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ABSTRACT
In the contemporary realm of athletic training, integrating technology is a pivotal
determinant for augmenting athlete performance and refining training outcomes.
The amalgamation of multi-target visual modeling with sensor technology imparts an
enriched stratum of sports training data. Subsequently, the sensor scale-space transfor-
mation accentuates the comprehensive apprehension of data across diverse scales and
angles. Hence, within this manuscript, addressing the multi-target tracking intricacies
during sports training and competition, we posit a framework that amalgamates the
shortest path elucidated by the K shortest paths (KSP) methodology with the pose
information emanating from the Alphapose network. This framework recognizes the
athlete’s shortest path through a convolutional neural network and KSP, followed by
the amalgamation of these divergent data sources. The fusion unfolds by incorporating
the athlete’s pose information grounded in Alphapose, culminating in a comprehensive
integration of the two data streams. Consequently, synthesizing alpha-derived athlete
information precipitates the ultimate amalgamation of the two information streams.
The accomplished fusion, premised on Alphapose, forms the bedrock for multi-target
tracking, culminating in a feature-rich synthesis. Empirical results reveal that after
integrating these information streams, theMultiple Object Tracking Accuracy (MOTA)
index and Global Multiple Object Tracking Accuracy (GMOTA) index surpass those of
the solitary information trackingmethods, thereby furnishing a technical underpinning
and a foundation for information fusion within prospective sports training analysis
systems.

Subjects Algorithms and Analysis of Algorithms, Data Science, Neural Networks
Keywords Multiple objects tracking, Physical training, KSP, Feature fusion, Alphapose

INTRODUCTION
In the era of burgeoning network technology and heightened societal attention towards
well-being, sports videos assume an increasingly paramount role in our daily existence.
This burgeoning trend not only permeates the realm of entertainment but also serves as a
linchpin in propelling the evolution of sports. Proficiently scrutinizing and comprehending
these sports videos enhances the audience’s viewing experience and furnishes athletes and
coaches with profound insights during training and competitions, catalyzing innovation
and fortification across the sports industry. The discernment and estimation of athletes’
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presence and poses in sports videos emerge as the bedrock for attaining comprehensive
analysis and comprehension of video content (Wang & Du, 2022). By leveraging deep
learning methodologies, athletes’ motions and stances can be discerned and encapsulated
with remarkable precision, empowering coaches to scrutinize technical nuances with
heightened granularity. Consequently, this facilitates the provision of more meticulous
guidance and training counsel. This personalized analysis proves advantageous not solely
to professional athletes but also extends its benefits to amateurs, fostering refinement in
their sports proficiency and engendering heightened participation in sports among the
broader populace (Nagai, Akashi & Sugino, 2022).

In sports video analysis and comprehension, the salient role of multi-target visual
tracking technology becomes indisputable. This technological facet facilitates precise
tracking ofmultiple athletes or objects within a video, thereby endowing sports analysis with
a more expansive and profound dataset. Among its applications, athlete trajectory analysis
stands out, enabling the ability to trace athletes’ movement paths on the field. It equips
coaches with pivotal insights into movement patterns and strategic applications (Zou et al.,
2023). Furthermore, the team’s tactical analysis, real-time sports condition monitoring,
and competition data analysis derive significant advantages from integrating multi-target
visual tracking technology. The deployment of this technology not only amplifies the
real-time surveillance of games and training sessions but also furnishes robust support for
the burgeoning sports industry and the in-depth assessment of athletes’ performances. The
deep learning models for target detection and tracking, exemplified by You Only Look
Once (YOLO) and Faster recombinant convolutional neural network (R-CNN), exhibit
adeptness in inefficient target recognition; in parallel, conventional multi-target tracking
algorithms like simple online and realtime tracking (SORT) and multiple object tracking
(MOT) execute target association through the amalgamation of motion models and
appearance features. Complementary methodologies, such as multi-camera cooperative
tracking and deep association networks, are pivotal in refining accuracy and fortifying
robustness (Kaur & Singh, 2022). Through multi-target tracking and motion analysis, we
can better analyze the state of athletes and evaluate their performance on the field through
trajectory analysis of target objects. However, despite the mature development of deep
learning object detection methods, the selection of object detection methods still needs to
be investigated due to the difficulty of camera placement and related tasks.

