

. Object classification: The YOLOv8 model plays a pivotal role in this stage. It rigorously
examines each frame, categorizing detected objects into various classes. In the context of
road distress detection, these classes typically include cracks, potholes, and surface
damage. This classification process is a critical component of the system, as it enables the
precise identification of distress-related anomalies.

. Alert triggering: The system is designed to respond promptly and decisively. In the
event of detecting an object belonging to a road distress-related class, such as a crack or
pothole, the system triggers an alarm. This alarm serves as a real-time notification
mechanism, promptly relaying the information to the relevant authorities. This
immediate response ensures swift and targeted action to address road anomalies and
enhance safety.

. Video/image capture conclusion: As the video processing nears its conclusion, the
system meticulously conserves the output video/image. In this recorded video/image, the
detected road distress anomalies are distinctly highlighted. This visual representation is
invaluable for post-event analysis, road maintenance planning, and record-keeping,
offering a comprehensive record of the distress occurrences.

Bidirectional feature pyramid network
The incorporation of Bidirectional Feature Pyramid Network (BiFPN) into the YOLOv8
model for road distress detection significantly elevates the model’s capacity to capture
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multi-scale features, thereby enhancing its efficacy in detecting road anomalies. In the
realm of road maintenance and safety, the accurate identification of distress anomalies
such as cracks and potholes is pivotal for ensuring road quality and driver safety. The
integration of BiFPN into the YOLOv8 framework equips the model with the ability to
efficiently analyze features at different scales, enabling precise detection of distress
anomalies across various road conditions and sizes. BiFPN’s bidirectional connections
within the feature pyramid network facilitate seamless information flow both upward and
downward through the network layers. This bidirectional flow enhances the model’s
contextual understanding of road scenes, allowing it to discern subtle distress patterns and
variations in road surfaces. The synergistic integration of YOLOv8 and BiFPN empowers
the model to dynamically adapt to diverse road environments, ensuring robust
performance in detecting anomalies irrespective of scale or complexity.

Furthermore, the integration of BiFPN not only enhances the accuracy of distress
detection but also improves the efficiency of real-time anomaly identification. This
advancement in intelligent transportation systems holds great promise for enhancing road
maintenance practices, optimizing safety measures, and ultimately contributing to
smoother and safer driving experiences for all road users. Algorithm 2 illustrates the
YOLOv8 model enabled with BiFPN.

Mathematically, the BiFPN process, when integrated into YOLOv8 for road distress
detection, can be represented as follows:

Pup
i ¼ Pi�1 þUpSampleðPdown

i Þ (1)

Pout
i ¼ ReLUðConvðPup

i ÞÞ: (2)

Here, Pup
i represents the upsampled feature map from the lower-level pyramid, Pdown

i is
the feature map from the higher-level pyramid, and Pout

i denotes the fused feature map.
This fusion process, when applied within the YOLOv8 model, ensures that distress
anomalies on the road are detected accurately and reliably, contributing to improved road
safety and maintenance efforts. The YOLOv8-BiFPN model, optimized for Road Distress
Detection, can efficiently identify and localize road anomalies, providing an invaluable tool
for infrastructure management and maintenance.

Following steps are follow for integrating BiFPN into YOLOv8 model for road distress
detection:

. Data preparation: Prepare a dataset of road distress images with annotations (e.g.,
bounding boxes for distress anomalies).

. Backbone feature extraction: Utilize a pre-trained or custom backbone (EffcientNet) to
extract features from the input images.

. BiFPN integration: Incorporate the BiFPN module into the YOLOv8 architecture after
the backbone network. Configure the BiFPN to fuse features from different pyramid
levels bidirectionally.

. Feature fusion: Implement feature fusion within the BiFPN to capture multi-scale
features efficiently.
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. Object detection head: Follow the BiFPN with an object detection head. Design the head
to predict bounding boxes, object confidence scores, and class probabilities.

. Training: Train the YOLOv8-BiFPN model on the road distress dataset, using ground
truth annotations. Use loss functions to optimize the model.

