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ABSTRACT
The electric power infrastructure is the cornerstone of contemporary society’s sus-
tenance and advancement. Within the intelligent electric power financial system,
substantial inefficiency and waste in information management persist, leading to an
escalating depletion of resources. Addressing diverse objectives encompassing eco-
nomic, environmental, and societal concerns within the power system helps the study
to undertake a comprehensive, integrated optimal design and operational scheduling
based on amultiobjective optimization algorithm. This article centers on optimizing the
power financial system by considering fuel cost, active network loss, and voltage quality
as primary objectives. A mathematical model encapsulates these objectives, integrating
equations and inequality constraints and subsequently introducing enhancements to
the differential evolutionary algorithm. Adaptive variation and dynamic crossover
factors within crossover, variation, and selection operations are integrated to optimize
algorithm parameters, specifically catering to the multiobjective optimization of the
electric power system. An adaptive grid method and cyclic crowding degree ensure
population diversity and control the Pareto front distribution. They experimentally
validated the approach and the comparisons conducted against AG-MOPSO, INSGA-
II, and NSDE algorithms across standard test functions: ZDT1, ZDT2, ZDT3, and
DTLZ4. The convergence evaluation indices for this study’s scheme on ZDT1 and
ZDT2 are 0.000938 and 0.0034, respectively. Additionally, distribution evaluation
indices on ZDT1, ZDT2, ZDT3, and ZDT4 stand at 0.0018, 0.0026, 0.0027, and
0.0009, respectively. These indices indicate a robust convergence and distribution,
facilitating the optimization of electric power financial information management and
the intelligent handling of the electric power financial system’s information, thereby
enhancing the allocation of material and financial resources.
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INTRODUCTION
The swift evolution of the electric power industry, coupled with heightened levels of
information integration, underscores the pivotal significance of optimizing and managing
information within the electric power financial system. The informatization of financial
management in this sector facilitates multidimensional data analysis and decision-making
support by seamlessly integrating and sharing data with other business systems. This
information ensures data uniformity and integrity, amplifying management efficacy and
decision-making acumen. However, the surge in data volume due to the information
explosion necessitates more robust management within the electric power financial
information system.

To cater to the demands of corporate decision-making, the financial management
information technologywithin the power industry necessitates automation and intelligence.
This technology should encompass automated data acquisition, processing, and analysis
capabilities, as well as intelligent decision-making and early warning systems based on
preset rules and models. This strategic shift aims to curtail manual intervention and
errors, augmenting management efficiency and accuracy. The multiobjective optimization
algorithm (Abdollahzadeh & Gharehchopogh, 2022) emerges as a potent optimization
technique adept at handling multiple conflicting objective functions. Given the intricate
nature of the electric power financial system, replete with interwoven objectives and
factors spanning power cost, reliability, security, and customer service quality, employing
multiobjective optimization algorithms becomes pivotal. These algorithms resolve intricate
power financial challenges by optimizing numerous objective functions, deriving optimal
solutions, and tackling complex problems (Liu & Wang, 2019).

Moreover, the intelligent power financial system serves as an internal information
management system within electric power enterprises, primarily catering to financial
management and decision support. This system amalgamates data and information from
the power scheduling and information management system, tailoring its analysis and
processing capabilities to suit financial management and decision-making requisites.
Through the synthesis and analysis of power scheduling information management data,
the intelligent power financial system aids power enterprises in conducting power costing,
energy market analysis, and business decision-making, ultimately enhancing enterprise
management proficiency and decision-making efficiency (Feng, Shi & Wang, 2021).

Within the intricate landscape of power energy scheduling, numerous complex
multiobjective optimization problems persist, with large-scale power system scheduling
emblematic of these challenges. Inefficient power dispatching will lead to the delayed
generation of financial reports and affdecision makers’ timely understanding of the
company’s financial status and operating resources. In emergencies, such delays can lead
to missed opportunities or an inability to respond to risks promptly. At the same time, it
may also lead to wrong financial decisions, such as bad investment decisions, improper
budget allocation, etc. These bad decisions can lead to significant economic losses and even
affect the company’s long-term development. Consequently, considering cost, resources,
and other facets inherent in power scheduling within the financial system, we devise an
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information management model using a multiobjective optimization algorithm for the
intelligent power economic system, aiming to address the multiobjective optimization
quandaries within the power system. This article’s principal contributions are delineated
as follows:
1. Establishment of an information management model: This study employs the fuel cost

of thermal power generating units, the active network loss of the power system, and
voltage quality as the pivotal objectives for optimization within the intelligent power
financial system. Mathematical models for each purpose are formulated, incorporating
equation and inequality constraints. Moreover, state variables in the power system
optimization are restricted using penalty functions.