In the realm of multi-target tracking, conventional Kalman filtering and extended
Kalman filtering exhibit commendable performance in addressing linear systems,
characterized by the merits of low computational overhead and real-time efficiency,
rendering them suitable for scenarios governed by simplistic motion models. Conversely,
particle filtering methods, harnessing random sampling, adeptly navigate nonlinear and
non-Gaussian motion models, showcasing heightened flexibility in the face of target
motion uncertainty and applicability to intricate tracking scenarios. Correlation filter
methods leverage the Fourier domain for target detection and tracking, boasting efficient
computational prowess and compatibility with scenarios demanding both natural high
real-time capability and precision (Balakrishna & Mustapha, 2023). Deep learningmethods
such as convolutional neural networks (CNN) and recurrent neural networks (RNN) have
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achieved significant success in object detection and tracking, adapting to more complex
scenarios by learning the semantic features and motion patterns of targets. Graph-based
methods can effectively model the correlation between targets.

In contrast, trajectory graph optimization methods improve the accuracy of target
trajectories through globally consistent trajectory optimization, making them particularly
suitable for long-term target tracking (Wang et al., 2023). On this basis, introducing the
K shortest paths (KSP) algorithm further optimizes the dynamic correlation between
targets by finding multiple shortest paths, significantly enhancing the flexibility and
robustness of multi-target tracking. Applying the KSP algorithm deals with occlusion and
complex interactive scenes. It improves tracking accuracy and reliability by considering
multiple possible trajectories, providing a powerful tool for multi-target tracking in
complex environments. Hence, a judicious amalgamation of contemporary deep learning
techniques, integrating image information and fusing target detection with positional
data, emerges as the optimal strategy for augmenting the efficacy of target detection.
In this manuscript, we posit a network framework predicated on the shortest path KSP
method and the fusion of posture information, orchestrating an optimal solution for the
multi-target tracking problem inherent in sports training. The distinctive contributions of
this work are delineated as follows:

1. Leveraging sports video data, the KSP method is employed for the shortest path
recognition of athletes, culminating in the realization of path recognition throughout the
target tracking process.

2. Employing Alphapose, extracting athletes’ postural features enhances information
usability—subsequently, posture and path information fusion consummated at the
decision-making level.

3. Grounded in the combined path and attitude information, the high-precision tracking
of athletes in sports videos is actualized. Rigorous testing under diverse backgrounds
substantiates the significant enhancement in target tracking performance after information
fusion.

The rest of the article is organized as follows: ‘Related works’ introduces the related work
for object detection and multi-target tracking. ‘Methodology’ establishes the proposed
framework. ‘Experiment results and analysis’ gives the experiment details and results, and
the conclusion is drawn at the end.

RELATED WORKS
Considering the demand for video information training and analysis in sports systems,
it mainly includes two processes. Firstly, it is necessary to perform target detection on
athletes, that is, confirm the current target and then perform motion analysis on the
detected target to better understand athletes’ training and competition status. Therefore,
in this article, we first analyze the current situation of object detection and then analyze its
detailed application in sports training.
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Target detection
Target detection is a foundational pursuit within computer vision, garnering substantial
attention in research endeavors. Before the advent of deep neural networks, target detection
algorithms primarily relied on extracting manual image features for subsequent feature
matching. Esteemed manual features such as SIFT and SURF yielded commendable results.
Many initiatives sought to tailor diverse manual features for target detection, aligning
with the specific characteristics of the target; examples include V-J detection (Viola &
Jones, 2001), HOG detection (Dalal & Triggs, 2005) algorithms, and the like. In recent
years, propelled by the evolution of deep learning, target detection algorithms founded
on convolutional neural networks have ascended to prominence. Concurrently, the
introduction of large-scale universal target detection datasets has furnished indispensable
data support for convolutional neural network-based target detection algorithms. Many
efforts have delved into diverse convolutional neural network structures to realize effective
target detection. The YOLO series (Redmon & Farhadi, 2017) perceives detection as a
regression problem, seamlessly predicting target categories and locations end-to-end
through convolutional neural networks. The Faster-RCNN series (Girshick, 2015) enhances
detection accuracy by bifurcating target detection into two phases: initially extracting
foreground frames potentially containing the target, followed by detailed classification and
regression. Lin et al. (2017) optimize the detection performance of densely distributed small
targets by introducing focal loss. Xiao & Jae Lee (2018) elevate video detection performance
by incorporating a sequence of spatiotemporal memory stores. Zhu et al. (0000) harness
optical flow to capture motion information in videos, seamlessly integrating it with feature
maps in CNN to achieve end-to-end video detection. Zhang & Wang (2016) delve into
stability in video detection, mitigating detection frame jitter by incorporating a tracking
strategy. Yin & Liu (2017), grounded in the concept of multi-cascading, decompose target
detection into multiple classification and regression problems, achieving precise face
detection. Liu et al. (2019) discard the conventional window detection approach, opting to
directly predict the body center and dimensions, thereby realizing pedestrian detection.

