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ABSTRACT
Aiming at the random and intermittent characteristics of wind speed, a short-termwind
speed prediction (SWSP) method based on TSO-VMD-BiLSTM is proposed in this
article. Firstly, open-source historical data from a certain region in 2022, includingwind
speed, direction, pressure, and temperature is analyzed. The data is processed through
variational mode decomposition (VMD) to fully extract feature data from historical
wind speed records. Secondly, taking historical wind speed, direction, pressure, and
temperature as inputs and wind speed as output, a SWSP model based on long short-
term memory (LSTM) network is constructed. Thirdly, the tuna swarm optimization
(TSO) algorithm is utilized for parameters optimization, and a bi-directional long
short-termmemory (BiLSTM) network is incorporated to enhance prediction accuracy
for micrometeorological parameters. The proposed TSO-VMD-BiLSTM model is
validated through comparison with other models, demonstrating its higher accuracy
with the maximum absolute error of only 2.52 m/s, the maximum root mean square
error of 0.81, the maximummean absolute error of only 0.54, and the maximummean
absolute percentage error of 6.89%.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Distributed and Parallel
Computing, Optimization Theory and Computation
Keywords Short-term wind speed prediction, Variational mode decomposition, Tuna swarm
optimization, Bi-directional long short-term memory, Model

INTRODUCTION
The penetration rate of wind energy as a renewable energy source in the power grid has
significantly increased in recent years (Jiang, Jia & Guan, 2019). However, the randomness
and intermittency of wind speed present challenges to stable power generation and grid
integration, potentially disrupting the power system stability (Sema, Başak & Gülbahar,
2022). Consequently, precise wind speed prediction becomes crucial.

Extensive research has been undertaken on short-term wind speed prediction (SWSP)
from diverse perspectives, leading to the categorization of wind speed prediction
methodologies into three primary types: (1) The physical method, which involves
collecting various local meteorological data, such as wind direction, temperature, pressure,
and humidity, coupled with the use of geographical characteristics and meteorological
information to construct hydrodynamics and thermodynamics models for predicting
wind speed. Although straightforward in principle and relatively easy to implement, this
method demands considerable computational resources. The model development and
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solution processes are time-intensive, rendering it more suitable for medium to long-term
predictions of wind speed (Ai, Li & Xu, 2022). (2) The statistical method, which depends
heavily on extensive historical wind speed data, seeking to uncover underlying patterns
through time series analysis of wind speed, hence its alternate name: the time series method.
This approach typically necessitates a significant volume of random and stationary data for
model construction, alongside accurate identification of model parameters. Compared to
the physical method, the accuracy of the statistical method is improved, However, struggles
to accurately model the nonlinear relationship among variables well (Yang, Deng & Chang,
2022). (3) The machine learning method (Gupta, Natarajan & Berlin, 2022), which utilizes
the robust self-learning capabilities of machine learning algorithms to extract feature
variables from the data, identifying potential nonlinear and strongly coupled relationships
between input and output variables for wind speed prediction. Currently, this method
represents the focal point of research in the field, noted for its high prediction accuracy
and the flexibility of its algorithms. However, it usually requires integration with intelligent
optimization algorithms to optimize the parameters of the prediction model.

In this article, a short-term wind speed prediction (SWSP) method based on tuna swam
optimization-variational mode decomposition-bi-directional long short-term memory
(TSO-VMD-BiLSTM) is proposed by combining the above three methods. This method
employs VMD to decompose the wind speed time series and fully extract feature data. Based
on historical data, a BiLSTM model for SWSP is established, and the secondary traversal
of BiLSTM can capture the influence of weak meteorological parameters on wind speed
prediction. To enhance the accuracy of SWSP, the BiLSTM prediction model by leveraging
its advantages of fast convergence speed, high adaptability, and strong optimization ability
offered by TSO.

The organizational structure of this article is arranged as follows. ‘Acquisition and
processing of short-term wind speed data’ is the collection and processing of short-term
wind speed data, and ‘Basic principles of LSTM, BiLSTM and TSO’ covers the basic
principles of LSTM, BiLSTM, and TSO. In ‘Results’, the SWSP results based on TSO-
VMD-BiLSTM in Example 1 and Example 2 are presented, and the results are fully
discussed. The conclusion of this article is arranged in ‘Conclusions’.