2. Enhancement of the multiobjective differential evolutionary algorithm: Building
upon the principles of the differential evolution algorithm, this article introduces the
multiobjective differential evolution algorithm. This innovative algorithm addresses
the multiobjective optimization of the power system by integrating adaptive mutation
and dynamic crossover factors within crossover, mutation, and selection operations.

3. Construction of a process framework for multiobjective optimization of the power
financial system: Employing an adaptive grid method alongside cyclic crowding degree
ensures population diversity and governs the distribution of the Pareto front. These
methods are rigorously tested against standard test functions, validating the efficacy
and performance of the proposed process framework.

RELATED WORKS
Multiobjective optimization
Initially, research scholars introduced heuristic algorithms, also known as intelligent
optimization algorithms (Yang et al., 2020). These algorithms are rooted in an iterative
stochastic optimization framework, leveraging natural and life phenomena to formulate
algorithmic logic to solve single or multiple objective optimizations. Early heuristic
algorithms encompassed genetic algorithms (Sohail & Ayesha, 2023), particle swarm
optimization algorithms (Gad & Ahmed, 2022), differential evolutionary algorithms
(Wang et al., 2022), and, more recently, pedagogical optimization algorithms (Yu et al.,
2021). Primarily designed for solving single-objective problems, these algorithms excel
in achieving optimization outcomes centered around a singular objective. Subsequently,
scholars advocated for multiobjective optimization theory, stemming from its origins in
economic theory. This concept originated with the Italian-American economist Pareto,
who introduced the concept of Pareto optimality (Bae et al., 2023). Over time, this
theory evolved into a comprehensive technique—multiobjective optimization problems
(MOP). MOPs address scenarios involving more than one, often conflicting, optimization
objectives.

Among the Pareto optimization-based methods, a prominent set of algorithms in
engineering applications includes the family of genetic algorithms that utilize non-
dominated sorting, as proposed in Fu & Liu (2019). This approach incorporates non-
dominated sorting to organize populations and integrates it with a genetic algorithm
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based on Goldberg’s principles. Additionally, the literature introduces a microhabitat and
morphological approach for optimal individual selection aimed at identifying multiple
Pareto optima. While this method offers the advantage of uniformly distributed optimal
solutions, it suffers from decreased computational efficiency and heightened complexity
and needs an elite mechanism. Subsequently,Wang et al. (2019) addressed the deficiencies
of the NSGA algorithm (Lu et al., 2019) and introduced the NSGA-II algorithm. NSGA-II
enhances the original algorithmby introducing a crowding comparison operator, evaluating
the crowding degree among individuals within the same non-dominated layer, and selecting
individuals with a higher crowding degree. Furthermore, NSGA-II incorporates an elite
strategy, broadening the sampling space and significantly improving the algorithm’s
solution-finding capabilities and speed while preserving population diversity and reducing
algorithmic complexity.

Despite NSGA-II’s significant advancements, its applicability is broader than scenarios
involving three or more objectives. To tackle this, Miriam, Swaminathan & Chakaravarthi
(2021) introduced the NSGA-III algorithm, employing a reference point-based approach
within the NSGA-II framework. NSGA-III utilizes association and small habitat techniques
in individual selection, effectively optimizing scenarios involving 3 to 15 objectives, yielding
superior Pareto solutions. These algorithms stand out for their substantial advantage in
addressing real engineering multiobjective optimization problems and have garnered
recognition within the industry.

Another category of algorithms, distinct from Pareto optimization-based approaches,
involves the decomposition-based multiobjective optimization method, as presented in
the Peng & Ishibuchi (2020). This method adopts a scalarization concept, breaking down
the multiobjective problem into several scalar subproblems. It concurrently optimizes
each subproblem while considering its neighboring subproblems, eventually deriving the
optimal solution. Renowned for its efficiency and accuracy, this method is one of the most
notable heuristic multiobjective algorithms.

Compared to the NSGA-II algorithm, this approach showcases time complexity and
convergence advantages, particularly in scenarios involving low-dimensional objectives.
Additionally, it exhibits superior uniformity. However, in some high-dimensional cases,
its uniformity slightly lags behind NSGA-II.

