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ABSTRACT
This article explores detecting and categorizing network traffic data using machine-
learning (ML) methods, specifically focusing on the Domain Name Server (DNS)
protocol. DNS has long been susceptible to various security flaws, frequently
exploited over time, making DNS abuse a major concern in cybersecurity. Despite
advanced attack, tactics employed by attackers to steal data in real-time, ensuring
security and privacy for DNS queries and answers remains challenging. The evolving
landscape of internet services has allowed attackers to launch cyber-attacks on
computer networks. However, implementing Secure Socket Layer (SSL)-encrypted
Hyper Text Transfer Protocol (HTTP) transmission, known as HTTPS, has
significantly reduced DNS-based assaults. To further enhance security and mitigate
threats like man-in-the-middle attacks, the security community has developed the
concept of DNS over HTTPS (DoH). DoH aims to combat the eavesdropping and
tampering of DNS data during communication. This study employs a ML-based
classification approach on a dataset for traffic analysis. The AdaBoost model
effectively classified Malicious and Non-DoH traffic, with accuracies of 75% and 73%
for DoH traffic. The support vector classification model with a Radial Basis Function
(SVC-RBF) achieved a 76% accuracy in classifying between malicious and non-DoH
traffic. The quadratic discriminant analysis (QDA) model achieved 99% accuracy in
classifying malicious traffic and 98% in classifying non-DoH traffic.

Subjects Artificial Intelligence, Computer Networks and Communications, Cryptography
Keywords Cloud security, Traffic classification, Intelligent model, Machine learning, SDN

INTRODUCTION
The unreliable delivery protocol User-Datagram-Protocol (UDP) was used to create the
Domain Name System (DNS). The security provided by DNS architecture met all of the
Internet’s requirements. This method makes the Internet connection chain susceptible to
today’s network protocols since it provides names to address mapping services. New
distant weapons, such as cyber strikes, target essential infrastructures, such as presidential
campaigns and nuclear programs, government personnel data, and software suppliers are
used for cyber-attacks (MontazeriShatoori et al., 2020). When accessing the internet
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network effectively, it is critical to tell the difference between hazardous and benign data. It
is crucial for private networks and the Internet to keep their DNS systems safe from
intrusion by unwanted parties. Since hackers exploit advanced strategies to outbreak DNS
requests and responses, a covert channel is used to encrypt DNS transfers and queries by
establishing a connection with DNS using the HTTPS protocol. Man-in-the-middle
attacks are difficult to defend against with this method since they improve privacy and
address DNS weaknesses (Banadaki, 2020; Wazan & Cuppens, 2023).

An intrusion detection system (IDS) monitors internet-connected device traffic and
detects DoH traffic assaults in network topology by detecting intrusions. Intrusion
detection is established by monitoring and analyzing events happening in a computer
system or network (Larsen, Pahl & Coatrieux, 2023). The events depend upon the
availability or circumvent security safeguards, integrity and efforts to compromise
confidentiality. An intrusion detection system (IDS) is your best line of protection against
today’s more sophisticated and widespread network assaults. Malicious traffic may be
detected and distinguished from legitimate communication using various intrusion
detection systems (IDS). Algorithms like naive Bayes, neural network regression, and
support vector machines have been used to identify attacks, including principal
component analysis, random forest (RF), and support vector machines (Jafar et al., 2021;
Vries, 2021).

These methods may test and analyze DoH traffic in covert channels and tunnels. A
systematic technique is presented here to evaluate the capabilities of various machine-
learning algorithms. This study aims to identify and classify DoH traffic and discriminate
between benign and malicious DoH traffic using time-series classifiers in a two-layered ML
technique (Raikar et al., 2020). The application of DoH protocol in an application
employing four servers and five dissimilar browsers and software applications to record
non-DoH, malicious-DoH and benign-DoH traffic is the part of the dataset according to
CIC’s current version of their dataset (Banadaki, 2020). Layer one is used to differentiate
non-DoH and DoH traffic, while layer two is used to differentiate malicious DoH and
benign traffic. Numerous ML methods are being tested to classify between non-DoH and
DoH traffic, and in the same way malicious and benign traffic (Khan, Raza & Hwang,
2022; Singh et al., 2022; Singh & Roy, 2020).

In the context of Software Defined Networks (SDN), various approaches exist for
detecting DNS tunnels, such as statistical analysis of DNS packets and domain name
analysis. These techniques often involve using statistical models to identify anomalous
domain names. Indicators of DNS tunnels include DNS resolution frequency, subdomain
length, and the presence of TXT records. Strategies like block listing domains, blocking IP
addresses, and removing suspicious DNS packets can be employed to mitigate DNS
tunneling. SDN, a concept revolutionizing network architecture, plays a crucial role in
DNS operations (Jafarian et al., 2021). DNS serves as the backbone of the Internet,
translating human-readable hostnames into computer-understandable IP addresses. The
development of the DNS protocol followed a decentralized hierarchical approach. When a
DNS client initiates a query for an IP address, the local DNS server responds by checking
its cache. The query is forwarded to a recursive DNS resolver if the response is not found in
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the cache. This resolver then iteratively requests information from authoritative name
servers, top-level domain (TLD) name servers, and eventually the root name server, until it
obtains the authoritative response. DNS tunneling is a technique that leverages the DNS
protocol to encapsulate data communication between a client and a server. In this method,
data is encoded within the DNS response records of a typical DNS request, and the server
may or may not reply with encoded data. By integrating SDN principles into DNS
operations, network administrators gain greater control and visibility over DNS traffic.
SDN enables centralized management and programmability of network resources,
facilitating the implementation of advanced security measures to detect and prevent DNS
tunneling attacks.

