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ABSTRACT
This article explores the technology of recognizing non-cooperative communication
behavior, with a specific emphasis on analyzing communication station signals.
Conventional techniques for analyzing signal data frames to determine their identity,
while precise, do not have the ability to operate in real-time. In order to tackle this
issue, we developed a pragmatic architecture for recognizing communication behavior
and a system based on polling. The method utilizes a one-dimensional convolutional
neural network (CNN) to segment data, hence improving its ability to recognize various
communication activities. The study assesses the reliability of CNN in several real-world
scenarios, examining its accuracy in the presence of noise interference, varying lengths
of interception signals, interferences at different frequency points, and dynamic changes
in outpost locations. The experimental results confirm the efficacy and dependability of
the convolutional neural network in recognizing communication behavior in various
contexts.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Science, Neural Networks
Keywords Convolutional neural network, Deep learning, Communication behavior cognition,
Actual environmental adaptability, Non cooperative communication behavior cognition

INTRODUCTION
Within the domain of real-time and predictive disciplines, traditional approaches frequently
encounter limitations that restrict their effectiveness. As a workaround to these restrictions,
the recognition of communication behavior at the signal level has emerged as a potential
approach. A particularly notable aspect of this topic is the examination of how radiation
sources communicate, which is a primary focus in the wider field of radio cognition. This
involves extracting features from intercepted signals released by communication radiation
sources and analyzing the unique radio frequency characteristics present in the signals
to understand the underlying communication behavior (Khalid & Anpalagan, 2010). The
conventional approach to making this determination involves analyzing discrepancies in
the radio frequency spectrum, either among signals transmitted by different individuals
engaged in the same communication behavior or among signals generated during distinct
communication activities. The incorporation of this research with existing information
forms the basis for identifying the communication behavior of radiation sources.
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In the radio frequency domain, different signal-emitting entities operate and
communicate in a variety of ways, which causes signal sequences to be sent with
different properties (Liu et al., 2016; Hu et al., 2019; Xu et al., 2023a). This variance
allows for the analysis of communication behavior associated with a signal, without
the need to examine the internal structure of the signal itself. This article investigates
the transmission characteristics of a specific type of emitter communication method. It
examines communication data acquired through time-domain or spectral spacemonitoring
in order to gain understanding and comprehend these unique characteristics (Axell, Leus
& Larsson, 2010; Cao et al., 2021).

Convolutional neural networks (CNNs) have demonstrated exceptional effectiveness
in the field of image recognition and processing during the present era of data-driven
research. The question arises as to whether these neural networks can effectively utilize
their achievements to classify and identify one-dimensional time-domain data, especially
when obtained through mid-frequency sampling (Chen et al., 2023). The objective of this
study is to investigate this topic by developing a system that can detect communication
behaviors using data obtained from a communication station. The main goal is to clarify a
methodology for defining behavior, create a customized convolutional neural network for
this purpose, and empirically confirm its effectiveness. Another goal is to provide in-depth
understanding of the application of advanced neural network structures for detecting
communication patterns in radiation source signals.

BACKGROUND
The radiation source discussed in this study is essential for establishing communication
links between air and ground interfaces, as well as ships, aircraft, fleets, and land-based
stations. This facilitates the transfer of information smoothly and effortlessly between these
interfaces. This radiation source facilitates the exchange of digital information between
terminals by leveraging network communication technology and adhering to a standardized
message format. The radiation station, referred to as Model A, serves as a crucial element
in enabling standardized and efficient communication protocols across various interfaces
and domains. The communication scenario employed in this article involves a polling
communication scenario with multiple targets, one master station, and multiple slave
stations.

Operating modes of the emitter network
The network of the Model A communication station is specifically intended to enable
digitalized ship-to-air command and thorough sharing of situational information. Model
A emitter primarily utilizes a polling operating strategy to do this (Chen et al., 2022; Cao et
al., 2022;Xu et al., 2023b). In this arrangement, the network control station functions as the
primary station, systematically querying the subordinate stations (outposts). Consequently,
data from these subordinate stations is transferred sequentially, promoting accurate digital
interactive communication within the context of the ‘‘one center, multiple slave stations’’
model.
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Figure 1 Polling call message format frame structure.
Full-size DOI: 10.7717/peerjcs.2036/fig-1

The architecture of theModel A communication station consists of fivemain operational
modes: polling call, network synchronization, short broadcast, long broadcast, and radio
quiet. The subsequence sections outline each operational mode separately and clarify
their unique functionalities and operational techniques (Qiao, Wang & Gao, 2020). Within
the communication network, the overall system operates using a polling mechanism,
where there is one master station and multiple slave stations. The system utilizes network
synchronization and short broadcast signal working modes to synchronize information
and time across the entire network. Additionally, it employs long broadcast signals for
overall macro control.