Optimization of the electric power system
Optimization challenges within power systems have commanded scholarly attention
since the late 20th century. Over subsequent decades, power system optimization has
been a focal point in academic research and industry endeavors. This intricate problem
encompasses multiple objectives, various time scales, and diverse operational states (Xu
et al., 2020). Power system scheduling tasks are broadly categorized into four types based
on distinct optimization levels and time scales: economic load dispatch (ELD) (Singh et
al., 2023), unit commitment (UC) (Egbue et al., 2022), optimal power flow (OPF) (Risi,
Riganti-Fulginei & Laudani, 2022), and distributed power generation (DPG) (Ismael et al.,
2019) encompassing siting and capacity settings (Ismael et al., 2019).
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For economic load dispatch (ELD), Premkumar et al. (2020) introduced amultiobjective
pedagogical optimization algorithm, incorporating a non-dominated sequencing method.
This approach effectively addresses optimal economic scheduling and minimum emission
scheduling problems. Additionally, enhancing existing multiobjective PSO algorithms has
proven beneficial. Zhou, Wang & Chai (2022) presents the MOPSO algorithm combined
with fuzzy adaptive techniques and self-learning strategies. In contrast, Kong, Wang &
Zhao (2021) proposes the MOPSO algorithm with objective weight orientation, adept at
determining optimal scheduling solutions within practical constraints.

Concerning unit commitment (UC), Zakaria et al. (2020) utilizes a stochastic modeling
approach for the unit combination problem, offering a corresponding optimization tool
for optimal solutions. Another work, Akay et al. (2021), integrates the modal evolutionary
algorithm and NSGA-II algorithm to manage the unit operating state, and this involves
a local search strategy and applies weighted and λ-iteration methods for optimization.
Moreover, Zouache et al. (2023) enhances the artificial bee colony algorithm, applying
fuzzy binary actual number coding to optimize system reliability, fuel cost, and emission
(Kaya et al., 2021).

In the optimal power flow (OPF) domain,Ali et al. (2023) enhances the PSOalgorithmby
introducing the chaotic queueingmethod and adaptive concepts to adjust IPSO parameters,
and it facilitates optimal voltage stability solutions with objectives centered around cost and
emission. Another contribution, Alomoush et al. (2022), introduces the dyadic modified
Jaya method (QOJaya), employing intelligent dyadic learning, fuzzy strategies, and an
external elite pool preservation method for trend optimization. Further, Afshari, Hare &
Tesfamariam (2019) improves the artificial bee colony algorithm, proposing the fuzzy
modified artificial bee colony (MABC) for enhanced performance. For Distributed
Generation Siting and Capacity Setting, Chen, Fang & Zhong (2022) integrates the NSGAH
I algorithm with the point estimation method (PEM) to achieve optimized outcomes
considering total cost, total network loss, and customer outage costs as optimization
objectives, employing an integrated multiobjective optimization method.

Conventional approaches often convert complex problems into single-objective
optimizations through techniques like weighting or linear programming in the realm
of multiobjective optimization in power systems. However, this approach poses challenges
in weight selection and fails to effectively address the multiple conflicting objectives
inherent in practical engineering scenarios. Thus, this article embarks on a novel trajectory,
aiming to enhance the efficacy of multiobjective optimization algorithms by leveraging
differential evolutionary algorithms.

METHODOLOGY
This article focuses on three critical objective functions: fuel cost, active network loss
in the electric power system, and the voltage quality of thermal power generating
units, as depicted in Fig. 1. We constrain the state variables in the power system
optimization by imposing equation and inequality constraints on these three objectives.
We enhance the multiobjective differential evolutionary algorithm by utilizing this
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Figure 1 Overall model structure.
Full-size DOI: 10.7717/peerjcs.2023/fig-1

information management mathematical model as a foundation. This enhancement
involves leveraging the principles of the differential evolutionary algorithm, incorporating
adaptive variation and dynamic cross-factor operators. Consequently, we construct a
multiobjective differential evolutionary algorithm tailored explicitly for solving power
system multiobjective optimization.

Furthermore, we employ the adaptive grid method and cyclic congestion degree
to ensure population diversity and govern the distribution of the Pareto frontier. This
endeavor aims to realize the electric power financial system’s information management
model design based on the multiobjective differential evolutionary algorithm.