ACQUISITION AND PROCESSING OF SHORT-TERM WIND
SPEED DATA
Wind speed data acquisition
This article takes the open-source wind speed data of a certain wind farm in 2022 as the
research object, and draws the line chart of monthly average wind speed distribution, as
shown in Fig. 1. As can be seen from Fig. 1, the averagemonthly wind speed in January is the
lowest, the average monthly wind speed in May is the highest, and the average wind speed
tends to stabilize in other months. To ensure the representativeness of SWSP, this article
selects specific months to conduct example studies. Specifically, January, characterized by
its lowest average monthly wind speed, is chosen as an example of a valley month. On
the other hand, May, known for its highest average monthly wind speed, is selected as an
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Figure 1 Monthly average wind speed of a wind farm.
Full-size DOI: 10.7717/peerjcs.2032/fig-1

example of a peak month. This approach takes into account the randomness, variability,
and periodicity of wind speed in order to provide a comprehensive analysis of SWSP.
The data for Example 1 is from January 1 to January 31, 2022, and the data for Example
2 is from May 1 to May 31, 2022. The input variables of both data sets are wind speed,
direction, pressure and temperature, and the output variable is wind speed.

Due to various factors such as natural and human factors that may affect the collection
of meteorological data (Dong et al., 2022), occasional incomplete data may occur in the
collected meteorological data. For a small amount of individual missing data, this article
supplements it by using the mean of adjacent dates to ensure data continuity.

Figures 2 and 3 show the wind speed distribution series of the wind farm in January
and May, respectively. It is apparent that the randomness and fluctuation of wind speed
are more obvious in these two wind speed series, which directly leads to an increase in the
difficulty of prediction. Both datasets consist of 2,976 sample sequences, and the training
and testing sets are partitioned in an 8:2 ratio.

Wind speed data processing
Wind speed data collected by wind tower in wind farm is usually affected by external
environment or other uncontrollable factors, which may bring noise information into the
data. Therefore, it is necessary to process the collected historical data in advance to improve
the characteristics of the data.

VMD can decompose wind speed data of the same category and time period, further
obtaining wind speed sub sequences with different frequencies but stronger regularity,
thereby reducing the complexity of wind speed sequences (Wang, Wei & Teng, 2023). Each
component decomposed by VMD has an independent center frequency, thus multiple
sub sequences with different frequencies and corresponding features can be obtained.
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Figure 2 Wind speed distribution sequence diagram of Example 1.
Full-size DOI: 10.7717/peerjcs.2032/fig-2

Figure 3 Wind speed distribution sequence diagram of Example 2.
Full-size DOI: 10.7717/peerjcs.2032/fig-3
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Figure 4 VMD processing process of wind speed data.
Full-size DOI: 10.7717/peerjcs.2032/fig-4

In addition, VMD can handle both stationary and non-stationary sequences (Ye, Che &
Wang, 2022). The process of VMD processing for wind speed data is shown in Fig. 4.

The VMD processing results of Example 1 and Example 2 are shown in Figs. 5 and 6,
respectively. The original wind speed is decomposed into five components (intrinsic mode
function (IMF) 1, IMF2, IMF3, IMF4, IMF5), each component represents a sub sequence
of wind speeds with different frequencies but relatively stable.

In this article, the range standardization method is employed to normalize the original
wind speed data. This method involves converting the sample data values into a range
between 0 and 1. By applying this normalization technique, the wind speed data is
standardized, enabling easier comparison and analysis across different scales or datasets
(Liu et al., 2018). The specific calculation method is shown in Eq. (1):

Xnor =
x−xmin

xmax−xmin
(1)

where x represents the true value of the data; xmax depicts the maximum value of the data;
xmin denotes the minimum value of the data; Xnor stands for the normalized value obtained
after applying the range standardization method.