. Inference: Apply the trained YOLOv8-BiFPN model for road distress detection on new
images.

. Post-processing: Implement post-processing steps like non-maximum suppression to
filter and refine the detection results.

. Evaluation:Assess the model’s performance by utilizing metrics such as precision, recall,
F1-score, and mean average precision (mAP).

. Fine-tuning and optimization: Optionally, fine-tune hyperparameters and model
architecture to achieve optimal performance.

Anchor-free detection
This section provides a comprehensive exploration of anchor-free model architecture,
elucidating its significance in the realm of object detection tasks. Understanding how the
anchor-free model is structured and carefully adjusting our model’s settings is a key

Algorithm 2 YOLOv8 enabled bidirectional feature pyramid network (BiFPN) algorithm.

Steps:

1: Initialization of the YOLOv8 model: Model ¼ YOLOv8ðÞ
2: Loading the backbone:

Backbone ¼ load retrained backboneðÞ
3: Adding the BiFPN module:

BiFPN ¼ BidirectionalFPNðÞ
4: Initializing the object detection head:

Head ¼ ObjectDetectionHeadðÞ
5: Connecting layers:

Model ¼ connect layersðBackbone;BiFPN;HeadÞ
6: Defining the loss function:

loss ¼ calculate lossðpredictions; targetsÞ
7: Preparing the dataset: Data preparation and loading into data loaders.

8: Training loop: Iterating over the dataset and optimizing the model parameters using backpropagation.

9: Inference: Detections = Model.detect(image)

10: Evaluation:

Evaluation results ¼ EvaluateðModel; test datasetÞ
11: Fine-tuning: Optionally fine-tuning and optimizing hyperparameters.

12: Saving the model:

save modelðModel;0 road distress detection model:pth0Þ
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strategy to improve the performance of our object detection model, especially when
dealing with objects that have irregular shapes. YOLOv8 adopts an anchor-free model
architecture, deviating from the conventional approach of predicting offsets from
predefined anchor boxes. Instead, it directly predicts the center of an object, eliminating
the reliance on anchor boxes for bounding box predictions. To visually represent the
concept of anchor boxes in object detection, Fig. 4 illustrates the graphical depiction of
anchor boxes (Solawetz & Francesco, 2023). These boxes are pre-defined bounding boxes
with varying scales and aspect ratios, serving as crucial elements in object detection
algorithms for anchoring and predicting objects within an image. The network generates
predictions for five bounding boxes at each cell of the output feature map. For each
bounding box, the network predicts five coordinates: tx, ty, tw, th, and to. If the cell is
displaced from the top-left corner of the image by the offset (cx, cy), and the bounding box
prior has width (pw) and height (ph), then the predictions are as follows:

bx ¼ rðtxÞ þ cx
by ¼ rðtyÞ þ cy

bw ¼ pw � etw
bh ¼ ph � eth
PrðobjectÞ � IOUðb; objectÞ ¼ rðtoÞ

Object detection, distinct from image classification, grapples with the challenge of
identifying and precisely localizing multiple objects, potentially belonging to various
classes, within a single image. The primary objective is to accurately predict the presence

Figure 4 Graphical representation of anchor boxes in object detection.
Full-size DOI: 10.7717/peerj-cs.2038/fig-4
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and location of all these objects. The subsequent steps outline the process involved in
anchor-free detection.

. Center points prediction: In anchor-free methods, the network predicts the center
points of potential objects. This is often represented as a heat map where each point in
the heat map corresponds to a potential object center.

Mathematically:
Let us denote the heat map for object center points as C, and Cðx; yÞ represents the
confidence score of an object center at location ðx; yÞ.

. Bounding box regression: Once the center points are predicted, anchor-free methods
perform bounding box regression relative to these centers. They predict the offset
(Dx;Dy) for each object center, which determines the position of the bounding box
around that center.

Mathematically: For a center point ðx; yÞ, the bounding box position can be
represented as:

ðx þ Dx; y þ DyÞ
. Objectness score: To estimate if a bounding box indeed contains an object, an objectness
score is predicted. This score is high for boxes containing objects and low for empty ones.
Mathematically: The objectness score for a bounding box can be represented as r, and
rðx; yÞ represents the probability that the bounding box at ðx; yÞ contains an object.