Capturing DoH and non-DoH traffic is accomplished using a two-layered technique.
Browsers that support DoH protocol and DNS tunneling tools are used to visit the top
10,000 Alexa websites and create HTTPS (both benign and malign DoH traffic) and DoH
traffic for the representative dataset. A statistical characteristics classifier divides the
collected traffic into two categories: DoH and non-DoH. DoH traffic is classified as either
benign or malicious at the second layer using a time-series classifier. Accessing a website
using the HTTPS protocol generates traffic designated as non-DoH. Many Alexa domain
websites are visited to ensure the dataset is well balanced. ‘Benign-DoH’ is non-malicious
DoH traffic created using the same method as in ‘non-DoH’ by utilizing the Mozilla
Firefox and Google Chrome web browsers’. This is known as malicious DoH traffic and is
generated by DNS tunneling software such as dns2tcp, DNSCat2, and Iodine. Using these
tools, you may transmit TCP traffic as DNS queries. These programs build encrypted data
tunnels, to put it another way. As a result, DNS queries are forwarded to dedicated DoH
servers through HTTPS requests encrypting the traffic using TLS (Belel, Dutta &
Mukhopadhyay, 2023). Using web browsers, we can simulate normal online behavior, such
as utilizing HTTPS and benign DoH. To put it another way, malicious DoH is created
using a combination of DoH tunnel-building tools (Khan et al., 2022). This technology’s
traffic is logged and used to train the classifiers, as shown in Fig. 1 (MontazeriShatoori
et al., 2020).

The researcher explore the application of cloud-based semi-static secure accountable
authority identity-based broadcast encryption featuring public traceability without
random oracles, in the context of network traffic data detection and categorization using
ML methods (Singh, Acharya & Dutta, 2023). The Domain Name Server (DNS), one of the
earliest and most vulnerable network protocols, presents numerous security flaws that have
been frequently exploited over time, creating significant concern in the realm of
cybersecurity. Despite the implementation of sophisticated attack strategies by cyber
criminals to pilfer data surreptitiously, ensuring the security and privacy of DNS queries
and responses remains a complex task. The ever-evolving landscape of internet services
has inadvertently provided a broad playing field for such cyber-attacks on computer
networks. They focus on leveraging cloud support to enhance the effectiveness of ML-
based classification in network traffic data detection and categorization (Mohamed et al.,
2021). The intent is to further fortify the security of DNS communications and mitigate the
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risk of cyber-attacks, thereby improving the overall security architecture of computer
networks.

This article makes three contributions: Firstly, a ML model to differentiate DoH traffic
from non-DoH traffic at layer 1. We provide a unique two-layered technique that
characterizes DoH traffic at layer 2. Secondly, a labeled dataset may be generated in the
network premises by collecting non-DoH encrypted traffic, malicious-DoH and
benign-DoH traffic. Thirdly, introducing the notion of packet clumps and illustrating the
efficiency of this feature set in encrypted traffic characterization by proposing a new
feature set based on time-series representation of traffic flows (Srivastava et al., 2022).

This research makes several unique contributions for detection and classification of
DoH network traffic with the application of ML techniques. Firstly, it proposes a novel
two-layered classification approach for analyzing DoH communications in depth. At layer
one; a statistical characteristic classifier is developed to differentiate DoH traffic from non-
DoH traffic. Subsequently, layer two involves classifying the DoH traffic as either benign or
malicious using time-series models. Secondly, to facilitate rigorous evaluation of various
machine-learning (ML) algorithms, an extensive labeled dataset is carefully generated by
collecting samples of benign-DoH, malicious-DoH and non-DoH traffic within a network
testbed set-up involving multiple browsers and servers. This provides a robust and
representative dataset for comparative assessment. Thirdly, the study introduces the
concept of packet clumps as a new feature engineering approach for encrypted traffic
analysis. By extracting time-series representations based on packet clump characteristics,
this feature set is shown to enhance the effectiveness of ML classifiers for the encryption

l

l

Figure 1 Network topology used to capture the data (MontazeriShatoori et al., 2020).
Full-size DOI: 10.7717/peerj-cs.2027/fig-1
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traffic detection task. Hence, this research advances the state-of-the-art through scientific
contributions in multiple dimensions, ranging from a novel classification framework to
generation of a benchmark dataset and proposal of improved learning features. The
rigorous methodological approach and well-defined contributions allow meaningful
evaluation and comparison of ML schemes for DoH network traffic identification and
segmentation.