Posture estimation for sports movement
As evident from the current state of target detection research, the continuous evolution
of deep learning technology has led to the maturation of single-target monitoring
research. However, a notable gap exists in sports and training as the research landscape
predominantly addresses single-target tracking scenarios. Hence, there is a pressing need
to convene seminars addressing the intricacies of multi-target tracking. The primary
mission of Multiple Object Tracking (MOT) revolves around identifying the positions of
all targets of interest within an image sequence in each frame while preserving their identity
information. These targets include people, vehicles, animals, and other moving objects.
Notably, pedestrian tracking has been the most explored domain, finding applications in
intelligent surveillance and autonomous driving. Yet, the challenges in sports scenarios,
marked by dynamic and unpredictable player movements, render multi-target tracking
more complex than pedestrian tracking. Yu et al. (2003) introduced a ball detection
method grounded in trajectory analysis. This method initiates by detecting multiple
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candidate targets during the detection phase, followed by trajectory analysis to ascertain
the ball’s movement trajectory. Liang et al. (2005) proposed a comprehensive ball-tracking
algorithm that amalgamates detection and tracking. The algorithm tracks the ball via
Kalman filtering by detecting candidate objects and computing the optimal path using
the Viterbi algorithm. It determines whether the tracker has lost the ball by evaluating
the tracked region and repeating the detection and tracking process. Acknowledging
the challenges of adapting single-camera-based tracking to prolonged ball occlusion,
scholars have proffered various multi-camera tracking schemes (Yoon, Song & Jeon, 2018).
Ren et al. (2009) proposed a method based on multiple stationary cameras for football
games, leveraging the characteristics of the ball’s size, appearance, and moving speed. The
approach utilizes the Kalman filtering method to derive the ball trajectory, subsequently
fusing trajectory segments from different viewpoints into the 3D trajectory of the ball.
To address occlusion challenges within a multi-camera framework, Wang et al. (2014)
presented a ball-tracking method that considers the dynamic relationship between players
and the ball. Ivankovic et al. (2012) employed the AdaBoost algorithm for player detection
in football and basketball scenarios, utilizing hand-designed directional gradient histogram
HOG features and Haar features. While effective for pedestrian detection, these methods
exhibit limitations in player detection tasks due to the large posture variations and
significant occlusions in sports videos. It is attributed to the interference and reduced
effectiveness of traditional manual features in facing such challenges. In recent years,
the ascendancy of deep learning has steered the focus toward player detection methods
based on convolutional neural networks. For instance, Lu et al. (2018) proposed a player
detection method addressing issues such as substantial changes in the player body and
scale induced by camera movement, applicable across diverse and complex sports scenes,
including basketball, football, and ice hockey.

The preceding research underscores that integrating deep learning and diverse target
detectionmethodologies facilitates a nuanced exploration of sports competition or training
information within sports training and video data analysis. This approach enables in-depth
performance analysis of individual players, imparting significant value to enhancing
athletes’ skill levels. Notably, using deep convolution, multimetric vision, and other
advanced methods in target detection proves highly effective for addressing the challenges
associated with multi-target detection tasks. The amalgamation of multidimensional data
becomes imperative given the importance of positional status, along with players’ nuanced
body shapes and clothing information during sports training. In this context, realizing
multi-source data fusion is a pivotal strategy for achieving enhanced target detection
capabilities.

METHODOLOGY
After analyzing the current application of deep learning technology in athlete training
research, this article intends to integrate athlete’s path information and pose information
to complete multi-objective tracking tasks and improve the effectiveness of athlete target
tracking.
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Figure 1 The one dimensional node model.
Full-size DOI: 10.7717/peerjcs.2030/fig-1

KSP-based multi-target tracking
The k-shortest-path algorithm (Maidana et al., 2024), a venerable concept in graph theory,
is fundamentally employed to identify the first K paths in a graph representing the shortest
routes between specified start and end points. The applicability of the KSP algorithm to
addressing the multi-objective tracking problem stems from its capacity to model the
situation as a linear programming challenge. That facilitates the construction of a network
flow graph based on temporal and spatial parameters, subtly transforming the problem
into a graph optimization endeavor to identify the shortest paths within the spatiotemporal
graph.