Mathematical model of information management
This article’s information management mathematical model comprises three primary
components: an objective function, equation constraints, and inequality constraints. The
fundamental form of the mathematical model is articulated as follows:
min f (u,x)
g (x)= 0
h(u,x)≤ 0

(1)

Here, ‘f’ signifies the objective function, ‘g’ denotes the equality constraint, and ‘h’
represents the inequality constraint. ‘u’ pertains to control variables, while ‘x’ corresponds
to state variables. We embark on the mathematical modeling of the objective function for
the current fuel cost, active network loss magnitude, and voltage quality data within the
electric power financial system. The fuel cost is usually proportional to the generator’s fuel
consumption. The fuel cost function may differ for each generator type (coal, gas, nuclear,
etc). Suppose we have multiple types of generators, each with its specific fuel cost function.
Active network loss is the energy loss due to the network’s current flow. These losses are
usually proportional to the resistance of the square sum of the current. Voltage quality
is an essential parameter in a power system, which directly impacts the safe operation of
equipment and the user’s power experience. Voltage quality is usually evaluated by voltage
deviation, fluctuation, and flicker. Initially, we adopt the fuel cost of thermal generating
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units as the objective function, employing a quadratic function in the following manner:

min f1=min
NG∑
i=1

ai+biPi+ ciP2
i (2)

where ai,bi and ci are the cost coefficients expressed as a quadratic function of unit i. NG

is the number of generators, and Pi is the active output of unit i, including the generators
at the balancing node. Simultaneously, owing to the unavoidable loss of power during the
transmission of electrical energy—wherein the active power consumed by resistors and
conductors dissipates as heat energy—optimization of this active loss becomes imperative
within the information management system. By computing and minimizing the active loss,
optimization in allocation can be achieved, thereby enhancing operational efficiency and
bolstering the profitability of power finance. Consequently, the second objective function
chosen revolves around the active power loss, articulated as follows:

min f2=min
m∑

k=1

Gk(i,j)(U 2
i +U

2
j +2UiUj cosθij) (3)

wherem is the number of branches of the system,Gk(i,j) is the loss of active power generated
in the electric line from node k node i to node j of the branch. In this article, the voltage
is expressed in polar coordinates. Ui,Uj are the voltage of node i and j, respectively, θij
and are the phase angle difference of the voltage of node i and j. Within the information
management framework of the electric power financial system, it becomes imperative
to document the voltage value at each node during the operation of the power system.
Excellent voltage stability at intermediate positions signifies enhanced voltage quality,
minimizing impacts on equipment and end-users. Hence, we establish an additional
objective function addressing this criterion:

min f3=min
n∑

k=1

(
2Ui−Ui,max−Ui,min

Ui,max−Ui,min

)2

(4)

where n is the number of nodes in the system, Ui,maxUi,min the maximum and minimum
voltage values allowed at node i are, respectively, and Ui the actual voltage is at the node.

Then,we formulated constraintswithin themathematicalmodel to optimize information
management in the power financial system. These constraints manifest in two categories:
equational and unequal constraints. Equational constraints primarily involve active and
reactive power balance, while unequal constraints encompass node voltage, generator
active and reactive power, reactive power compensation, and transformer tapping position
constraints. We articulate the equation constraints and inequality constraints as delineated
below:
PGi−PLi=Ui

n∑
j=1

Uj(Gij cosθij+Bij sinθij)

QGi−QLi=Ui

n∑
j=1

Uj(Gij cosθij−Bij sinθij)
(5)
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Ui,min≤Ui≤Ui,max,i∈N
PGi,min≤ PGi≤ PGi,max,i∈NG

QGi,min≤QGi≤QGi,max,i∈NG

Ti,min≤Ti≤Ti,max,i∈NT

Qci,min≤Qci≤Qci,max,i∈Nc

(6)

In Eq. (5), the equation constraints are defined, where PGi and QGi represent the active
and reactive outputs of node i. PLi and QLi represent the active and reactive demands of
node i, respectively. n is the set of nodes connected to node i. The inequality constraints
are defined in Eq. (6), where Ui,max and Ui,min are the maximum and minimum voltage
values at node i, respectively. N is the set of nodes in the system. PGi,maxPGi,min. They are
the maximum and minimum values of the active output of generation node i. QCi,max and
Qci,max are the upper and lower limits of reactive power compensation node i, respectively.
NC is the collection of reactive power compensation nodes.

We construct penalty functions for state variable constraints to further intelligently
constrain the state variables. Let λP ,λU and λQ be the penalty factors, P represents the
active output of the balancing node, Ui denotes the voltage of the load node i, NQ isthe
set of load nodes, Qj isthe reactive output of the generating node j, and NG is the set of
generating nodes, at this point the penalty function PF is constructed as follows:

PF = λP

(
P−Pvl

Pmax−Pmin

)
+λU

(
Ui−Ui,vl

Ui,max−Ui,min

)2

+λQ

(
Qj−Qj,vl

Qj,max−Qj,min

)2

(7)

Eventually, we construct the information management model after adding the penalty
function PF to the three objective functions mentioned above.