Polling call
The polling call is a conventional operating method used in the communication network
of the Model A communication station. In this arrangement, a network control station
plays a central role, while additional network access devices are designated as outposts. The
network control station functions as the central hub, coordinating the whole network by
establishing a sequential polling call for all outposts. Every outpost communicates relevant
data and information during its designated time window (Zheng et al., 2017).

The polling call mechanism is crucial for ensuring that tactical information and data are
effectively shared among all network-connected units within a particular range,maximizing
the efficiency of network usage.

Three different message formats are used during polling calls (Ma et al., 2023): the call
information format of the network control station, the response information format of the
outpost, and the report information format of the network control station, as shown in
Fig. 1.

When a message is sent, it goes through a process that includes the transmission of
five header frames, followed by one phase reference frame. The purpose of the five header
frames is to establish frame synchronization, while the phase reference frame assists in
the measurement and calibration of the Doppler frequency shift. The calibration process
establishes the zero-phase reference point and efficiently decreases the bit error rate of the
signal during analysis. In addition, when transmitting information that contains data, it is
necessary to include two frame start codes before the data and an end code after the data
to identify the end of the transmission.
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Network synchronization
The main objective of the network synchronization mode is to establish a uniform time
reference throughout the communication network of the Model A communication station.
During network synchronization, only the network control station is operational over
the whole communication network. The process is initiated by the network control
station through the transmission of a synchronization message, which includes a header
frame consisting of five frames. This message mostly consists of Doppler tones and
synchronization signals, notably incorporating two unique tone signals: 605 Hz and
2,915 Hz (Fang et al., 2013).

Short broadcast
During manual operation mode, an operator uses a network access unit, such as a network
control station or an outpost, to send a single data report, known as a brief broadcast
message, to other network access units. After being transmitted, the unit smoothly switches
to the receiving state. The format used for the brief broadcast message closely resembles
that of the reply message usually sent from the outpost (Fig. 1).

Long broadcast
When important conditions arise or when urgent information needs to be sent, an access
unit in the communication network enables its operator to consistently send a single data
report to other network members. This continuous transmission consists of a lengthy
broadcast message, consisting of a series of brief broadcasts interspersed with two frames
between each short broadcast message. The operator starts the extended broadcast message,
which remains active until manually halted. When the system stops, the main operator
takes action and changes the system to a different mode of operation.

Radio silence
During a period of radio silence, the network access unit functions exclusively in a passive
mode, where it only receives data from other network access units and does not broadcast
any information. It remains unresponsive despite being prompted by the network control
station.

Signal format
Signal frame
The signal transmitted by theModel A communication station is a sophisticated,multi-tone
synthetic signal. The system consists of 16 separate audio points that are used for signal
synthesis. These points are described in detail in Table 1. Additionally, all transmissions
take place inside frames. Every frame is specifically engineered to accommodate 24 bits of
data for the purpose of transmitting tactical information. The (30,24) Hamming code is
used to convert a 24-bit data into a 30-bit signal. This signal includes a 6-bit check code
that is crucial for detecting and verifying errors.

The Model A communication station signal consists of multiple components, including
the header frame, phase reference frame, data frame, and other types. All of these
components are modulated using the DQPSK modulation scheme (Alhamad & Boujemaa,
2019).
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Table 1 Signal frequency points of model A communication station.

Number Frequency (Hz) Purpose Bit Number Frequency (Hz) Purpose Bit

1 605 Doppler shift 9 1,705 14, 15
2 935 0, 1 10 1,815 16, 17
3 1,045 2, 3 11 1,925 18, 19
4 1,155 4, 5 12 2,035 20, 21
5 1,265 Data 6, 7 13 2,145 Data 22, 23
6 1,375 8, 9 14 2,255 24, 25
7 1,485 10, 11 15 2,365 26, 27
8 1,595 12, 13 16 2,915 28, 29

Signal structure
The signal emitted by the Model A communication station is organized into frames, which
consist of separate elements: the header frame, phase reference frame, control code, and
message data. The format and duration of the header frame, phase reference frame, and
control code stay consistent, while the length of the message contents fluctuates depending
on the transmitted message.