The KSP tracking algorithm holds a distinctive advantage in its simplicity of inputs,
encompassing solely the positional coordinate points of tracked targets and their
corresponding features. Effectively transforming the multi-target tracking problem into
an integer programming challenge, the algorithm operates under the assumption that
the current video stream under consideration for tracking comprises T frames. Each
frame, in turn, detects K candidate targets, represented as nodes in the algorithm. The
inter-frame relationships between candidate targets are established as edges based on
distance constraints, culminating in the depiction of a one-dimensional node model graph,
as illustrated in Fig. 1.

Each node variable ‘n’ signifies the number of target objects presently situated at that
node, and the weight of each edge indicates the flow of ‘f’ targets through that particular
connection. Building upon this foundation and taking into account the two-dimensional
nature of the camera data, we can posit that the probability distribution for the player’s

Hu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2030 6/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2030/fig-1
http://dx.doi.org/10.7717/peerj-cs.2030


position on the pitch plane is as follows:

ρ
t
i =P

(
Xt
i = 1|It

)
(1)

where ρti denotes the position of the course plane, i is the probability that a player is present
at frame t, The likelihood that a player is present at frame 1, Xt

i is a random variable, and
Xt
i = 1 is a random variable, then it means that the player exists at t player exists at the

time; otherwise it does not exist, and It is the probability that a player exists at the time of
frame t frame corresponds to the court plan.

In the realm of multi-target tracking, the overarching objective resides in the
identification of numerous tracking trajectories. Facilitating these trajectories’
interconnection becomes paramount, optimizing the likelihood of capturing players’
movements. Building upon this premise and leveraging the extant probabilities, the
challenge of multi-objective tracking transforms into a linear programming paradigm.

max
T∑
i=1

G∑
i=1

log
(
ρti

1−ρti

)
·

∑
j∈N(i)

fIi,j (2)

Its constraint is:

∀t,i,fti,j∈N(i)≥ 0 (3)

∀t,i,
∑
j∈N(i)

fti,j≤ 1 (4)

∀t,i,
∑
j∈N(i)

fIi,j−
∑
k∈N(j)

ft−1j,k ≤ 0 (5)

where T denotes the number of frames in a batch, G denotes the number of nodes in the
network flow graph, andN(i) represents node I, the neighborhood of a node. J is one of the
neighbors of i, one of the neighboring nodes of the node, the fIi,j is one of the neighboring
nodes of t at the moment of flow from node i to the adjacent node j at the time of flow
from the node to the neighboring node, and ρti denotes the position of the pitch plane i at
the node in the first t The probability that a player is present at the frame. In addition, the
three constraints indicate that the number of network flows is all non-negative, and the
number of network flows between two positions is 0 or 1. In this solution process, since
the constraint matrix has the property of unimodularity, it can be solved by the above
conditions using the relaxation linear programming method and converge to the integer
solution quickly.

The decision to employ the KSP methodology and AlphaPose network is underscored
by their exceptional accuracy, robustness, scalability, and state-of-the-art performance
in human pose estimation tasks. Their combination offers a reliable solution capable
of handling diverse environmental conditions, large datasets, and real-time processing
requirements. Furthermore, their open-source availability fosters accessibility and
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Figure 2 The framework for the Alphabet.
Full-size DOI: 10.7717/peerjcs.2030/fig-2

collaboration within the research community, driving further innovation. This selection
ensures the success of specific projects and contributes to advancing human-centric
technologies. Overall, the choice of the KSPmethodology and AlphaPose network reflects a
commitment to excellence, innovation, and impact in human pose estimation and beyond.