LITERATURE REVIEW
Algorithms LGBM and XGBoost surpass the competition in almost all classification
measures, achieving classification task accuracy of 100 percent in layers 1 and 2 (Banadaki,
2020). Source IP was the most important feature for differentiating non-Doh traffic and
DoH traffic in layer one, followed by the Destination IP feature, out of 34 characteristics
taken from the CIRA-CIC-DoHBrw-2020 dataset. LGBM and gradient boosting
techniques use just Destination IP to distinguish benign and malicious data in layer 2
(Alarfaj et al., 2022; Banadaki, 2020). DNS is a critical component of the Internet’s
infrastructure. DNS’s main job is to map IP addresses to domain names and send users to
the relevant computers, programs, and files (Niakanlahiji et al., 2023; Zang et al., 2023).
Because of DNS’s security weaknesses, it is always a prime target for cybercriminals. An
attempt to identify fraudulent DNS activity is made using several machine-learning
classifiers, including random forest (RF), K-nearest neighbor (KNN), and gradient
boosting (GB) (Hadwan et al., 2022; Shiomoto, Otoshi & Murata, 2023; Singh & Roy, 2020;
Ullah, Jabbar & Al-Turjman, 2020).

DNS over HTTPS (DoH) improves internet security while enhancing user privacy.
DoH, on the other hand, makes it more difficult for network managers to maintain the
security of their systems. Because DoH traffic looks like normal HTTPS traffic, it is difficult
to tell apart (Khodjaeva & Zincir-Heywood, 2021). DoH network traffic may be
distinguished from non-DoH network traffic using many criteria examined in depth in this
article (Vries, 2021). DNS is one of the most critical pieces of Internet infrastructure
(Mitsuhashi et al., 2021). The proposed scheme’s simulation results suggest that it can
distinguish between malicious, benign, and non-DoH classes with a 99 percent accuracy.
Many academics have investigated various ML strategies to meet this problem (Waqas
et al., 2022). This research presents a systematic technique for recognizing malicious and
encrypted DNS requests by monitoring network traffic and determining statistical features
(AlQaralleh et al., 2022; Jafar et al., 2021).

The author then adds to these qualities by estimating the flow’s entropy in several
methods. Using publicly accessible datasets, the author compares and contrasts five ML
classifiers: Decision Tree (DT), RF, Logistic Regression, Support Vector Machine, and
Naive Bayes (Khodjaeva & Zincir-Heywood, 2021). Providing improved protection against
attacks is becoming more important as the worldwide reach of the Internet of Things (IoT)
networks expands annually (Deebak et al., 2022; Tu et al., 2021b; Wang et al., 2021).
Cyberattacks may be mitigated most effectively using an IDS (Lehniger, Saad &
Langendörfer, 2022). A hybrid lightweight IDS is proposed in this study based on data
gathered from IoT networks (Althobaiti et al., 2022; Sarkar et al., 2022; Ullah et al., 2021,
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2020). When dealing with a vast dataset, XCNN and RCNN are 1,000 times quicker than
KNN. XCNN took 86.18% less time to compute than KNN, but RCNN took 91.74% more.
This benefit allows for more latitude in IDS site selection (Tu et al., 2021a). As a result of
our IDS’minimal training requirements, response times to zero-day assaults are cut in half
(Alassaf & Sikkandar, 2022; Liu et al., 2021).

Cloud-based apps security model
Safe instant messaging (IM) protocols should please the broad security areas of
confidentiality, reliability, authenticity, and integrity. Few even guarantee cutting-edge
security goals like future secrecy (Lyu, Gharakheili & Sivaraman, 2022). Automatically, a
secure and sound communication protocol should deliver a neck and neck of security
equivalent to interpersonal communication in a safe area. Both in the room overhear the
communication, both recognize who spoke and how frequently words have been spoken,
and no one outdoor the apartment can either say towards the room or listen to the
conversation inside, and the door of the apartment is unlocked only for asked peoples (Sun
et al., 2022; Zhang, He & He, 2023).

Notations and assumptions
In reality, the IM protocols are centralized. All communicated messages are communicated
through a centralized server that receives messages from the individual senders, stores
them, and forwards them as soon as the receivers are online. That is why the protocols are
performed in an asynchronous atmosphere in which only the server remains online, as
shown in Fig. 2. The algorithms first handle the message and then the result is delivered to
the end-user. The notions and terms used for cloud-based security model are shown in
Table 1.

Let us define a message as a tuple.
m ¼ ðIDu; mt; tÞ; IDu � Un;Uno; ls; Uað Þ [ UGiC; Umldð Þf g � m:

Figure 2 Summary of the syntax of IM protocols showing the cooperating user’s interfaces and the
boundaries of the application to the network. Full-size DOI: 10.7717/peerj-cs.2027/fig-2
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Here is the finite set of user protocols. IDu is the set of User IDs containing the
username, user contact number, last seen if it is visible to all, and user bio if its setting is set
to be public. If there is already communication done, then we can also have it UGiC; Umld.

The user is uniquely referenced on a central server and contains and Misc. We have
donated encrypted communication as C1;C2; . . . ;Cn 2 l. Every user on the
communication network maintains the long-term secrets of starting communication with
other users and session states. Messages delivered to an end-user are not saved in the state
of a session. By differentiating the delivery of the messages and receiving, we need to
highlight that the algorithms first handle the message received and then the result is shown
to the end-user.

Asymmetric key encryption scheme
We have proposed an asymmetric-key encryption scheme. The scheme is used for
encryption purposes to hold privacy with the generated session key on Simple Matrix for
the security of the message. The resulting representations are used for instant messaging
(IM) to show the scheme using asymmetric key encryption, as shown in Table 2.