Header frame: The header frame serves as a binary signal composed of two distinct
frequencies, namely 605 Hz and 2,915 Hz. The main objective of the device is to coordinate
the reception and correct any Doppler frequency shifts for the network access unit. The
transmission of every message commences with the emission of five consecutive header
frames.

Phase reference frame: The phase reference frame directly follows the header frame.
This frame utilizes the QPSK modulation technique and includes all 16 frequency points.
Its purpose is to provide the zero point for the phase reference in the next frames. This
facilitates the reduction of the bit error rate in data tones.

Control code: The control code consists of three essential codes: the start code, stop
code, and address code. The code consists of two frames that resemble the previously
described data frames. These frames communicate specialized information, such as start
code, stop code, and address code, using 16 single-tone modulated synthetic multi-tone
signals. Therefore, the control code’s constituent frame also serves as a data frame.

• Start code is observed 2 frames after the phase reference frame, signifying the beginning
of the message body.
• Stop code appears 2 frames after the end of the message body, indicating the end of the
message body.
• Address code is a system comprised of two frames that is used to indicate the current
outpost address in response to a call from the network management site. The varied
addresses of outpost stations enable the recognition of behavior using these codes,
providing the potential to identify communication activities.

Message information: The message data encapsulates the communicated information,
extending from the start to the stop codes. The number of data frames varies depending
on the content of the data.
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Figure 2 Link-11 tactical data link signal simulation.
Full-size DOI: 10.7717/peerjcs.2036/fig-2

Based on the aforementioned descriptions, the simulated signals for each operational
mode are depicted in Fig. 2.

Network simulation
Our first step is to develop a communication network so that we can investigate the
communication behavior recognition of the Model A communication station-based
network. In order to produce real communication signals and data for later learning and
recognition operations, this network development is necessary.

In light of the Model A communication station’s signal protocol, which was previously
described andmostly relies on polling, we developed a ‘‘single-center mesh structure.’’ This
organization is centered on a network control station that branches out into several unit
outposts. Each outpost has a distinct location code that changes dynamically in accordance
with its actual physical location (Luo et al., 2019). Pre-established communication protocols
are used to coordinate communication between stations.

Additionally, this article adds components like single-point interference and channel
Gaussian white noise to as closely mimic real-world conditions as feasible. These
augmentations imitate the possible use of interference on specific frequency points by
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non-cooperative parties. Furthermore, station movement amplitude and speed variations
are simulated to reflect changes in the surrounding environment.

With the purpose of developing a strong framework for the investigation of
communication behavior recognition in this network environment, a scenario for
identifying communication networks, including the Model A communication station,
is developed using these criteria.

Modeling of communication behavior
Our work focuses on the implementation of recognition algorithms to identify various
communication behaviors in model A communication stations, specifically in the context
of communication behavior recognition technology. We utilize convolutional neural
networks for classification and prediction. It identifies specific communication patterns
by analyzing differences in time, frequency, and spatial characteristics in intercepted
receiver data. The first phase is to concentrate on creating a communication scenario,
followed by describing the communication behavior that is fundamental to model A
communication stations. The following provides further details on the definition of these
diverse communication behaviors.

Polling: Polling is the primary operating method used in the network of a model A
communication station. Therefore, the determination of communication behaviors for
each network is dependent on the number of network control stations and outposts. For
example, let’s consider a case where there is one network control station, referred to as N,
and two outposts, A and B (the number of stations is not relevant for this example). The
communication behavior of the network polling is as follows:
1. N calls A, A answers N
2. N calls B, B answers N
3. N calls A, A does not answer N
4. N calls B, B does not answer N
5. N conducts network control station report
We are examining the possibility of recognizing the polling communication behavior as

previously defined, namely at the signal level. The following is a qualitative analysis of the
feasibility of this delineation strategy.

Considering the identification of the five specified polling communication behaviors,
behaviors 1 and 2 demonstrate noticeable signal frame patterns linked to network control
station calls and outpost answers. As a result, these behaviors may be easily differentiated
from the five stated earlier. Behaviors 3 and 4 demonstrate distinct frame structures
specifically designed for network control station calls, whereas behavior 5 exclusively offers
frame structures for network control station reports. Furthermore, behaviors 1 and 3
correspond to the address code of outpost A, whereas behaviors 2 and 4 correspond to the
address code of outpost B. Therefore, it seems possible to differentiate the aforementioned
five behaviors based on a signal perspective.