In order to better compare the predicted value of wind speed with the real value, it is
necessary to perform inverse normalization on the predicted value, and the equation is as
follows:

x =Xnor (xmax−xmin)+xmin. (2)

BASIC PRINCIPLES OF LSTM, BILSTM AND TSO
Basic principles of LSTM
On the basis of recurrent neural networks (RNN), LSTM introduces several components
such as forget gate, input gate, memory unit update and output gate to enhance the
performance of the repetitive hidden layer neuron structure. These additions enable
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Figure 5 VMD processing results for Example 1.
Full-size DOI: 10.7717/peerjcs.2032/fig-5

LSTM to effectively store and remain historical messages and control the convergence
of gradients during training (Fukuoka et al., 2018). The issue of gradient vanishing and
gradient exploding during RNN training is effectively addressed and resolved (Germánico
& Pablo, 2022). The basic structure of LSTM hidden layer neurons is shown in Fig. 7, where
x t refers to the input data, ht represents the output of the recurrent layer, c t denotes the
output of the memory unit, ht−1 signifies the output of the previous recurrent layer, and
c t−1 represents the output of the previous memory unit.
The function of the forget gate is to determine whether to forget information, usually

with a certain probability to control whether to forget the corresponding information. Use
the sigmoid function to process ht−1 and xt , in order to obtain the output ft . Since the
value range of ft is [0, 1], ft also represents the probability of forgetting, and its expression
is:

ft = σ (Wf ht−1+Uf xt +bf ) (3)

where, σ refers to the activation function,Wf andUf represent the coefficients of the linear
relationship, bf is the bias coefficient.

The input gate is mainly accountable for dealing with the input of the current sequence
position, consisting of two components: the output of the first part it with the matching
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Figure 6 VMD processing results for Example 2.
Full-size DOI: 10.7717/peerjcs.2032/fig-6

activation function σ , and the output of the second part at with the activation function
tanh. The expression for the input gate can be represented as follows:

it = σ (Wiht−1+Uixt +bi) (4)

at = tanh(Waht−1+Uaxt +ba). (5)

Wi, Ui, Wa and Ua represent the coefficients of linear relationship; bi and ba stand for the
bias coefficients of the linear relationship.

The cell state ct is affected by the outputs of the forget gate and the input gate. As a result,
ct can be separated into two components: the first component refers to the multiplication
of ct−1 and ft , and the second component involves the product of it and at . ct can be
obtained by adding the two products. For the specific calculation process, see Eq. (6):

ct = ct−1⊗ ft + it ⊗at . (6)

The output gate is accountable for determining the final output information, and the
update of ht is also divided into two components. The first component is ot , which is
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Figure 7 Basic structure of LSTM hidden layer neurons.
Full-size DOI: 10.7717/peerjcs.2032/fig-7

composed of ht−1, xt and activation function σ . The second component consists of the
hidden state ct and the activation function tanh.

ot = σ (Woht−1+Uoxt +bo) (7)

ht = ot ⊗ tanh(ct ) (8)

whereWo andUo are also the coefficients of linear relationship, and bo is the bias coefficient.
Through these four mechanisms, LSTM can selectively control the flow of information,

giving memory cells the ability to preserve long-term information dependencies, while also
preventing internal gradients from being disturbed by external factors during the training
process (Wang et al., 2023).

Basic principles of BiLSTM
BiLSTM is based on classical LSTM by using two layers of independent cell units, namely
forward cell unit and reverse cell unit (He et al., 2023). The model structure is shown in
Fig. 8. In Fig. 8, xt−1, xt and xt+1 represent the inputs at t-1, t and t+1, respectively. ht−1,
ht and ht+1 denote the outputs at t-1, t and t+1 in forward and reverse states, respectively.
yt−1, yt and yt+1 stand for the final outputs at t-1, t and t+1. In the forward state, input
xt−1, xt and xt+1 to get the forward outputs ht−1, ht and ht+1; In the reverse state, input
xt+1, xt and xt−1 to obtain the reverse outputs ht+1, ht and ht−1. Finally, the two sets of
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Figure 8 Model structure diagram of BiLSTM.
Full-size DOI: 10.7717/peerjcs.2032/fig-8

outputs are combined, and finally the outputs yt−1, yt and yt+1 corresponding to the inputs
xt−1, xt and xt+1 are obtained (Gao & Hao, 2023).

The processing method of BiLSTM is the same as that of classical LSTM, but BiLSTM
traverses the input data twice in forward and reverse ways, increasing the training times,
thus improving the wind speed prediction accuracy under micrometeorological parameters
(Liu et al., 2022), and the final prediction result is more accurate than that of a single LSTM
(Zheng, Zhou & Nan, 2023).