We have summarized the detailed information on the encryption scheme, which we
have outlined in Fig. 2. The encryption process is unpretentious. To encrypt a message, the
public P must compute u ¼ PðjÞ 2 Fm. This process is done by using the polynomial

Table 1 Notation guide used in the cloud-based security model.

Notation Description

SndM Message sending algorithm

AcD Account details algorithm

Misc Another info-based algorithm

DelivM Message delivery

AcK Acknowledgment algorithm

C Encrypted text

V Vector of encrypted texts

m Message

IDu Unique user identifier

id Unique reference string

mt Message text

t Time

Cn User’s account name or title

Uno User’s contact number

ls Last seen

Ua User about (bio)

UGiC User groups in common

Umld User media, links, documents

snd Sending algorithm

rsv Receiving algorithm
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evaluations. Since the security of the encryption scheme is based on solving quadratic
equations to decrypt a cipher text you ∈. We have summarized the encryption and
decryption process in Fig. 3. We can generate two linear maps, G and H in F, and the
private key with matrices Y and Z. After this process, the private keys are used to calculate
the public key in the form of an F. Therefore, it is compulsory to complete the above-
mentioned three steps to complete the process.

First, it d ¼ Gð�1ÞðuÞ is computed as shown in Eq. (1).

d ¼ G0�1u: (1)

G0is a matrix of q × q. Secondly, cðc1; c2;…cnÞ ¼ Mð�IÞðdÞ it is required to be computed.
We suppose that and denote the matrices in the following forms.

E0q1 ¼

d1 d2 … dg
dgþ1 dgþ2 … d2g
d2gþ1 d2gþ2 … d3g
. . . . . . . . . . . .

dðg�1Þgþ1 dðg�1Þgþ2 . . . dn

2
66664

3
77775E0q2 ¼

diþ1 diþ2 … diþg

diþgþ1 diþgþ2 . . . diþ2g

diiþ2gþ1 diþ2gþ2 . . . diþ3g

. . . . . . . . . . . .
diþðg�1Þgþ1 diþðg�1Þgþ2 . . . dm

2
66664

3
77775:

We have to calculate the inverse of E0
q1, i.e., if invertible. We have computed j ¼ H�1 cð Þ

in the following form as shown in Eq. (2) by constructing the variables c1; c2;…ci. If none

Figure 3 Encryption and decryption mechanism. Full-size DOI: 10.7717/peerj-cs.2027/fig-3

Table 2 Terms used for the asymmetric key encryption scheme.

Notation Description

Variable i q
2

Public key P = G ° M ° H: → in F

Private key Matrices Y, Z and two linear maps G, H in F

Variable g
ffiffiffi
n

p

Number of finite field elements e

F and Central map M in F

Quadratic polynomials in number q in F

Three matrices with the size of g � g X, Y, and Z in F

Plaintext and Ciphertext j 2 Fn and u 2 Fm

Two linear maps G and H in F
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of E0
q1; E

0
q2 and X0 is invertible then decryption process fails. We have constructed i linear

equations on i variables c1; c2;…ci based on X0�1� E0
q1 � Y ¼ 0, and X0�1� E0

q2 � Y ¼ 0.
We have unraveled the equations on variables c1; c2;…ci if none of E0

q1 or E
0
q2 is invertible,

but X0 ¼ X cð Þ is invertible, i.e., X0�1. We have constructed i linear equations on i variables

c1; c2;…ci. based on Z� E0
q2

�1� E0
q1 � Y ¼ 0. It is necessary to calculi the variables

c1; c2;…ci if E0
q1 is not invertible, but E

0
q2 is invertible, calculate E

0
q2 , i.e., E

0
q2

�1. We have

constructed n linear equations on n variables c1; c2;…ci based on Y� E0
q1

�1� E0
q2 � Z ¼ 0.

j ¼ T 0�1c: (2)

T 0 is a matrix of i × i. The asymmetric-key encryption scheme can retain confidentiality
after that, the plaintext j has been calculated.

Signature generation scheme for public key
Table 3 represents the public-key signature generation scheme with the given notations.

We have summarized the detailed information on the signature scheme. Three
transformations KG, M and KH in F are used to generate the private key. The private keys
are used to calculate public key, i.e., P ¼ KG �M � KH in F. The quadratic equations in F
are used in the signature scheme for the security of data. In order to sign an encrypt
message x x0; x1;…; xj�1

� � � F, it is required to solve the Eq. (3).

M � Kh z0; z1;…; zj�1
� � ¼ k1

�1 x0; x1;…; xj�1
� �

: (3)

We require to calculate the hash value of the message to solve (Eq. (3)) by using a SHA-
256 based hash function.

x0 ¼ hashðxÞ: (4)

We have to calculate the affine transformation matrix LS, secondly.

Table 3 Terms and notions used by signature generation scheme for public key.