Network synchronization: Network synchronization refers to the process in which
the network control station sends synchronization signals at regular intervals to correct
the time reference of the whole network. This process is the only way to achieve network
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synchronization. The network synchronization signal is clearly identified due to its peculiar
frame structure (Chen et al., 2021).

Long broadcast: The extended broadcast signal comprises many brief broadcast signals,
with a gap of two frames between each one. During a prolonged broadcasting situation,
each brief broadcast signal remains unchanged and functions autonomously from the
others. The frame structure of the response signal of the outpost is mirrored by its frame
structure.

METHOD
Signal preprocessing
Considering the output of the model’s signal A communication station employs FM
modulation in the HF or UHF band for transmission. The operational technique
involves first demodulating the intercepted signal to extract the modulation information.
Afterwards, the obtained signal is subjected to sampling. In order to adhere to Nyquist
sampling requirements and optimize algorithmic efficiency, a sampling frequency of 7,000
bps is chosen, taking into account the maximum signal frequency of 2,915 Hz. This choice
guarantees the convenience of computation without sacrificing the final result.

Our objective is to generate signal datasets that represent a variety of communication
behaviors. In addition to determining the corresponding tag values and establishing
a direct correlation between the sampling set of the communication signal and the
particular communication behavior, our objective is to accomplish this. The objective
is to enhance subsequent learning and recognition of CNN networks. How can a collection
of communication behavior signals be constructed? Consider, for instance, the previously
mentioned polling communication behavior 1: ‘‘N calls A, A answers N’’, the procedure
proceeds as follows:

• Step 1: Identify the involved sites in the communication behavior, namely network
control station N and outpost A.
• Step 2: Configure the communication network as outlined previously and simulate the
continuous behavior 1 accordingly.
• Step 3: The receiver continually retrieves intercepted data of behavior 1, conducts
demodulation and potential sampling, resulting in a collection of signal datasets that
encompass diverse contents yet pertain to behavior 1, amassed over an extensive duration.
• Step 4: Segment the obtained dataset based on the prescribed length N (assuming the
length as N , where N is any positive integer). This value can be adjusted concerning
the signal interception period inputted into the CNN network (Guo et al., 2022). The
schematic diagram of segmentation is shown in Fig. 3. As the rated segmentation
length might not consistently match the number of sampling points of a singular
communication behavior, this method enables interception at any behavior’s starting
time while averting randomness.
• Step 5: Continue segmenting the simulated signal until the remaining sampling points
are fewer than the rated length N , resulting in M segmentation groups. This process
yields the summary matrix HM×N , corresponding to behavior 1.
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Figure 3 Schematic diagram of intercepted data set segmentationmethod.
Full-size DOI: 10.7717/peerjcs.2036/fig-3

The aforementioned steps outline the process of attaining the summary matrix
H , representing the signal dataset aligned with the communication behavior. These
operations are conducted across all network communication behaviors, culminating in
signal preprocessing—the construction of the CNN input dataset—where each row vector
of the summary matrix H is formed.

Communication behavior recognition algorithm
Design of the CNN
The parameters of each component in this specific topic are customized based on the
fundamental properties and functionalities of convolutional layers, pooling layers, fully
connected layers, and activation functions inside convolutional neural networks.

The algorithm utilizes a one-dimensional array obtained from sampling and processing
the genuine communication behavior signal as the input matrix. Like the preprocessing
stage, the convolution kernel is a one-dimensional row vector. In order to enhance the
extraction of subtle characteristics while simplifying the algorithm’s complexity, and taking
into account the convenience of aligning with odd-sized kernels, the decision is made to
utilize the smallest odd-sized convolution kernel, which is 1×3 (Soydaner, 2022).

Choosing the average pooling approach prioritizes the contextual information in
the data, which may restrict the extraction of texture characteristics, particularly edge
information, from the sample data. This article utilizes the maximum pooling method
for pooling, as one-dimensional input data matrices inherently contain important edge
properties. Our preliminary experiments demonstrated that using the smallest 1×2 pooling
kernel can effectively retain channel information while reducing algorithm complexity and
the number of network parameters. Prior to pooling, a set of parameters with a size of
N
2 ×

N
2 is used in order to further control complexity.