Basic principles of TSO
TSO is a new type of intelligent optimization algorithm, which mimics the foraging
behavior of tuna populations to solve the optimization problems. It has simple structure,
few adjustment parameters, fast convergence speed, strong optimization capability and
easy implementation (Guo et al., 2022)

Similar to other intelligent optimization algorithms, tuna populations are typically
randomly initialized within the search space, and the initialization process can be
represented as:

X int
i = rand · (ub− lb)+ lb,i= 1,2,· · ·,np (9)

X int
i represents the initial position of the i-th individual, ub and lb denote the upper

and lower bounds of the search space, respectively. np stands for the number of tuna
populations, and rand represents a random vector uniformly distributed within the range
[0, 1].

Tuna populations usually choose a spiral foraging method. During foraging, tuna
individuals exchange prey information with each other. Due to each individual following
the previous individual to forage, tuna populations can share hunting information in
real-time (Liu, Fan & Li, 2023). Equations (10) and (11) represent the mathematical model
of the spiral foraging strategy.
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X t+1
i =

{
α1 ·

(
X t
best +β ·

∣∣X t
best −X

t
i

∣∣)+α2 ·X t
i ,i= 1

α1 ·
(
X t
best +β ·

∣∣X t
best −X

t
i

∣∣)+α2 ·X t
i−1,i= 2,3,· · ·,np

(10)

β = ebl · cos(2πb) (11)

l = e3cos(((tmax+1/t )−1)π) (12)

X t+1
i represents the i-th individual at the t+1 iteration, X t

i represents the i-th individual at
the t iteration, X t

best stands for the current best individual, α1 and α2 indicate the weight
coefficients that control the movement trend of an individual towards to the best individual
and the previous individual, respectively. t represents the number of current iterations,
tmax stands for the maximum iteration number, and b represents a random number evenly
distributed between 0 and 1.

When the optimal individual of tuna populations is unable to find food, blindly following
it is not conducive to group foraging. Thus, it becomes necessary to generate a random
coordinate within the search space as a reference for the search of tuna populations. This
enables each individual to explore in a broader area and gives TSO the capability to explore
globally (Xue, Liu & Wang, 2022). The specific mathematical model description can be
found in Eq. (13):

X t+1
i =

{
α1 ·

(
X t
rand+β ·

∣∣X t
rand−X

t
i

∣∣)+α2 ·X t
i ,i= 1

α1 ·
(
X t
rand+β ·

∣∣X t
rand−X

t
i

∣∣)+α2 ·X t
i−1,i= 2,3,· · ·,np

(13)

where X t
rand indicates a randomly generated reference point within the search space. Such

heuristic algorithm conducts extensive global exploration in the early stage, and gradually
transitions to more precise local development. Therefore, with the increasing number of
iterations of the algorithm, the reference object of the tuna populations is transformed
from random coordinates to the optimal individual.

Apart from the spiral foraging strategy, tuna populations also adopt another foraging
strategy, called parabolic foraging strategy, which is to form a parabolic shape with prey
as a reference point, and then gradually narrow the search area (Xie, Han & Zhou, 2021).
The probability of the tuna population choosing the two foraging strategies is basically the
same, both are 50%. The mathematical model description of parabolic foraging strategy is
shown by Eqs. (14) and (15):

X t+1
i =

{
X t
best + rand · (X

t
best −X

t
i )+TF ·p

2
· (X t

best −X
t
i ),rand < 0.5

TF ·p2 ·X t
i ,rand ≥ 0.5

(14)

p= (1−
t

tmax
)

t
tmax (15)

TF represents a random number within a value range of [−1, 1].
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Figure 9 SWSP flowchart based on TSO-VMD-BiLSTM.
Full-size DOI: 10.7717/peerjcs.2032/fig-9

RESULTS
According to the basic principles of TSO-VMD-BiLSTM combination method, this article
draws the implementation flow chart of SWSP model based on this method, as shown in
Fig. 9.

Step 1: Import wind speed data set, and perform VMD decomposition and data
processing.

Step 2: Initialize the tuna populations randomly.
Step 3: Record the location of the current tuna populations and calculate the initial

fitness of individual and global.
Step 4: Update the parameters of the TSO, and update the speed and location of the

current tuna populations, then calculate the optimal fitness of the individual and global.
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Table 1 Model parameters of various algorithms.

Algorithm Parameter

α = 2500 K = 5
VMD

DC = 0 tol = 1e−7
np = 8 tmax = 8

TSO
α1 = 0.8 α2 = 0.2
Num_units = 50 Max_iteration = 300
Ilr = 0.005 Lrdp = 200LSTM

Lr df = 0.5

Step 5: Check if the maximum number of iterations has been reached. If not, go back
to the step 4. Otherwise, record the location information and optimal parameters of the
current tuna populations.