Improved multiobjective differential evolutionary algorithm
Solution through the iterative evolution of intelligent algorithms. In this section, we adopt
the multiobjective differential evolutionary algorithm for evolution. However, prevailing
algorithms exhibit limitations, rendering them unsuitable for designing information
management models in electric power financial systems. Hence, we propose enhancing
the differential evolutionary algorithm rooted in the dominance relationship to address
multiobjective problems within the electric power financial system.

Recognizing the structural resemblance between the general differential evolutionary
algorithm and genetic algorithms, both populations aim to approach the problem’s optimal
solution through crossover, mutation, and selection operations. Divergence arises in their
strategies for crossover andmutation. At the same time, the selection operation in this study
employs the INSGA-II algorithm (Chen, Fang & Zhong, 2022) for stratifying the population
of individuals based on dominance relationships and cyclic congestion calculations. This
stratification facilitates the operation of superior individuals within the population, as
depicted in Fig. 2. The process involves retaining dominant individuals for the subsequent
generation, ultimately acquiring the Pareto optimal solution set after continuous evolution.

Based on the scope and characteristics of the target space, a set of grids is initialized,
and each solution in the population is assigned to the corresponding grid. The mesh size
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Figure 2 Crossover, variation and selection process of differential evolution algorithm.
Full-size DOI: 10.7717/peerjcs.2023/fig-2

is dynamically adjusted according to the distribution and density of the solutions. If the
solutions in a grid are too dense, you can reduce the grid size to increase the search detail.
If there are no or few solutions in a grid, you can increase the grid size to expand the
search scope. In a selection operation, such as selecting the next-generation population,
the solution located in the sparse grid is preferentially chosen to preserve the diversity of
the population. Each non-dominated solution’s degree of crowding in the target space is
calculated. The degree of crowding can be calculated by considering the difference in the
target value of a solution between its neighbors. The non-dominated solutions are then
sorted according to the degree of crowding.When selecting the next-generation population,
the solution with a greater crowding degree is preferentially chosen to ensure the uniform
distribution of solutions on the Pareto front. In the process of algorithm iteration, the
congestion value is constantly updated to reflect the distribution of solutions, and this can
be done by recalculating the congestion level after each iteration.

We set the formula for the crossover as shown below:

Vi(t+1)=Xr1(t )+F · (Xr2(t )−Xr3(t )) (8)

wherein V represents the vector of newly generated individuals, X denotes the vector
containing individuals within the population, i signifies the i-th generated individual, t
denotes the t-th iteration, and ‘F’ represents the variation factor. The variables ‘r1’, ‘r2’,
and ‘r3’ are distinct positive integers selected randomly to denote three different vectors
of individuals chosen from the population. One of these vectors serves as the base vector.
In contrast, the difference vectors of the other two individuals are weighted and added
to the base vector to derive the mutated individuals’ vector. The randomness in selecting
individuals from the parent population contributes to varied combinations, augmenting
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the population’s diversity. Notably, during the initial iterations, the disparity among
individuals is substantial, thereby bolstering robust global search capabilities. However,
as iterations progress, the discrepancy between individuals diminishes, enhancing the
algorithm’s aptitude for local convergence.

To further augment the population’s diversity, individuals slated for crossover
predominantly comprise the mutated individuals described earlier and those within
the original population. The crossover formula is articulated as follows:

uij(t+1)=

{
vij(t+1),rand(j)≤CRorj = h
xij(t ),rand(j)>CRorj 6= h

(9)

where ‘u’ denotes the individual after the crossover operation, ‘v’ denotes the individual
after the mutation operation, and ‘x’ denotes the individual within the parent population.
CR represents the crossover probability factor, ‘t’ represents the t-th iteration, ‘i’ signifies
the ith individual, where the total number of individuals equals the population size; ‘j’
denotes the j-th dimensional component, and ‘h’ is chosen as an integer ranging from 1 to
the number of variable dimensions and this ensures that the crossover-operated individual
retains at least one-dimensional component from the mutated individual.

The crossover probability factor determines the selection of components: if the random
number is less than or equal to CR, the element from the variant individual is utilized;
otherwise, the component from the original individual is retained for the operation.