Alphabet-based multiplayer attitude estimation
Human pose estimation methodologies can be dichotomously categorized based on the
sequencing of their procedural steps: top-down and bottom-up recognition methods. The
top-down approach involves initially pinpointing the precise localization of each individual
in the image, followed by the subsequent recognition of crucial points for individual
persons. This method’s critical key point recognition accuracy is often contingent upon the
precision of human body localization. Conversely, the bottom-upmethodology first detects
all vital points in the image, then groups and aggregates these key points to delineate each
individual. Although this method exhibits a faster recognition speed, its accuracy tends
to be lower than the aforementioned top-down approach. The AlphaPose human pose
estimation model employed in this study (Halleck et al., 2023) adheres to the fundamental
framework of the RegionalMulti-Person Pose Estimation (RMPE) proposed by the research
team. Notably, this model iteration excels in the real-time estimation of multi-person poses
while ensuring commendable recognition outcomes. The comprehensive flow of the entire
framework is elucidated in Fig. 2.

AlphaPose harnesses convolutional neural networks (CNNs) to primarily extract image
features, employing multiple layers of convolution, activation functions (e.g., ReLU),
and pooling layers. This process maps the image into the feature space, facilitating the
discernment of human vital points. Each key point’s location is determined by generating
a corresponding heat map, with localization further refined using local maxima. Initially,
the input image undergoes scrutiny by the human detector to delineate the target region of
the human body. The YOLOv5 module, renowned for its current popularity and accuracy,
is employed within the human detector module. Subsequently, the body region frame is
directed SSTN into the SSTN, including the STN, SPPE, and SDTN. Finally, all candidate
poses are subjected to the P-NMS (Parametric Pose Non-Maximum-Suppression) module.
A traversal of predicted candidate poses is necessary within the P-NMS module (Sabo et
al., 2023). Poses with confidence scores surpassing a predefined threshold are selected, and
the pose with the highest confidence is designated as the reference pose. Subsequently,
the elimination criteria are applied, involving the calculation of distances between the
remaining poses and the reference pose. Alphapose provides significant advantages in
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target tracking through attitude estimation, mainly reflected in its high accuracy and
strong robustness. By accurately identifying human key points, Alphapose can accurately
track multiple targets in complex environments, maintaining stability even in occlusion
or rapid motion. In addition, its sensitive ability to capture dynamic postures provides
rich information for understanding target behavior, which is particularly important in
application scenarios such as sports training and monitoring. The integrated Alphapose
tracking system can enhance the coherence of target recognition and tracking through
attitude information, improving overall tracking performance. Therefore, Alphapose
enhances the accuracy of multi-target tracking and provides a powerful tool for in-depth
analysis of target behavior.

When distances fall below the threshold, the corresponding poses are eliminated. This
process iterates until all poses conform to the threshold criteria (Zwölfer et al., 2023). The
elimination criterion is defined by Eq. (6):

f
(
Pi,Pj|λ,η

)
= 1

(
d
(
Pi,Pj|λ,λ

)
≤ η

)
(6)

where d() calculates the spatial distance of the two poses and the weighted distance of the
pose distances. If the distance is less than or equal to the threshold η, then it represents the
reference gesture Pi and the pose Pj are too similar, and the gestures need to be eliminated.
The formula for calculating the distance which is shown in Eq. (7):

d
(
Pi,Pj|λ

)
=KSim

(
Pi,Pj|σ1

)
+λHSim

(
Pi,Pj|σ2

)
(7)

where λ={ σ1, σ2, λ}, KSim represents the stance distance, Hsim represents the spatial
distance. Assuming that Bi is the predicted bounding box of P i, we can compute the pose
distance by using Eq. (8):

Kim
(
Pi,Pj|σ1

)
=


∑
n

tanh
cni
σ1

tanh
cnj
σ1

if knj is within B
(
kni
)

0 otherwise
(8)

The spatial distance is used to calculate the spatial similarity of the distance of the
corresponding feature information between two poses, which can be related by Eq. (9).

HSim
(
Pi,Pj|σ2

)
=

∑
n

exp

−
(
kni −k

n
j

)2
σ2

. (9)

Object tracking framework fusing KSP and position estimation
information
Upon concluding the extraction of attitude information and shortest path details in the
multi-target tracking process, we operationalize the multi-target tracking objective within
the sports training regimen. That is achieved by utilizing both the shortest path information
and position constraint data.

The framework begins by utilizing YOLO to delineate target divisions accurately.
Subsequently, AlphaPose is employed to compute the joints of all individuals in the
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diagram. Joint matching is conducted, resulting in a diverse array of human body postures
derived from the joints. Athlete posture matching is executed based on the athlete’s
detection frame, eliminating extraneous human body postures. This process ultimately
yields the posture estimation of athletes within the diagram.