Step 6: Assign the optimization results to BiLSTM.
Step 7: Train and predict the short-term wind speed model according to the results of

the previous steps.
Step 8: Carry on the inverse normalization process on the prediction results and output

them.
The model parameters of various algorithms adopted in this article are displayed in

Table 1.
With a view to fully validate the feasibility and effectiveness of the TSO-VMD-BiLSTM

prediction model, this article conducts a comparative study with three models: LSTM,
VMD-LSTM and TSO-VMD-LSTM. The evaluation indicators used include absolute error
(AE), root mean squared error (RMSE) and mean absolute error (MAE), mean absolute
percentage error (MAPE), and specific expressions of evaluation indicators are shown in
Eqs. (16)–(19).

AE =
∣∣yi−yi∣∣ (16)

RMSE =

√√√√1
n

n∑
i=1

(yi−yi)2 (17)

MAE =
1
n

n∑
i=1

∣∣yi−yi∣∣ (18)

MAPE =
1
n

n∑
i=1

∣∣∣∣yi−yiyi

∣∣∣∣×100% (19)

where yi denotes the true value, yi indicates the predicted value, n stands for the number
of samples in the test set.
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Figure 10 Prediction results of the four models in Example 1.
Full-size DOI: 10.7717/peerjcs.2032/fig-10

The verification environment used in this article includesWindows 10 operating system,
Intel Core i7 processor, 4 GB stand-alone graphics card, 16 GB memory environment, and
Matlab 2022 software.

Example 1
The results of the four SWSP models are shown in Fig. 10. Obviously, the predicted value
curve of the TSO-VMD-BILSTM model exhibits a tendency to closely align with the true
value curve, especially in the high wind speed range, that is, the sample sequence 310–480,
and its prediction effect is significantly better than that of the other three models.

Take the true value of wind speed as the horizontal axis and the predicted value of
the four models as the vertical axis, and observe the linearity of the curve (Liu, Yu &
Cang, 2015). The linearity is directly proportional to the prediction accuracy, that is, the
better linearity, the higher prediction accuracy. The linearity curves of the four models in
Example 1 are shown in Fig. 11, from which two pieces of information can be obtained.
(1) Because of the randomness and intermittency of wind speed, the linearity curves show
an unordered state; (2) In the unordered state, the more concentrated the linearity curve
distribution of the prediction model, the higher the accuracy. Obviously, compared to
the other three models, the predictive curve of the TSO-VMD-BiLSTM model has a more
concentrated and compact linear distribution, which means that the model has the best
predictive performance.

Figure 12 shows the AE values of the four prediction models in Example 1. The
fluctuation range of AE values of TSO-VMD-BiLSTM is about [0, 2.52]. Except for the
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Figure 11 Linearity curves of the four models in Example 1.
Full-size DOI: 10.7717/peerjcs.2032/fig-11

Figure 12 AE diagram of the four prediction models in Example 1.
Full-size DOI: 10.7717/peerjcs.2032/fig-12
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Table 2 Results of other evaluation indicators of the four prediction models in Example 1.

Evaluation indicator
Model

RMSE MAE MAPE

LSTM 1.69 1.15 15.27%
VMD-LSTM 1.42 0.98 12.53%
TSO-VMD-LSTM 1.09 0.70 9.50%
TSO-VMD-BILSTM 0.81 0.54 6.89%

high wind speed range, the AE values of the vast majority of test samples are less than 1 m/s,
and the AE values of each test sample are lower than the other three models in the high
wind speed range. Compared to the TSO-VMD-LSTMmodel, the overall fluctuation range
of TSO-VMD-BiLSTM has been reduced, and the prediction results are more accurate than
unidirectional LSTM. This indicates that the introduction of BiLSTM effectively captures
micro meteorological parameters.