Finally, a selection operation akin to genetic algorithms ensues, wherein the fitness
of individuals produced by the crossover-mutation operation is compared to the fitness
of the original individuals within the population. Superior individuals are selected to
progress into the subsequent generation. The algorithm iterates until it reaches the upper
limit of iteration, leading the population toward or approximating the optimal solution.
Throughout these operations—crossover, mutation, and selection—we introduce an
adaptive mutation operator within the differential evolution algorithm. This adaptation
aims to prevent the algorithm from converging into a local optimum owing to a reduction
in population diversity:λ= exp(1−

T
T+1− t

)

F = F0×2λ
. (10)

In the formula, T denotes the total number of iterations, and t represents the current
number. F denotes the variation operator; when the algorithm is initialized with t being 0,
F is close to 2F0, and as the iterations proceed, F decreases gradually and finally approaches
F0. Secondly, when its value is significant, the proportion of variation in the crossed
individuals is larger, which is suitable for local search, and relatively, when its value is
small, the proportion of the original population is larger. The diversity of the population is
better for global search. Therefore, the dynamic crossover factors we took are as follows:

CR=CRmin−
t · (CRmax−CRmin)

T
. (11)

The formula CRmaxCRmin contains the crossover factor’s maximum and minimum
values. Upon initialization of the algorithm, the cross-factor CR begins at its minimum
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value. Throughout subsequent iterations, CR progressively approaches its maximum value.
This progressive adjustment prioritizes global search in the algorithm’s initial stages while
focusing on local search in its later stages.

Electric power financial system
Next, we combine ‘Mathematical model of information management’ and ‘Improved
multiobjective differential evolutionary algorithm’ to carry outmultiobjective optimization
of the electric power financial system. The specific process is shown in Fig. 3, and its
operations are as follows:
Step 1: Define algorithm parameters, initialize each control variable, and set the iteration
count to i= 0.

Step 2: Conduct calculations based on variable values. Utilize the calculated state variable
values to derive the sub-goal function values for each individual. By assessing sub-objective
fitness, the selection operation is executed by employing dominance relationship calculation
and crowding. Retain NP individuals for the subsequent generation.

Step 3: Evaluate if the termination condition is met. If affirmative, proceed to step (5);
otherwise, continue with the subsequent operation.

Step 4: Determine the number of non-dominated solutions (level) value and compare
it against the population size. Based on this comparison, implement the three mutation
strategies mentioned in distinct scenarios. Subsequently, crossover operations will be
performed to enhance population diversity. Following mutation and crossover, integrate
the resultant populationwith the original one and return to step (2). Increment the iteration
count: i= i+1.

Step 5: Conclude the algorithm’s iterations. Retain nRep solutions designated as the
Pareto optimal solution set, determined through cyclic congestion calculations.

EXPERIMENTS AND ANALYSIS
This section uses Electric Power Assisted Steering data collected from the HIL at Volvo
(https://zenodo.org/records/3263796). We conduct experimental comparisons and analyses
involving AG-MOPSO (Kong, Wang & Zhao, 2021), INSGA-II (Chen, Fang & Zhong,
2022), and NSDE (Fu & Liu, 2019) algorithms. We select four test functions to gauge
algorithm performance—ZDT1, ZDT2, ZDT3, and DTLZ4—each featuring distinct
Pareto frontiers. The decision variable space comprises 30 dimensions for the first three
functions and 12 dimensions for the latter. These functions serve as benchmarks to evaluate
and compare the algorithms’ performance.

Evaluation indicators
We selected model evaluation indices categorized into convergence and distribution
metrics. Generational distance (GD) is the selected convergence evaluation index. The
specific expression for GD is represented by Eq. (12):

GD=
1
n

√√√√ n∑
i=1

d2i (12)
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Where ‘n’ represents the number of obtained Pareto solutions and di signifies the Euclidean
distance between the ith solution and the nearest real Pareto optimal solution.

Furthermore, the spatial measure (SP) is the chosen distributivity evaluation index. The
formula for SP is depicted as follows:

SP =

√√√√ 1
n−1

n∑
i=1

(
d̃
−di)2 (13)
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Where n is the number of Pareto solutions sought, di the minimum Euclidean distance
between the ith solution and the other individuals in the current solution set is.

Parameterization
In this article’s λPλUλQ scheme, the penalization factors and their selection are too large
to lead to overfitting and too small to converge to the feasible domain.

In this article, we choose λP = 100, λU = 300, λQ= 500. In addition, we choose F0 as
0.25. CRmax and CRmin are 0.9 and 0.1, respectively, and F0= 0.25.

The parameters of the algorithmAG-MOPSOare c1= 1, c2= 2,wmax= 0.6,wmin= 0.2,
and nGrid = 8.

The crossover rate of the algorithm INSGA-II is Pc= 0.7, and the variance rate is Pm=
0.1. The parameters of the algorithm NSDE are F0= 0.25,CRmax= 0.9,CRmin= 0.1. 0.1.

All algorithms retain a consistent number of Pareto optimal solutions set to 30 (step =
30) to ensure fairness in the test results; each algorithm operates with a population size of
45 and undergoes 100 iterations uniformly. For each of the 4 test functions, every algorithm
is independently run 20 times. The experimental results are derived from the mean and
standard deviation of GD and SP obtained across these independent runs.