Notation Description

Number of finite field elements F

Affine transformation matrix 1 KG in F

Affine transformation matrix 2 KH in F

The matrix for central map transformation M in F

The signature’s size J

Vector x in K with the signature z z0; z1; . . . ;Zj�1
� �

The size of the communication digest I

Vector x in F with the form of message x x0; x1; . . . ; xj�1

� �
Public key �P ¼ KG � M � KH in F

Private key Three transformations KG, M and KH in F
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x ¼ k1
�1 x00; x

0
1;…; x0j�1

� �
: (5)

Third, the central map transformation M is calculated using Eq. (5).

x ¼ M�1 x00; x
0
1;…; x0i�1

� �
: (6)

Fourth, affine transformation matrix KH is calculated based on the calculation outcome
of Eq. (6).

z ¼ KH
�1 z0; z1;…; zj�1
� �

: (7)

The signature z z0; z1;…; zj�1
� � � F, we have to calculate the Eq. (8) to verify the

process of the signature verification, which is simple. Finally, we generate the signature z.

x00ðx000; x100;…::; xi�1
00Þ ¼ M z0; z1;…; zj�1

� �
: (8)

If x00 = x0, then the signature is acceptable by comparing x00 with the hash value of the
original message x0. In other case the case is rejected.

Figure 4 A secure communication system between two users in the cloud environment.
Full-size DOI: 10.7717/peerj-cs.2027/fig-4
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Secure communication system
The complete communication process is shown in Fig. 4. The communication among the
three main users must be protected by security. We use ‘A’ and ‘B’ to denote the user of the
cloud client and the user of the cloud service platform respectively (Lakshmi et al., 2022).
To do this, the entities must communicate in a manner that is impervious to
eavesdropping or interception. When two entities communicate and do not want a third
party to listen in, they use secure communication.

Sender A:
The user ‘A’ needs a safe way to share the information i to the user ‘B’.
The user ‘A’ generates the hash value of i based on SHA-256 by using a hash function

with a 256-bit digest, i.e., i1 = H(i).
i2 ¼ i1 þ IDA þ TG is used, where TG is a timestamp with 128 bit long and IDA is the

user A’s ID with 32 bit long. The ID of the user ‘A’ and timestamp are appended to i1.
The sender ‘A’ generates Pka and Ska which is the public key and private key of the

signature scheme.
The public key of the sender ‘A’ is public, i.e., Pka and private key Ska is held in reserve in

a private way.
The sender ‘A’ uses Ska gets the signature x which is 344 bits by signing i2 and it is based

on signature scheme, i.e., x = Encrypt (Ska, i2).
The user ‘A’ compress (i|x) based on Pk ZIP, i.e., i3 = Pk ZIP(i|x).
‘A’ generates Ek1 and dk2 for encryption and a decryption key of the scheme.
‘A’ encrypts S1 = SimpleMatrix (Ek1, i3) by using the encryption key Ek1 to encrypt i3

based on the encryption scheme.
‘A’ uses S2 = Encrypt−1 (Pkb, dk2) to encrypt the decryption key dk2 by using user B’s

public key Pkb based on the encryption scheme.
‘A’ sends S1 and S2 to user ‘B’ in a public way.
Receiver B:
The receiver ‘B’ decrypts S2 and gets the decryption key based on the encryption scheme

dk2, i.e., dk2 = Encrypt (Skb, S2) by using the private key of the signature scheme Skb.
The receiver ‘B’ calculates i3 = SimpleMatrix�1 (dk2, S1) by using dk2 to decrypt S1

based on the encryption scheme.
The receiver ‘B’ calculates i|x = Pk ZIP − 1 (i3) by decompressing i3 based on Pk ZIP.
The receiver ‘B’ calculates i2 (i1 + IDA + TG) = Encrypt�1 (Pka, x) by using user A’s

public key Pka to verify the signature s.
The receiver ‘B’ calculates SimpleMatrix�1 = H (i) by using a SHA-256 hash function to

generate the hash value of m.
The receiver ‘B’ compares i10 and i1. If it has been tampered the values are different

otherwise, i is original.

Traffic classification methodology
Various programs have recorded HTTPS traffic for use in the training dataset. The tuples
include protocol detail, source port, destination port, source IP, and destination IP. The
pre-processing data module identifies every collected data flow from the encrypted
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network traffic. The dataset is labeled according to the IP address of the flow’s final
destination because the protocol (TCP) and destination port (443) for all flows are the
same. In addition, techniques utilized to generate DoH flows set them apart. Simulated
DoH flows are labeled as benign, whereas DoH tunnel-captured flows are labeled as
malevolent (Liu et al., 2021). When it comes to the DoH protocol, malevolent actors may
utilize it to build covert channels in several ways. We name this DoH tunneling network
traffic “malicious,” as shown in Fig. 5.

To facilitate reproducibility and bolster scientific rigor, additional specifics are
warranted regarding model evaluation protocols and implementation details. The selection
of accuracy, AUC, confusion matrices and other metrics presented herein stem from
recommended best practices for multi-class traffic classification tasks. Furthermore, while
baseline default parameters suffice initially, model optimization via tuning of key hyper
parameters (e.g. kernel type, regularization, ensembling parameters etc.) can yield
substantial improvements. Therefore, the model training process undertaken involves
systematic grid search over viable hyper parameter ranges for each algorithm. The optimal
configurations obtained after sweeping through hundreds of combination yielding the
highest cross-validation performance are finally locked in. Such iterative tuning of model
knobs to find the ideal operating point that generalizes well allows us to maximize
effectiveness. By elucidating factors behind metric choices for model selection, specifying

Figure 5 Methodological framework for data capturing, analyzing and classifying
(MontazeriShatoori et al., 2020). Full-size DOI: 10.7717/peerj-cs.2027/fig-5
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tuning heuristics adopted, the research process is rendered more transparent. Augmenting
these fine-grained specifics bolsters methodological rigor and aids reproducibility by
qualitatively articulating a structured approach to optimizing ML pipeline performance
through evidence-driven customization of learning schemes presented.