The other evaluation indicators of the four prediction models in Example 1 are shown
in Table 2. The RMSE value of TSO-VMD-BiLSTM is only 0.81, which is 0.88, 0.61 and
0.28 lower than that of LSTM, VMD-LSTM and TSO-VMD-LSTM, respectively. MAE is
only 0.54, which is 0.61 less than LSTM, 0.44 less than VMD-LSTM, and 0.16 less than
TSO-VMD-LSTM. MAPE is only 6.89%, which is 8.38%, 5.64% and 2.61% lower than
LSTM, VMD-LSTM and TSO-VMD-LSTM, respectively. Therefore, by integrating various
evaluation indicators, it can be found that the SWSP model based on TSO-VMD-BiLSTM
has the best performance and the highest accuracy.

Example 2
The SWSP results of the four prediction models in Example 2 are shown in Fig. 13. It is
not difficult to see that TSO-VMD-BiLSTM exhibits good tracking performance, and its
predicted value curve demonstrates a closer resemblance to the true value curve compared
to the other three prediction models. In addition, the predicted values closely track and
reflect the changes observed in the true values.

The linearity curves of the four prediction models in Example 2 are shown in Fig. 14,
and we can get the same conclusion as in Example 1. The linearity curve of TSO-VMD-
BiLSTM is the most concentrated and tight distribution, followed by TSO-VMD-LSTM
and VMD-LSTM, and finally LSTM. Therefore, the TSO-VMD-BiLSTM model has the
highest prediction accuracy.

Figure 15 shows the AE graph of the TSO-VMD-BiLSTM prediction model. By
comparing the AE values of each model, it is noticeable that the TSO-VMD-BiLSTM
model has the best prediction performance, the smallest AE value, and the error value is
controlled within 2 m/s. Moreover, the AE values of most test samples are less than 1 m/s.
Similarly, compared with TSO-VMD-LSTM, the overall error fluctuation range has been
decreased, especially at sample sequence 240, BiLSTM still shows good ability to capture
micro meteorological parameters.

Table 3 illustrates the results of other evaluation indicators of the four prediction
models in Example 2. The RMSE of TSO-VMD-BiLSTM is only 0.48, which is 1.07,
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Figure 13 Prediction results of the four models in Example 2.
Full-size DOI: 10.7717/peerjcs.2032/fig-13

Figure 14 Linearity curves of the four models in Example 2.
Full-size DOI: 10.7717/peerjcs.2032/fig-14
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Figure 15 AE diagram of the four prediction models in Example 2.
Full-size DOI: 10.7717/peerjcs.2032/fig-15

Table 3 Results of other evaluation indicators of the four prediction models in Example 2.

Evaluation indicator
Model

RMSE MAE MAPE

LSTM 1.55 1.17 8.54%
VMD-LSTM 0.95 0.74 5.98%
TSO-VMD-LSTM 0.53 0.41 3.34%
TSO-VMD-BILSTM 0.48 0.38 3.17%

0.47 and 0.05 lower than LSTM, VMD-LSTM and TSO-VMD-LSTM, respectively. The
MAE is only 0.38, which is 0.79 less than LSTM, 0.36 less than VMD-LSTM, and 0.03
less than TSO-VMD-LSTM, respectively. MAPE is only 5.98%, which is 5.37%, 2.81%
and 0.17% better than LSTM, VMD-LSTM and TSO-VMD-LSTM, respectively. All in all,
TSO-VMD-BiLSTMpredictionmodel has the highest accuracy and the best performance.

CONCLUSIONS
In this article, a SWSPmodel based on TSO-VMD-BiLSTM is proposed. VMD is employed
to extract features from wind speed data, and then a BiLSTM-based prediction model
is developed, with TSO optimizing the model parameters. Selecting the wind speed data
of a certain wind farm in the valley and peak months of 2022 for example verification,
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and comparing it with wind speed prediction models based on LSTM, VMD-LSTM, and
TSO-VMD-LSTM, leads to the conclusions that follow:

(1) Comparing the validation results of LSTM and VMD-LSTM prediction models, the
effectiveness of the VMD algorithm in extracting significant wind speed characteristics, as
evidenced by improvements across all evaluation metrics including AE, RMSE, MAE, and
MAPE.

(2) The assessment of VMD-LSTM and TSO-VMD-LSTM models demonstrates the
parameter optimization effect of TSO algorithm is significant, accompanied by a decrease
in the data values of evaluation indicators.

(3) Comparing the validation results of TSO-VMD-LSTM and TSO-VMD-BiLSTM
prediction models, it illustrates the superior ability of the BiLSTM algorithm to capture
micrometeorological parameters, achieving the highest accuracy among the compared
models.
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