Adopting a bottom-up approach, which returns to the joints of the entire graph before
assembling different human postures, mitigates the issue of missed detections stemming
from people aggregation. This approach also obviates the need for repetitive calls to the
single-person posture detector.

Simultaneously, optimal path selection is achieved through the KSP method based on
recognized targets. Features such as jersey and player number are extracted using the ReID
network (Zhong et al., 2018), known for its prowess in discerning the same individual across
diverse scenes. The ReID network’s probability is computed through the Probability of
Model (POM) method, prioritizing consideration of model classification error probability
over mere accuracy. Inputs for the KSP method are derived from these features, followed
by subsequent shortest path computation and heatmap generation. Finally, the generated
shortest path information and bitmap details are fused at the decision level, creating new
feature vectors that effectively fulfill the multi-target tracking objective.

The convergence process seamlessly integrates data from the CNN and the KSP
method before incorporating alpha-derived data. Initially, the CNN extracts features
such as jersey and player number, while the KSP method facilitates optimal path
selection based on recognized targets. These features converge as inputs for subsequent
shortest-path computation, ensuring paths encapsulate spatial relationships and target-
oriented trajectories. Following this convergence, Alphapose-derived data is seamlessly
integrated. AlphaPose network computes the joints of all individuals, providing crucial
pose information. This data enriches generated paths with context for human movements
(Fleuret et al., 2007). By integrating Alphapose-derived pose information with CNN and
KSP-established paths, the convergence process achieves a comprehensive understanding of
the ethene, accounting for spatial and kinematic aspects of human activity. This transition
ensures a holistic approach to multi-target tracking, leveraging each component’s strengths
to enhance accuracy and reliability. The smooth integration of CNN, KSP, and Alphapose
data streamlines the convergence process, improving understanding and application across
various domains, from surveillance to sports analytics.

Integrating pose information with shortest path computation early in the framework
development establishes a vital connection between these components, enhancing overall
performance. This integration ensures paths are optimal and contextually relevant to
human postures, improving tracking accuracy. Considering the spatial constraints imposed
by poses, the system generates paths aligning closely with actual movements, reducing false
positives and erroneous paths.

EXPERIMENT RESULTS AND ANALYSIS
Following the establishment of the model, we meticulously curated pertinent datasets
for model validation. A prudent data elimination process was executed during dataset
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Figure 3 The framework for the proposedMultiple Object Tracking system for physical training.
Full-size DOI: 10.7717/peerjcs.2030/fig-3

Table 1 The specific information for the employed dataset.

Dataset Information

APIDIS (Fleuret et al., 2007) Simultaneous acquisition by seven cameras, five of which
are mounted on the pitch surface and two of which are
fisheye cameras mounted on the top of the pitch.

Volleyball (De Vleeschouwer et al., 2008) A total of 55 different volleyball videos were collected in
the dataset, and 4,830 of these video frames were annotated
with athletes with more than 50,000 edges.

SPIROUDOME (Ibrahim et al., 2016) Unlike common broadcast tournaments, it is fixed-view
basketball surveillance video. The dataset provides rich edge
labelling for supervised training.

selection, model training, and subsequent data selection and experimentation phases to
align with the algorithm’s practical applicability. Subsequent subsections will expound
upon comprehensive details regarding the evaluation indices used in our experiments.

Experiment setup
Upon the completion of the model construction, as depicted in Fig. 3, the ensuing phase
involves validating the model across diverse datasets. This study focuses on data sourced
from three distinct sports for comprehensive data analysis. The datasets originate from
videos captured during sports events and institutions associated with sports training.
Specific details about these datasets are elucidated in Table 1.

Upon finalizing the selection and construction of pertinent data, our objective shifts
toward assessing and comparing the model’s efficacy. For this purpose, we opt for
commonly employed evaluation metrics in multi-target tracking. In this article, our
evaluation hinges on multiple object tracking accuracy (MOTA) and global multiple object
tracking accuracy (GMOTA), renowned metrics for gauging the accuracy and effectiveness
of algorithms in detecting and tracking multiple objects within video sequences. The
computation of MOTA is delineated by Eq. (10):

MOTA = 1−
∑

t
(
c1 · fnt+c2 · fpt+c3 · idswt

)∑
tgt

(10)

fpt, and where fnt,fpt,idswt are the number of t the number of missed detections, the
number of false detections, and the number of identity exchanges in each trajectory at
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Table 2 The experiment environment.