. Final bounding box prediction: The final bounding box for an object is determined by
adding the predicted offset to the center point. The size of the bounding box can also be a
part of the prediction.
Mathematically:
The coordinates denoting the top-left and bottom-right corners of the bounding box can
be expressed as follows:

– Top-left corner:

x þ Dx � w
2
; y þ Dy � h

2

� �

– Bottom-right corner:

x þ Dx þ w
2
; y þ Dy þ h

2

� �

Here, ðx; yÞ is the predicted center, Dx and Dy are the predicted offsets, and ðw; hÞ
represents the width and height of the bounding box.

IMPLEMENTATION AND EVALUATION
This section addresses the configuration of the model, the employed performance metrics,
and the resulting assessment of performance.
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Configuration
To facilitate comprehensive analysis in our research, we leverage the MS COCO dataset
(Lin et al., 2014). The Common Objects in Context (COCO) dataset, developed by
Microsoft and extensively documented, encompasses training, validation, and test sets
comprising over 200,000 images distributed across 80 distinct object categories. This
dataset serves as a comprehensive resource for object detection and image segmentation
tasks. Figure 5 provides a visual representation of the various object classes present in the
COCO dataset, offering a rich and diverse collection of images for training and evaluating
computer vision models. Developed to advance object recognition and scene
understanding, the COCO dataset has become a benchmark in the field, providing a
standardized foundation for researchers and practitioners working on image-related tasks.

In configuring the model for our experiment, as illustrated in Table 1, we meticulously
defined a set of parameters crucial to the training and performance of the neural network.
The training process spanned 200 epochs, each representing a complete iteration through
our dataset. To guide the optimization process, we employed a learning rate of 0:01,
striking a balance between convergence speed and precision. Input images were
standardized to dimensions of 512� 512 pixels, and training occurred in batches of 16
images at a time, facilitating efficient parameter updates. Our comprehensive dataset,
comprised of 26,520 images, served as the foundation for model learning.

The architecture, consisting of 225 layers, was meticulously chosen to capture intricate
patterns in our data. With a total of 11,136,374 parameters, encompassing weights and
biases, our configuration reflects a thoughtful balance between model complexity and

Figure 5 Visual representation of object classes in the MSCOCO dataset. Full-size DOI: 10.7717/peerj-cs.2038/fig-5
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computational efficiency, ultimately tailored to the specific demands of our research
context.

Performance metrics
The F-measure (FM) or F-1 score is determined by the weighted average of recall
percentages and precision percentages. This score, also known as the harmonic mean of
precision and recall, takes into account both false positives and false negatives. While FM is
more commonly used than precision alone, accuracy is not immediately straightforward to
comprehend. Accuracy performs well when false positives and false negatives have
comparable costs. However, if the costs associated with false positives and false negatives
differ, consideration of both recall and accuracy is preferable.

In the context of positive findings, precision (P) represents the proportion of accurately
predicted observations to all predicted positive findings. On the other hand, recall (R) is the
proportion of true positive predictions over all actual positives. These metrics can be
calculated as follows:

P ¼ TP
TP þ FP

(3)

R ¼ TP
TP þ FN

(4)

In standard terminology, TP represents true positive, FP stands for false positive, TN
denotes true negative, and FN refers to false negative. Precision and recall are taken into
account when calculating the F-measure (FM), abbreviated as FM and computed using the
following formula:

FM ¼ 2 � R � P
Rþ P

(5)

In addition to various other evaluation metrics, we incorporate the accuracy metric to
evaluate the overall correctness of the model’s predictions. The accuracy metric offers
insight into the proportion of correctly classified predictions among the total number of
object predictions. Its calculation is determined by the following formula:

Table 1 Configuration parameters.