Model comparison
The comparative analysis and evaluation of AG-MOPSO, INSGA-II, and NSDE with the
algorithms in this study reflect the performance of convergence evaluation metrics on the
test functions ZDT1 and ZDT2, as depicted in Fig. 4. The term ‘‘mean’’ denotes the average
value.

It’s observed that the distribution of the Pareto solution set generated by the
multiobjective particle swarm algorithm, utilizing the adaptive grid method, doesn’t
match the distributivity achieved by algorithms like NSDE, governed by cyclic congestion
degree. Specifically, the mean values of NSDE on ZDT1 and ZDT2 are 0.0018 and 0.0049,
respectively. During these instances, the convergence evaluation indexes are recorded at
0.00048 and 0.0038, respectively.

Furthermore, the performance of the constructed and enhanced multiobjective
optimization algorithm in this study surpasses NSDE in terms of convergence. Specifically,
the GD values of this algorithm are smaller than the previous three algorithms, showcasing
better convergence. On ZDT1 and ZDT2, this algorithm’s convergence evaluation indexes
are 0.000938 and 0.0034, respectively. Remarkably, the average value of ZDT2 reaches
0.0029, notably lower than that of AG-MOPSO, INSGA-II, and NSDE, which are 0.0003,
0.10004, and 0.0014, respectively. The reduction of the mean means that the solutions are
more evenly distributed in the target space, which helps to ensure that the convergence
distribution in the power financial information management also has better uniformity.
At the same time, it also means that the solutions are more dense in the target space,
which helps to ensure that the convergence distribution in power financial information
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Figure 4 The convergence evaluation index performance of each scheme on ZDT1 and ZDT2.
Full-size DOI: 10.7717/peerjcs.2023/fig-4

management has a higher quality. The convergence distribution of the proposed algorithm
in power financial information management will be more robust.

The comparison of distributional evaluation metrics based on the performance of
convergence evaluation metrics is demonstrated in Fig. 5 through experiments conducted
on each of the four test functions.

Observing the average values and the results of distributional evaluation indexes on
ZDT1 and ZDT2, it is evident that the SP values of this scheme and NSDE are similar in
these functions. Specifically, on ZDT1, the SPs of this scheme and NSDE are 0.0018 and
0.0025, respectively. Notably, the SP of this article’s scheme is smaller than that of NSDE,
indicating a superior distributability on ZDT1 with a more even distribution.

However, on ZDT2, the SPs of this scheme andNSDE are 0.0026 and 0.0023, respectively.
Here, the SP of this article’s scheme is more significant than that of NSDE, suggesting a
slightly lesser distributional uniformity than NSDE on ZDT2. Further analysis of the
results of ZDT3 and ZDT4 shows that the mean values of AG-MOPSO and INSGA-II have
changed somewhat, and the mean values of AG-MOPSO on ZDT3 and ZDT4 are 0.315 and
0.1286, respectively. Themean value of INSGA-II on ZDT3 and ZDT4 is 0.6673 and 0.0721,
respectively, while the mean value and SP value of the proposed scheme are much smaller
than that of the comparison scheme; this indicates superior distributability performance
across most test functions, showcasing more even distributions for the proposed model.

The iteration curve of the multiobjective optimization algorithm, showcased in Fig. 6.
delineates the incremental enhancement of the solution throughout each iteration. The
curve originates from a random solution at the outset of the multiobjective differential
evolutionary algorithm. As the algorithm navigates through its search process, the quality of
the optimal solution gradually ascends. The solution incrementally approaches or achieves
an improved optimal state, eventually reaching a locally optimal solution around the 70th
iteration, and this implies that within the current search area, no further superior solution
can be found. Ultimately, the algorithm converges to the globally optimal solution.

As iterations progress, the curve gradually converges the solution quality to
approximately 0.002, indicating a deceleration in solution enhancement until it reaches a
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Figure 5 The performance of different models under four test functions.
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stable state. The curve depicts that the improvement in the solution gradually slows down,
signifying the attainment of a stable state.

The representation in Fig. 7 contrasts the true Pareto of the ZDT1 and ZDT2 test
functions, aligned against the Pareto optimal solutions achieved by this article’s scheme
using the specified parameters. The orange line segments in the visualization depict the
optimized Pareto solution set obtained through this article’s scheme. At the same time, the
red dots represent the true Pareto frontiers derived from the functions’ authentic optimal
solution set data.