Experiment environment Specifications

CPU i7-11390H
GPUs GTX3060
IDE Pycharm
Framework Pytorch

a time, respectively, and gt denotes the true value, and c1,c2,c3 is a constant. To better
evaluate the impact of the number of identity switches on tracking performance, Shitrit
et al. (2013) introduced the Global Identity Switches (gidsw) metric instead of Identity
Switches (idsw) to measure the number of identity switches (De Vleeschouwer et al., 2008).

GMOTA = 1−
∑

t
(
c1 · fnt+c2 · fpt+c3 ·gidswt

)∑
tgt

. (11)

To effectively illustrate the efficacy of KSP shortest path information and Alphapose
information based on KSP in multi-target visual model training, we conducted target
analysis using data solely under each modality. Building upon this, we selected two
prominent methods, T-MCNF (Ibrahim et al., 2016) andMOT-CE (Shitrit et al., 2013), for
comparative assessment. The T-MCNF algorithm conceptualizes the multi-target tracking
problem as a multi-network streaming issue, leveraging the KSP-based methodology. This
approach models the situation as a trajectory-based, multi-network flow problem, and To
achieve this, the KSP algorithm (Ghedia, Vithalani & Kothari, 2017) is executed twice. The
first iteration generates multiple trajectory segments, while the second iteration segregates
these segments into distinct groups based on their appearance characteristics. Subsequently,
these trajectory segments are treated as nodes to construct multiple network flow graphs,
and the KSP algorithm is once again applied to derive the final trajectories. On the other
hand, MOT-CE is primarily designed to track rigid body targets in three-dimensional
space. This method relies on geometric position information rather than appearance
characteristics for tracking.

Experiment result and analysis
After finalizing the dataset selection and specifying the comparison methods and metrics,
we proceeded with the experimental phase. The experimental settings for this article are
outlined in Table 2:

On this basis, we carried out the calculation of the indicators under the three datasets,
and the results in APIDIS are shown in Fig. 4.

In Fig. 4, it is evident that the proposed method attains a MOTA of 0.81 and a GMOTA
of 0.64 under its evaluation indices. While not surpassing the 0.9 tracking threshold, these
results are deemed acceptable, particularly in addressing the challenges posed by complex
environments andmultiplayer scenarios. Notably, the overall performance surpasses hybrid
multi-target tracking methods at this stage. Figure 5 and 6 illustrate the test results under
the volleyball and soccer datasets, respectively.

In Figs. 5 and 6, it is apparent that the model, leveraging KSP shortest path optimization
and Pose information convergence as proposed, attains optimal results under both the
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 Figure 4 The comparison result of MOTA and GMOTA on APIDIS dataset.
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 Figure 5 The comparison result of MOTA and GMOTA on Volleyball dataset.
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volleyball and soccer datasets. Specifically, the MOTA scores are 0.83 and 0.85 for the
two datasets. These results outperformed the method without feature fusion and the
current-stage T-MCNF and MOT-CE methods.

We computed the average metrics across the five methods using three datasets to
compare model performance comprehensively. The summarized results are presented in
Fig. 7.

The average results depicted in Fig. 7 demonstrate that the approach employed in
this article consistently outperforms the other methods across all three datasets; this
substantiates that incorporating the feature fusion method can significantly enhance the
model’s performance.

The ablation experiment
Upon concluding the evaluation of model metrics across diverse datasets, we proceeded
with further ablation experiments to assess the model’s performance. Considering the
potential impact of color variations in application scenarios, this article scrutinizes the
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results under different color information settings. The outcomes of these experiments are
illustrated in Fig. 8.

Figure 8 shows that the model’s MOTA and GMOTA metrics improve when different
proportions of color information are provided. Leveraging color information augmentation
proves beneficial, mainly due to the distinctive color variations in the attire worn by various
teams during the game. This augmentation significantly enhances the trajectory-tracking
performance of the model.

Furthermore, this article compares the tracking performance between the single and
convergence models under varying training iterations. The results of this comparison are
presented in Fig. 9.

Figure 9 shows that the MOTA metrics notably improve after feature fusion across
all three datasets. The performance is notably superior to the KSP method alone, and
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Figure 9 The ablation experiment on the three datasets with theMOTA results.
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the approach is based solely on attitude information. Additionally, when considering the
overall data distribution of the model, the fusion of information enhances robustness,
leading to more excellent stability in overall performance. The MOTA results showcase
consistent improvement across different numbers of training iterations.