After the maximum pooling layer, a batch standardization layer is added to improve
the speed of the algorithm and accelerate the training process before entering the fully
linked layer (Sun et al., 2020). After reducing the dimensions, the network next applies the
softmax function to classify and generate the communication behavior recognition matrix,
which represents the final classification result. The configuration of two sets consisting of
convolution and pooling layers corresponds to the computational parameters described in
this research.

Meng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2036 9/17

https://peerj.com
https://doi.org/10.7717/peerjcs.2036/fig-3
http://dx.doi.org/10.7717/peerj-cs.2036


Process of communication behavior recognition
This article examines a simulated communication scenario called the ‘‘single network
control station, three outpost stations’’ configuration. It identifies seven specific
communication behaviors, including polling, network synchronization, and extended
broadcasts. Every behavior is associated with sets of signal samples, resulting in a total of
sets of communication signal samples for Model A communication stations. The signal sets
are essential data used to train and validate the algorithm for recognizing communication
behavior in Model A communication stations, which is based on convolutional neural
networks. The essential stages of the cognitive algorithm are as below.

• Step 1: Employ the established communication network to simulate communication
behavior and intercept the resultant communication dataset.
• Step 2: Demodulate the intercepted data, perform sampling at intermediate frequencies,
preprocess the data, and segment the signal to generate a matrix denoted as 7×M
comprising Link-11 data link signal samples S7M×N = [s1;s2;...;sk;...;s7M×N ];
• Step 3: Randomly partition the signal sample matrix S7M×N from Type A
communication stations into a training set, Str and a test set, Ste ;
• Step 4: Randomly designate 20% of the training set as the validation set Sva, while the
remaining 80% compose the updated training set Str . This updated set Str is utilized for
CNN model training, leveraging Sva to fine-tune the model’s local parameters.
• Step 5: Utilize the trained network model to classify communication behaviors using
the test set Ste ;
• Output: Classification outcomes of the seven communication behaviors exhibited by
the communication station.

EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the efficacy of the CNN algorithm in recognizing communication behavior and
its adaptability across various scenarios, a diverse set of signal datasets were gathered. The
datasets were utilized to assess the algorithm’s feasibility in various external circumstances.
Specifically, changes were made to four external factors: the noise level, the duration of
intercepted signals, the frequency points used for interference suppression, and the dynamic
shifts in sentinel positions. The algorithm’s performance was thoroughly evaluated and
scrutinized through these enhancements.

Impact of noise intensity
The open channel facilitates the reception and detection of signals from the non-cooperative
Model A communication station. Nevertheless, this transparency also allows for possible
disruptions to our operations, which can adversely affect the accuracy of the algorithm’s
ability to recognize communication activity, as discussed in this article. The purpose of
this part is to assess and confirm the ability of the convolutional network recognition
algorithms to withstand noise.

Here, we propose a method using a controlled variable approach, in which all conditions
are kept constant except for the varying degree of noise interference. This modification
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Figure 4 Recognition rate without noise interference.
Full-size DOI: 10.7717/peerjcs.2036/fig-4

enables us to examine the impact of varying levels of noise interference on the rate at which
communication behavior is recognized.

To account for the random nature of Gaussian signal white noise, the Monte Carlo
approach is used to repeatedly perform recognition rate studies on several test sample sets,
each with different levels of noise interference. The mean recognition rate is subsequently
calculated. We conduct correlation analysis to generate precise results by plotting a graph
that illustrates the relationship between noise interference intensity and communication
behavior recognition rate.

At first, the control group is subjected to a test to determine the rate at which they
recognize communication behaviors. This test uses a sample set that is free from any
interference or disturbances. This control set functions as a standard for evaluating and
contrasting with other test sample sets that contain noise. Figure 4 depicts the process
of learning and recognizing communication behavior using the algorithm. It shows the
accuracy of the algorithm in recognizing communication behavior on a test sample set
without any noise. Figure 4 clearly illustrates that the identification rate steadily increases,
exhibiting a conspicuous trend and eventually reaching 100%.

Various experimental groups were established, each with varied levels of noise
interference intensity. The signal-to-noise ratios for these groups were set at 0 dB,−0.69 dB,
−1.09 dB, −1.38 dB, −1.60 dB, −1.79 dB, −1.94 dB, and −2.07 dB, respectively. The
number of tests conducted in each group was multiplied by 60, and the identification
rates of communication behaviors with varying signal-to-noise ratios were then computed.
These noise conditions are set to be 1 and 1.5 times the signal power, respectively.