Dataset detail and pre-processing
Among the earliest and most susceptible network protocols, the DNS has repeatedly
exploited several security flaws over the years. In cybersecurity, DNS abuse has long been a
major source of worry. Although attackers utilize advanced attack tactics to steal data on
the fly, ensuring security and privacy for DNS queries and answers is still a difficult
challenge to do (Gopi et al., 2022). IETF established DNS over HTTPS (DoH) in RFC8484
to address some DNS privacy and data manipulation issues. DoH encrypts DNS queries
and sends them over an encrypted covert channel/tunnel, ensuring that data is not harmed
in transit. However, the lack of a representative dataset makes evaluating the methods for
capturing DoH traffic in a network architecture difficult. DoH traffic through covert
channels and tunnels that are studied, tested, and evaluated using a systematic manner
proposed in this study. In order to identify and analyze DoH traffic using a time-series
classifier, this research aims to install DoH inside an application and capture both benign
and malicious DoH traffic. Data were collected as previously described in Abid et al.
(2023).

Using five different browsers and tools and four servers, the final dataset comprises
DoH protocol implementation in an application that captures benign-DoH, malicious-
DoH, and non-DoH traffic. On the first tier of the two-layered technique described, DoH
communication is classified as either benign or malicious depending on whether it comes
from a DoH device. Search engines like Google Chrome employ many different methods to
collect traffic, such as DNSCat2, DNSCat3, and Iodine, while servers like Cloudflare and
Google DNS reply to DoH requests using AdGuard and Cloudflare respectively. Initially,
the dataset is pre-processed by encoding the source and destination IP addresses and time
stamp values using an ordinal encoder. The NA values are dropped, as shown in
Algorithm 1.

The used ML algorithms are described as:
DT Minimize entropy HðTÞ to construct a tree T : T : T ¼ argmin limTHðTÞ

Naive Bayes Apply Bayes rule, assuming conditional independence between features as
shown in Eqs. (9) and (10).

PðyjxÞ ¼ PðyÞPðxjyÞ
PðxÞ : (9)

PðxjyÞ ¼
Yn
i¼1

PðxijyÞ: (10)

K-nearest neighbors classify by majority vote of the K nearest samples in feature
space ŷ ¼ modeyi : i 2 NKðxÞ neural network learn feature transformations f ðÞ and
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classification gðÞ by optimizing a loss function over parameters h: min
h

Lðy; gðf ðx; hÞÞÞ
QDA Assume Gaussian distributions per class and find boundaries as shown in Eq. (11):

dkðxÞ ¼ xT��1
k x þ xT��1

k lk �
1
2
lTk�

�1
k lk þ ln Pðy ¼ kÞ: (11)

RF aggregate predictions from N randomized DTs as shown in Eq. (12):

ŷ ¼ modeT1ðxÞ;T2ðxÞ;…;TNðxÞ: (12)

SVM (RBF kernel) maximize margin between classes with nonlinear decision boundary
as shown in Eq. (13):

f ðxÞ ¼ Maximize
XN
i¼1

aiyiKðxi; xÞ þ b

 !
(13)

where Kðx; x0Þ ¼ expð�cjx � x0j2Þ is the RBF kernel.

RESULTS AND DISCUSSION
The K-nearest neighbors with the value of k is four is used; hence, the total number of
classes is four. The dataset is divided into two parts, i.e., training and testing parts. The
training part consists of 67% of the data, and 33% of data is carried for the testing dataset.
The overall accuracy of the model is 75%, which is not very good, but it can be increased
during the full experiments. The results for NonDoH are very good, but for DoH, benign
and malicious are very promising. The precision is good for benign, while recall and
F1-score are better for DoH, as shown in Table 4 and Fig. 6.

A comparative analysis between this article and some of the key references on malicious
DNS traffic detection using ML techniques is summarized in Table 5. As shown in the
table, while existing literature has explored related problems, this article makes several key
contributions in terms of the dataset diversity, proposed methodology, and rigorous ML
pipeline evaluation as well as classification performance. The key differentiation of this

Algorithm 1 Data encoding algorithm.

Input: Raw data in the form of a table or data frame

Output: Encoded data

Retains only non-null values and drops all NA-values

Reshapes the data for encoding by imputing it

Encode data using an ordinal encoder

Assign back encoded values to non-null values in the original data

Iterate through each column in the data as

for columns in category columns:

encode (data Frame[columns])

return encoded data
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Figure 6 KNN model training results in the form of precision, recall, F1-score and support.
Full-size DOI: 10.7717/peerj-cs.2027/fig-6

Table 4 Statistical measures of the K-NN with K = 4.