Parameter Value

Epoch 200

Image-size 512

Learning-rate 0.01

Batch-size 16

Layers 225

Number-of-images 26,520

Parameters 11,136,374
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Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(6)

Accuracy is a frequently employed performance metric, particularly in situations where
the dataset is well-balanced, indicating a relatively equal number of positive and negative
predictions. This metric provides a simple and direct measure to assess the correctness of
the model in classification tasks. In addition to all other metrics, frame per seconds (FPS) is
also used as the evaluation metric and model performance is judged accordingly.

Average precision (AP) is a widely utilized metric in object detection, evaluating a
model’s accuracy in detecting objects across different levels of precision. AP quantifies
performance by computing the area under the precision-recall curve (AUC − PR) at
various thresholds. The formula for calculating AP is expressed as:

AP ¼
Xn
i¼1

ðRi � Ri�1Þ � Pi (7)

Here, AP represents the average precision, n denotes the number of data points, Ri

stands for recall at point i, Ri�1 represents recall at the previous point, and Pi represents
precision at point i.

Mean average precision (mAP) serves as an indicator of a model’s comprehensive
performance across all classes in object detection. It is determined by averaging the
individual average precisions (APs) computed at various precision levels. The calculation
of mAP can be expressed using the formula:

mAP ¼ 1
N

XN
i¼1

APi (8)

In this formula, mAP represents the mean average precision, N denotes the number of
classes, and APi signifies the average precision for each class i.

Results and Discussion
Our IR-DD model training and testing were accelerated by the formidable NVIDIA RTX
2080Ti GPU and the Intel I9� 10900X CPU running at 3:7 GHz, resulting in substantial
performance improvements.

Table 2 offers a comparative analysis of diverse object detection methods evaluated on
the MS-COCO dataset (Youssouf, 2022; Ye et al., 2023; Mahendru & Dubey, 2021;
Guo et al., 2022; Qu et al., 2022; Dong, Tang & Zhang, 2023; Sirisha & Sudha, 2022),
presenting key performance metrics. The evaluation metrics, including precision, recall, F1
score, mean average precision (mAP) at IoU thresholds of 0.5 and 0.5:0.95, along with
frames per second (FPS) during inference, offer a comprehensive assessment of each
method’s effectiveness. Notably, our proposed method achieves compelling results with a
precision of 0.666, F1 score of 0.630, mAP@0.5 of 0.650, and an impressive FPS of 86.
These metrics collectively underscore the competitive performance of our method in
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object detection, demonstrating proficiency across precision, recall, F1 score, mAP, and
computational efficiency on the MS-COCO dataset.

Table 3 and Fig. 6 provides a comparative performance overview for various iterations
of the YOLO object detection algorithm, evaluating their effectiveness through two key
metrics: frames per second (FPS) and average precision at an IoU threshold of 0.5 (AP50).
YOLOv8 emerges as the fastest, boasting an impressive 280 FPS; however, this efficiency
comes at a cost, as it registers the lowest AP50 at 53.9. In contrast, YOLOv6-L strikes a
notable balance between speed and accuracy, achieving the highest AP50 of 70 while
maintaining a respectable FPS of 98. YOLOv5-L also performs competitively, with an FPS
of 113 and an AP50 of 67.3. These metrics offer practitioners valuable insights,
emphasizing the nuanced trade-off between speed and precision when selecting the most
suitable YOLO version for specific object detection applications. Notably, the utilization of
the YOLOv8 model in our road distress detection system is strategically grounded in its
superior performance metrics, striking a well-calibrated balance between rapid processing
capabilities and precise object localization.

The Fig. 7 describes a collection of illustrative instances highlighting the results of object
detection using our model on the MS-COCO dataset (Lin et al., 2014). These instances,
presented in the form of figures, showcase the model’s performance in accurately detecting

Table 2 Performance comparison of various methods.

Methods Precision Recall F1 mAP@0.5 mAP@0.5:0.95 FPS

Faster-RCNN 0.529 0.607 0.565 0.513 0.220 29

Cascade-RCNN 0.494 0.656 0.564 0.548 0.250 24

YOLOv3 0.608 0.612 0.610 0.627 0.308 48

YOLOv4-CSP 0.606 0.595 0.600 0.631 0.317 49

YOLOv5 0.620 0.606 0.613 0.633 0.321 59

YOLOv7 0.629 0.601 0.615 0.640 0.338 85

CenterNet 0.500 0.626 0.556 0.510 0.215 70

Ours 0.666 0.608 0.630 0.650 0.335 86

Note:
Best values are bold in each criterion.