Impact of signal interception time
Obtaining a complete signal from a non-cooperative source is difficult due to the limitations
of non-cooperative interception. Interference and anti-interceptionmechanisms frequently
restrict the length of uninterrupted interception, leading to an occasionally disrupted
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Table 2 Recognition rate corresponding to different interception durations.

Test set capture
duration (seconds)

Recognition
accuracy

Test set capture
duration (seconds)

Recognition
accuracy

1 100 0.084 23.6
0.5 100 0.083 25.9
0.133 100 0.082 21.6
0.12 100 0.081 25.3
0.1 100 0.08 24.1
0.095 98.7 0.075 27.2
0.09 99.3 0.07 23.9
0.088 97.1 0.06 22.6
0.087 91.4 0.05 21.7
0.086 89.1 0.03 25.2
0.085 74.7 0.01 26.1

intercepted signal. The intricacies involved present substantial obstacles to the real-time
efficiency of algorithms designed to recognize communication activity.

Therefore, it is essential to ascertain the time of uninterrupted signal interception
necessary for our algorithm to satisfy recognition rate criteria and practical application
standards. In this section, controlled variables are used to keep other aspects constant while
constructing distinct test sample sets with varying lengths of intercepted signals. To limit
the effects of chance, recognition rate testing trials are regularly done across diverse test
sample sets using the Monte Carlo approach. The subsequent mean recognition rate is
computed.

A total of twenty-two unique test sample sets, each with varying interception durations,
were created for study. The recognition rates were then computed for each individual
sample set. The average recognition rates determined from these sets are presented in
Table 2. Additional analysis involves creating a graph that illustrates the connection
between the duration of intercepted signals and the rate at which communication behavior
is recognized. This is then followed by correlation analyses to draw precise results.

Using the data obtained from Table 2, Fig. 5 was created to show the relationship
between the length of intercepted signals and the accuracy of recognizing communication
patterns.

Figure 5 demonstrates that there is no significant correlation between the duration of
intercepted signals and the recognition rate of communication behaviors. Significantly,
when the duration of the intercepted signal surpasses 0.085 s, the accuracy of recognition
remains stable at approximately 99%, indicating consistent and reliable performance.
During this time period, the algorithm demonstrates outstanding recognition abilities and
consistently achieves a high level of accuracy. Nevertheless, if the duration of the intercepted
signal is less than 0.085 s, indicating shorter periods, the rate at which it can be recognized
decreases significantly to around 23%. For each type of signal duration, we repeated the
test 60 times, setting the number of samples at 50 for each type. The algorithm’s capacity
to recognize is greatly reduced at such short durations, making the duration threshold
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Figure 5 Recognition rate corresponding to different interception durations.
Full-size DOI: 10.7717/peerjcs.2036/fig-5

of 0.085 s the minimum reliable limit for recognition by this communication behavior
recognition method.

Impact of outpost movement
The method faces dynamic networks in real-world scenarios, which are characterized by
frequent changes in physical or network addresses. These changes lead to fluctuations
in address codes at the signal level. In order to ensure compatibility with real-world
applications, it is crucial to assess the flexibility of the one-dimensional CNN-based
algorithm in dynamic network scenarios (Chu, Xiao & Liang, 2020).

The address code’s bit count underwent a progressive transition, ranging from 1 to 48,
covering the complete range of variations in address code size from tiny to large. Due to
the intrinsic randomness of these modifications, each modification does not consistently
correlate to the same code, even when the total number of bits remains constant. In order
to reduce the impact of this unpredictability, the Monte Carlo approach is utilized to
examine this situation. For each type of signal duration, we repeated the test 60 times,
setting the number of samples at 50 for each type. Figure 6 illustrates the resulting curve.