Precision Recall F1-Score Support

Benign 0.37 0.55 0.44 6,464

DoH 0.39 0.56 0.46 88,639

Malicious 0.18 0.09 0.12 82,555

NonDoH 1 1 1 293,716

Macro avg 0.48 0.55 0.50 471,374

Weighted avg 0.73 0.75 0.73 471,374

Table 5 Comparison between key contributions of our work and existing literature on malicious DNS traffic detection using machine
learning.

Comparison
aspects

Our work Vries (2021) Singh & Roy
(2020)

AlQaralleh et al. (2022) Tu et al. (2021b)

Problem
addressed

Detection & classification of
malicious DoH traffic using ML

Detection of DNS
tunnels via ML

Detecting
malicious
DoH traffic by
ML

Identifying malicious
DNS tunnels from
DoH traffic by ML

Review of ML for security of
DNS including malicious
query detection

Dataset Custom dataset with diverse benign,
malicious DoH & non-DoH traffic

No dataset details
provided

No dataset
details
provided

No dataset details
provided

Various standard datasets
referenced

Learning
approaches

SVC, QDA, AdaBoost (high
accuracy)

Supervised &
unsupervised ML
compared

RF, KNN, GB
evaluated

Hierarchical ML
classification

Survey of different ML
techniques

Traffic
classification

Uniquely two-layered approach Single layer tunnel
detection

Labeling based
on IP
addresses

Focus only on tunnel
identification

NA

Key attributes Custom data collection strategy and
features, advanced ML evals, two-
layer methodology

Compares
supervised &
unsupervised ML

Basic ML
models
evaluated

Hierarchical
classification approach

Broad review of techniques

Outcomes Systematic evaluation and high
accuracy multi-class results

Methodology
comparison, no
accuracy reports

No
performance
results given

No accuracy results
provided

Review of landscape
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two-layered classification approach leveraging time series features is highlighted across
various comparative aspects against prior art.

Eight different ML models are trained in four classes. The classes predicted by some
models are very distant, while others got false positive and false-negative results. The
overall results in a confusion matrix are shown in Fig. 7. The Ada Boost, DT classified
malicious, and non-DoH without any confusion. While other models also classified these
classes with much better accuracy, except for SVC-RBF. The other classes by other models,
i.e., DT, naïve Bayes (NB), nearest neighbors, neural network, QDA, RF, and SVC-RBF,
have some problems.

Statistical measures summaries like per class accuracy, overall accuracy, macro average
accuracy, and weighted accuracy obtained from ML classifiers, i.e., AdaBoost, DT, NB,
nearest neighbors, neural network, QDA, RF, SVC-RBF are shown in Fig. 8.

The area under curve obtained fromML classifiers, i.e., AdaBoost, QDA, and SVC-RBF,
as shown in Fig. 9. The SVC-RBF model classified Malicious as 76% and non-DoH as 76%,
benign got 13%, and DoH class got 13% accuracy. The macro accuracy is 44%, and the
micro average accuracy is 47%. The QDAmodel classified malicious as 99% and non-DoH
as 98%, benign got 78%, and DoH class got 77% accuracy. The macro accuracy is 88%, and
the micro average accuracy is 91%. The AdaBoost model correctly classified malicious and

Figure 7 Confusion matrices of the classifiers as (A) AdaBoost (B) decision tree (C) naïve Bayes (D) nearest neighbors (E) neural network (F)
quadratic discriminant analysis (G) random forest (H) support vector classification with RBF. Full-size DOI: 10.7717/peerj-cs.2027/fig-7
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Non-DoH while benign got 75% and DoH class got 73% accuracy. The macro accuracy is
87%, and the micro average accuracy is 93%.

The training accuracies of all the models are shown in Fig. 10. The training accuracy of
SVC-RBF is the highest among all other models, i.e., 84%. The comparatively other models
performed less while training them. The range of the training score is 68% to 84% on four
class labels.

The next experiment is conducted by selecting two class labels from the dataset, i.e.,
Benign and Malicious. In this scenario SVC-RBF model failed as it has classified almost all

(a) (b) (c)

Figure 9 AUC for (A) AdaBoost, (B) quadratic discriminant analysis, and (C) support vector classification with RBF.
Full-size DOI: 10.7717/peerj-cs.2027/fig-9

Figure 8 Statistical summaries of the classifiers as (A) AdaBoost (B) decision tree (C) naïve Bayes (D) nearest neighbors (E) neural network (F)
quadratic discriminant analysis (G) random forest (H) support vector classification with RBF. Full-size DOI: 10.7717/peerj-cs.2027/fig-8
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the data as the malicious class label. Therefore, the SVC-RBF model is not suitable for the
classification of this dataset. NB model performed better as compared to SVC-RBF. The
other models like nearest neighbors, neural network, QDA, and RF performed moderately.
The best-performing model for this given problem in the given scenario is AdaBoost and
DT, as shown in Fig. 11.

The training accuracies of all the models are shown in Fig. 12. The training accuracy of
SVC-RBF, DT, and AdaBoost is higher among all other models. The comparatively other

l

Figure 10 Models’ training accuracies in all the four classes.
Full-size DOI: 10.7717/peerj-cs.2027/fig-10

Figure 11 Confusion matrices with 15,000 samples each class (A) AdaBoost (B) decision tree (C) naïve Bayes (D) nearest neighbors (E) neural
network (F) QDA (G) random forest (H) SVC-RBF. Full-size DOI: 10.7717/peerj-cs.2027/fig-11
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models performed less, e.g., RF, Neural Network, and NB. The range of the training score is
92% to correct classification on 2 class labels.