Table 3 Performance results for different versions of YOLOs.

YOLO Version References FPS AP50

YOLOv3 Redmon & Farhadi (2018) 20 57.9

YOLOv4 Bochkovskiy, Wang & Liao (2020) 62 65.7

YOLOv5-L Shafiee et al. (2017) 113 67.3

PP-YOLO Long et al. (2020) 73 65.2

PP-YOLOV2 Huang et al. (2021) 50.3 69

YOLOv6-L Li et al. (2022) 98 70

YOLOv7 Wang, Bochkovskiy & Liao (2023) 161 69.7

YOLOv8 – 280 53.9

Note:
Best values are bold in each criterion.
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Figure 6 Performance results for different versions of YOLOs.
Full-size DOI: 10.7717/peerj-cs.2038/fig-6

Figure 7 Several illustrative instances showcasing the outcomes of our object detection on the MS-
COCO dataset. Image credit: Lin et al. (2014) Copyright © 2014, Springer International Publishing
Switzerland. Full-size DOI: 10.7717/peerj-cs.2038/fig-7
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and delineating various objects within different pictures. The use of YOLOv8, known for
its efficiency in real-time object detection, emphasizes the effectiveness of the model in
identifying and localizing objects across diverse scenarios present in the MS-COCO
dataset. These visual representations serve as concrete examples of the model’s capabilities
and contribute to a more tangible understanding of its object detection performance.

In our study, the integration of the EfficientNet as a backbone, coupled with the
utilization of BiFPN, has proven to be a strategically advantageous choice for enhancing
the performance of our model. EfficientNet, known for its superior scaling properties and
efficient use of model parameters, serves as a robust foundation for feature extraction,
enabling the network to capture intricate patterns and representations within the input
data. The incorporation of BiFPN further contributes to improved feature integration and
information flow across different network layers, fostering enhanced contextual
understanding. The bidirectional connections in BiFPN facilitate effective communication
between feature maps at various scales, promoting richer feature representations crucial
for accurate object detection. The synergistic combination of EfficientNet and BiFPN, as
demonstrated in our experimental results, not only optimizes model efficiency but also
bolsters the overall precision and recall of our object detection system, making it well-
suited for diverse and complex visual scenarios. This strategic architectural choice
underscores the significance of leveraging state-of-the-art components to achieve superior
performance in computer vision tasks.

CONCLUSION AND FUTURE WORKS
In conclusion, our proposed framework, leveraging the YOLOv8 algorithm and
incorporating BiFPN for recursive feature fusion and bidirectional connections, has
demonstrated notable advancements in road distress detection. The synergy between
YOLOv8’s anchor-free architecture and BiFPN’s multi-scale feature optimization has
significantly improved accuracy and real-time capabilities. Through comprehensive
experimental analysis, we have shown that our approach surpasses traditional methods,
making it a cost-effective alternative for practical applications such as smart cities and
autonomous vehicles. The iterative refinement of features and bidirectional information
exchange contribute to a more robust and efficient system for identifying road anomalies.

In future research, it is crucial to explore newer versions or variations of the YOLO
series to assess their effectiveness in road distress scenarios. Balancing speed and accuracy,
especially in diverse distress complexities, requires further investigation to address
limitations such as low AP50. Overcoming challenges related to detecting smaller objects
and refining the framework for diverse datasets is essential. The adaptability of the
proposed system to real-world environmental factors and different geographic regions
presents promising avenues for exploration. Additionally, integrating advanced anomaly
detection algorithms and considering temporal aspects in video-based distress detection
could significantly enhance the system’s overall efficacy. This study establishes a
foundation for ongoing advancements in road distress detection, serving as a launchpad
for more sophisticated and robust applications in the future.
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