The calculated linear correlation coefficient between the two variables is −0.9099,
showing a strong negative association. Therefore, it is clear that changes in the extent of
outpost movement have a direct impact on the rate at which communication behavior is
recognized, with a constant decrease observed as the extent of movement increases. This is
consistent with our comprehension and empirical observations.
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CONCLUSIONS
The real-time accuracy of the emergent cognitive technology in non-cooperative tactical
data link communication behavior, which focuses on physical layer information, is
attracting attention. By examining communication behavior recognition through the lens
of a communication station’s signal set, this article verifies the viability of a recognition
algorithm based on a one-dimensional convolutional neural network and provides a
methodical approach to this technology. The research findings indicate that the algorithm
successfully classifies communication behavior and adjusts to diverse environments,
thereby satisfying the criteria of real-time performance and universality. However,
beyond that, the study solely presents a convolutional neural network for recognition and
classification and establishes a foundational cognitive framework. Further research and
verification are required to effectively implement this technology in practical applications.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The study was supported by the National University of Defence and Technology (Project
number: 62071479). There was no additional external funding received for this study. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Meng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2036 14/17

https://peerj.com
https://doi.org/10.7717/peerjcs.2036/fig-6
http://dx.doi.org/10.7717/peerj-cs.2036


Grant Disclosures
The following grant information was disclosed by the authors:
The National University of Defence and Technology: 62071479.

Competing Interests
Changming Liu is employed by Electronic Countermeasures Division, Tongfang Electronic
Technology Co., Ltd., Jiangxi, China. Other authors declare that they have no competing
interests.

Author Contributions
• Hao Meng conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Yingke Lei performed the experiments, analyzed the data, authored or reviewed drafts
of the article, and approved the final draft.
• Fei Teng performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.
• Jin Wang performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.
• Changming Liu conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.
• Caiyi Lou conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The MATLAB code used in the study and the raw data are available in the Supplemental
Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2036#supplemental-information.

REFERENCES
Alhamad R, Boujemaa H. 2019. Cooperative spectrum sensing with incremental

relaying. Telecommunication Systems 74(1):45–53 DOI 10.1007/s11235-019-00632-1.
Axell E, Leus G, Larsson EG. 2010. Overview of spectrum sensing for cognitive radio.

In: 2010 2nd international workshop on cognitive information processing. Piscataway:
IEEE DOI 10.1109/cip.2010.5604136.

Cao K, Ding H, LiW, Lv L, GaoM, Gong F,Wang B. 2022. On the ergodic se-
crecy capacity of intelligent reflecting surface aided wireless powered commu-
nication systems. IEEE Wireless Communications Letters 11(11):2275–2279
DOI 10.1109/lwc.2022.3199593.

Meng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2036 15/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2036#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2036#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2036#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2036#supplemental-information
http://dx.doi.org/10.1007/s11235-019-00632-1
http://dx.doi.org/10.1109/cip.2010.5604136
http://dx.doi.org/10.1109/lwc.2022.3199593
http://dx.doi.org/10.7717/peerj-cs.2036


Cao K,Wang B, Ding H, Lv L, Tian J, Hu H, Gong F. 2021. Achieving reliable and
secure communications in wireless-powered NOMA systems. IEEE Transactions on
Vehicular Technology 70(2):1978–1983 DOI 10.1109/tvt.2021.3053093.

Chen H, Guo C,Wang Z,Wang J. 2022. Research on recognition and classifica-
tion of pulse signal features based on EPNCC. Scientific Reports 12(1):1–11
DOI 10.1038/s41598-022-10808-6.

Chen T, Gao S, Zheng S, Yu S, Xuan Q, Lou C, Yang X. 2023. EMD and VMD empow-
ered deep learning for radio modulation recognition. IEEE Transactions on Cognitive
Communications and Networking 9(1):43–57 DOI 10.1109/tccn.2022.3218694.

Chen Z, Zhai R, Li D, Bian J, Zhang S, Xu S. 2021. Performance evaluation of a tac-
tical data-link system based on MSK and 16QAM. IEEE Access 9:84316–84326
DOI 10.1109/access.2021.3086048.

Chu Z, Xiao N, Liang J. 2020. Jamming effect evaluation method based on radar
behavior recognition. Journal of Physics: Conference Series 1629(1):012001
DOI 10.1088/1742-6596/1629/1/012001.

Fang B, Huang G,Wang Y, Gao J, Feng C, Li Z. 2013. Link 11 network simulation
based on OMNeT++. In: Proceedings of the 2nd international conference on computer
science and electronics engineering (ICCSEE 2013), ICCSEE-13. Atlantis Press
DOI 10.2991/iccsee.2013.123.

Guo Z, Liu B, Ren J, Wu X, Li Y, Mao Y, Chen S, Zhong Q, Zhu X,Wu Y, Chen Y. 2022.
Modulation format recognition with transfer learning assisted convolutional neural
network using multiple Stokes sectional plane image in multi-core fibers. Optics
Express 30(12):21990 DOI 10.1364/oe.450791.