DISCUSSION
This article delves into multi-target tracking and analysis during sports training, primarily
focusing on migrating general target detection and human posture estimation algorithms
from image-based applications to sports videos. The aim is to enhance algorithmic model
reusability, minimize annotation costs, and reduce training expenses associated with model
migration to newdomains. Simultaneously, the characteristics of sports videos are leveraged
to improve target detection and human pose estimation performance. Traditional feature
extraction is followed by applying the KSP method for shortest path recognition, achieving
path feature extraction. Subsequently, the Alphapose framework effectively completes
posture estimation, facilitating identifying identity information during sports training.
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Integration of sports path information and human body position information enhances
multi-target recognition accuracy, surpassing the performance of traditional single KSP
and alpha pose methods. Comparisons with the T-MCNF and MOT-CE methods using
single image features reveal that information fusion achieves higher accuracy in target
tracking, reducing computational burdens in simpler networks. Beyond target tracking,
integrating deep learning with visual sensors in sports training opens avenues for real-time
monitoring and evaluation of athletes’ movement quality. Movement recognition and
posture estimation enable coaches to gain insights into athlete performance and offer
personalized guidance.

Moreover, in this article, several factors influenced the decision not to explore the
experimental scenario of the Generalized Multi-Object Tracking Accuracy (GMOTA)
metric under different indicator weights. Firstly, the focus of our research was to
demonstrate the effectiveness of our fusion approach in enhancing multi-target tracking,
primarily through improvements in robustness and accuracy. The primary aim was to
validate the hypothesis that integrating KSP tracking with Alphapose could lead to superior
performance inmulti-target tracking tasks, particularly in sports video analysis. Combining
deep learning with biosignal processing facilitates physiological state monitoring and
customized training advice based on sensor information like heart rate and motion
tracking.

Beyond the target tracking facilitated by image-informed visual sensors, this article
envisions a broader scope of tasks achievable through target tracking in sports training—
real-time monitoring and evaluation of athletes’ movement quality enabled by movement
recognition and posture estimation. Employing deep learning for athlete behavior analysis
allows coaches to gain deeper insights into athletes’ training performance and deliver
personalized guidance. Integrating biosignal processing with deep learning facilitates
the analysis of sensor information, including heart rate and motion tracking, to monitor
athletes’ physiological states. This information is then leveraged to offer customized training
advice, contributing to a holistic understanding of an athlete’s well-being. Combining deep
learning and sensor information extends to athlete positioning, trajectory analysis, and
individualized training. Video analysis and scene understanding, powered by deep learning,
provide coaches with a comprehensive understanding of the overall context of a game or
training session. The fusion of deep learning with multiple sensor inputs delivers thorough
and accurate data analysis for sports training, empowering coaches to develop more
scientific and personalized training plans tailored to each athlete’s unique needs and
capabilities.

CONCLUSION
This study explored the intricacies of analyzing athlete behavior and the complexities
of multi-target tracking within sports training environments. Our research introduced
a novel multi-target tracking approach that integrates KSP tracking with the advanced
pose estimation capabilities of Alphapose. This fusion strategy elevates the precision and
reliability of tracking multiple targets in sports video data. Our empirical evaluations,

Hu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2030 16/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2030


conducted across various datasets, including the challenging APIDIS, have demonstrated
that this integrative model significantly enhances robustness and stability by utilizing
multi-feature information fusion. By adopting a decision-level fusion strategy, we achieved
noteworthy improvements in the critical performancemetrics ofMOTA andGMOTA, with
average scores reaching 0.83 and 0.66 across the datasets examined. These scores notably
surpass those achieved bymethods relying on single types of information and those by other
state-of-the-art approaches like T-MCNF and MOT-CE. The success of our fusion-based
model in advancing MOTA and GMOTA metrics underscores its potential to significantly
impact the future development of sports training systems, offering methodological insights
and robust technical frameworks for enhancing multi-target tracking efficacy. In future
research endeavors, we aspire to broaden the data processing modalities of the current
model by incorporating multimodal sensors such as infrared and inertial sensors. This
expansion aims to achieve more comprehensive data analysis and enhance the model’s
robustness from multiple perspectives. Additionally, we strive to extend the scope of data
coverage and introduce more diverse motions for more accurate and nuanced multi-target
tracking and evaluation analysis.
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