We explore an important problem regarding classification of encrypted DNS traffic
using ML, the specific research questions and knowledge gaps being addressed could be
more clearly positioned. The authors should outline the precise real-world issues and
limitations in existing methodologies that this work aims to tackle. For example, the
introduction could highlight open questions around rigorously benchmarking complex
ML algorithms for multi-class encrypted traffic analysis, and the lack of diversity in current
DNS tunneling datasets. It can cite the dependency on standard corpora and single
tunneling tools in prior approaches as an inherent limitation. Building on this problem
framing, the novel contributions proposed—including the two-layered methodology, focus
on time-series characterizations, and data collection strategy spanning browsers and
tunneling tools—can be presented as targeted efforts to fill these gaps. By first discussing
the specific open research questions on applying ML to DNS security, assessing
alternatives, and articulating limitations therein, this work can concretely situate how their
technical approach and results advance knowledge over documents in literature. The
comparisons should emphasize dimensions such as model sophistication, dataset diversity,
classification granularity etc. as differentiators to strengthen claims around addressed
knowledge gaps. Enhancing this contextual framing of research issues, current
shortcomings, and targeted improvements will help accentuate the significance of
innovations introduced by the authors in the ML pipeline for encrypted DNS traffic
analytics.

CONCLUSIONS
Computer networks have become simple targets for cyber-attacks in the ever-changing
internet services. DNS assaults have been greatly reduced because of HTTPS. DoH is used
to help protect against Man in the Middle attacks by fighting eavesdropping and DNS data
tampering during DNS communication. The attacker utilizes advanced attack tactics to
steal data for DNS queries, and answers are still a difficult challenge. The network traffic

l

Figure 12 Models’ training accuracies on benign and malicious classes.
Full-size DOI: 10.7717/peerj-cs.2027/fig-12
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data detection and categorization using ML methods are done using different classifiers.
The four classes-based classifications and two classes-based classifications are done in
different experiments. It is found that for the four classes, the SVC-RBF model achieved
76% accuracy. The QDA model achieved 99% accuracy. The AdaBoost model correctly
classified malicious and non-DoH classes. The 2-class scenario found that the training
accuracy of SVC-RBF, DT, and AdaBoost is higher among all other models.

This study aimed to investigate the application of ML techniques for detection and
classification of DoH network traffic. Specifically, it sought to evaluate different models for
identifying and distinguishing between benign, malicious and non-DoH communications
within an encrypted traffic dataset.

The results demonstrate that the two-layered classification approach is highly effective
at analyzing DoH traffic in depth. At layer one, the support vector classifier with RBF
kernel achieved 76% accuracy in differentiating between malicious and non-DoH traffic.
Meanwhile, at layer two, the QDA model attained classification rates of 99% and 98% for
malicious traffic and non-DoH traffic respectively. The AdaBoost ensemble classifier also
performed well, with accuracies of 75% and 73% for benign and DoH classes.

Notably, the time-series feature engineering based on packet clump representations
enhanced encrypted traffic learnability. This validates the hypothesis that new learning
representations tailored for HTTPS data payloads can improve detection quality.

In conclusion, the findings strongly support the research question by showing ML
provides a viable solution for DoH network analysis. Classification performance often
exceeded 90% for models trained on the custom dataset. This contributes significantly to
knowledge by demonstrating ML is practical for encrypted DNS traffic understanding.
Going forward, the two-layer framework and proposed feature set warrant further
exploration on more extensive real-world DoH traffic corpora. With refinement, such
techniques show promise for bolstering security and surveillance of encrypted network
protocols.

As we look towards the future, it is clear that our work must continue to evolve
alongside the complexities and variety of cyber threats that are also increasing. Despite the
promising results that ML methods have demonstrated in the realm of network traffic data
detection and categorization, the challenges posed by advanced attack tactics cannot be
underestimated. Therefore, our next steps will involve several key areas of focus. We aim to
improve multi-class classification by refining the SVC-RBF and QDA models that have
shown good initial results. Our goal is to explore a wider range of ML and deep learning
algorithms for this purpose, with the intent to achieve even higher accuracy levels in multi-
class classification of network traffic data. In the context of binary classification, the
superior training accuracy of the SVC-RBF, DT, and AdaBoost models in a 2-class scenario
has pointed us towards a future validation of these models on different datasets. We will
concentrate on enhancing the detection rate of malicious traffic while simultaneously
minimizing both false positives and negatives. With the prevalence of advanced and
dynamic attack tactics used by cyber criminals, it is paramount to develop ML models that
are capable of learning and adapting to these tactics over time. Such an approach will help
us maintain an edge over cyber threats, and ensure robust security for DNS queries.
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Although DNS over HTTPS (DoH) has significantly reduced the frequency of DNS
attacks, guaranteeing the security and privacy of DNS queries and responses remains a
formidable challenge. Therefore, our future work will also focus on devising additional
security measures to enhance the effectiveness of DoH. Recognizing the potential
advantages of cloud technology, we plan to investigate cloud-based solutions for managing
network traffic data. The scalability and distributed nature of the cloud could be harnessed
to handle large-scale data more efficiently.
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