Hu J,Wu Y, Li T, Ghosh BK. 2019. Consensus control of general linear multiagent
systems with antagonistic interactions and communication noises. IEEE Transactions
on Automatic Control 64(5):2122–2127 DOI 10.1109/tac.2018.2872197.

Khalid L, Anpalagan A. 2010. Emerging cognitive radio technology: principles, chal-
lenges and opportunities. Computers & Electrical Engineering 36(2):358–366
DOI 10.1016/j.compeleceng.2009.03.004.

Liu C-t, Wu R-j, He Z-x, Zhao X-f, Li H-c, Wang P-z. 2016.Modeling and analyzing
interference signal in a complex electromagnetic environment. EURASIP Journal on
Wireless Communications and Networking 2016(1):1–9
DOI 10.1186/s13638-015-0498-8.

Luo Z, Zhao L, TianW, Yang D, Chen Y, Yu J, Li J. 2019. Data link modeling and simu-
lation based on DEVS. In: Proceedings of the 2019 2nd international conference on sig-
nal processing and machine learning, SPML ’19. ACM DOI 10.1145/3372806.3374911.

MaX, LiW, Zhong J, Li J, Wang Z. 2023. Future intelligent data link and unit-level combat
system based on global combat cloud. MDPI AG DOI 10.20944/preprints202312.1724.v1.

Qiao S,Wang L, Gao Z. 2020. Group behavior recognition based on deep hier-
archical network. Neural Computing and Applications 32(10):5389–5398
DOI 10.1007/s00521-019-04699-4.

Meng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2036 16/17

https://peerj.com
http://dx.doi.org/10.1109/tvt.2021.3053093
http://dx.doi.org/10.1038/s41598-022-10808-6
http://dx.doi.org/10.1109/tccn.2022.3218694
http://dx.doi.org/10.1109/access.2021.3086048
http://dx.doi.org/10.1088/1742-6596/1629/1/012001
http://dx.doi.org/10.2991/iccsee.2013.123
http://dx.doi.org/10.1364/oe.450791
http://dx.doi.org/10.1109/tac.2018.2872197
http://dx.doi.org/10.1016/j.compeleceng.2009.03.004
http://dx.doi.org/10.1186/s13638-015-0498-8
http://dx.doi.org/10.1145/3372806.3374911
http://dx.doi.org/10.20944/preprints202312.1724.v1
http://dx.doi.org/10.1007/s00521-019-04699-4
http://dx.doi.org/10.7717/peerj-cs.2036


Soydaner D. 2022. Attention mechanism in neural networks: where it comes
and where it goes. Neural Computing and Applications 34(16):13371–13385
DOI 10.1007/s00521-022-07366-3.

Sun Z, Ye J, Wang T, Huang S, Luo J. 2020. Behavioral feature recognition of multi-task
compressed sensing with fusion relevance in the Internet of Things environment.
Computer Communications 157:381–393 DOI 10.1016/j.comcom.2020.04.012.

XuH, Han S, Li X, Han Z. 2023b. Anomaly traffic detection based on communication-
efficient federated learning in space-air-ground integration network. IEEE Transac-
tions on Wireless Communications 22(12):9346–9360 DOI 10.1109/twc.2023.3270179.

Xu G, Zhang Q, Song Z, Ai B. 2023a. Relay-assisted deep space optical communication
system over coronal fading channels. IEEE Transactions on Aerospace and Electronic
Systems 59(6):8297–8312 DOI 10.1109/taes.2023.3301463.

ZhengW, Jin H, Liu Y, Yu Q. 2017. Analysis and research on TTNT data link. In:
Proceedings of the 2017 5th international conference on frontiers of manufactur-
ing science and measuring technology (FMSMT 2017), fmsmt-17. Atlantis Press
DOI 10.2991/fmsmt-17.2017.132.

Meng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2036 17/17

https://peerj.com
http://dx.doi.org/10.1007/s00521-022-07366-3
http://dx.doi.org/10.1016/j.comcom.2020.04.012
http://dx.doi.org/10.1109/twc.2023.3270179
http://dx.doi.org/10.1109/taes.2023.3301463
http://dx.doi.org/10.2991/fmsmt-17.2017.132
http://dx.doi.org/10.7717/peerj-cs.2036