Remarkably, the figure illustrates that the Pareto optimal solution set optimized by the
algorithm aligns closely with the actual Pareto front. Moreover, the distribution of the
optimal solution set across the Pareto front appears relatively uniform, which validates the
algorithm’s strong convergence and distribution qualities, affirming the correctness of the
algorithm improvement and its efficacy.

Ablation experiments
In the pursuit of further evaluating the performance of the enhanced multiobjective
optimization algorithm, ablation experiments were conducted in this subsection, with
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 Figure 7 (A–B) Comparison between the real Pareto frontier and the Pareto optimal solution.
Full-size DOI: 10.7717/peerjcs.2023/fig-7

results displayed in Fig. 8. These experiments aimed to gauge the impact of removing the
improved modules within the algorithm.
M1 signifies the outcome when neither equation constraints nor inequality constraints

are employed. This absence of constraints leads to challenges in achieving improved results
during the genetic algorithm’s optimization process, primarily because the state variables
in power system optimization remain unconstrained.

M2 and M3 represent outcomes when adaptive variability and operator dynamic cross
factors are excluded or included independently. Under M2, GD and SP measure at 0.0091
and 0.0063, respectively. For M3, GD and SP values are recorded at 0.0042 and 0.0045,
respectively. These results underscore the significance of adaptive mutation in enhancing
the performance of the multiobjective optimization algorithm. Adaptive mutation plays
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a critical role in driving performance improvements within the algorithm. M4 represents
the proposed model.

The simultaneous integration of economic, environmental, and social objectives within
the power system is a complex and multifaceted task that requires the integration of
multiple factors. We employ an integrated multiobjective optimization approach that
combines advanced technical means and decision-support tools to achieve this.

First, we build the information management model. We use the fuel cost of the thermal
power generator set, active power network loss of power system, and voltage quality
as the optimization objectives of the intelligent power financial system and establish the
mathematical model of each objective. In this model, we can use various indicators for cost-
benefit analysis, environmental and social impact assessments, etc. At the same time, taking
into accountmultiple constraints in the power system, such as fuel cost, power system active
network loss, voltage quality, etc., the adjustment of these parameters is integrated with
the goal of economical and efficient development, protection of the energy environment
and socially sustainable development. Using a multiobjective optimization algorithm with
adaptive variation, we can find solutions that maximize economic, environmental, and
social benefits under all constraints.

DISCUSSION
The analysis outlined in ‘Model comparison’ and ‘Ablation experiments’ demonstrates
the enhanced efficacy of our refined multiobjective optimization algorithm across all four
ZDT1, ZDT2, ZDT3, and ZDT4 test functions. Simultaneously, the augmentation of the
Pareto optimal solution’s performance in our multiobjective optimization algorithm has
been a consistent endeavor, and this has been achieved by integrating non-equation and
inequality constraints governing the state variables within power system optimization.
Additionally, adaptive variational and operator dynamic crossover factors have been
instrumental in this optimization. In electric power financial systems, the optimization
of information management is essential to intelligent processing, and its ultimate goal is
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to improve the allocation efficiency of material and financial resources. The improved
multiobjective optimization algorithm can adequately deal with multiple conflicting
objectives and show adaptability in uncertain factors and abnormal situations. This ability
enables decision-makers to consider issues more comprehensively and carefully and make
more informed decisions, significantly improving decision-making efficiency.

With the continuous development of the power market and the increasingly fierce
competition, the requirements for financial management of electric power enterprises
are also increasing. The information management model based on the multiobjective
optimization algorithm we built provides more comprehensive and accurate financial
analysis and decision support for electric power enterprises. Through the extensive study of
historical and real-time data, themodel can providemore accurate financial risk assessment
and early warning for electric power enterprises, thus significantly enhancing financial risk
management ability.

This enhancement of risk management ability helps power enterprises achieve
sustainable development, promotes technological innovation, and upgrades the entire
power industry. By optimizing the management of power financial information, we can
improve the rationality of resource allocation and the competitiveness and development
level of the power industry. In this study, we design the objective function based on three
key objectives: fuel cost, active network loss, and voltage quality of the power system. This
designmethod not only helps us understand the complexity of power financial information
management more profoundly but also can optimize the allocation of resources, such as
material, financial, and other vital resources. In this way, we support the intelligent
development of power financial information management, laying a solid foundation for
the future development of the power industry.

Considering that only three algorithms were chosen for improvement and problem-
solving, as the number of objectives expands, it becomes imperative to delve into novel
enhancements for intelligent multiobjective optimization algorithms. This exploration
aims to guarantee robust convergence and distribution in these algorithms. At the same
time, power financial information management is a continuous process that must be
dynamically adjusted and optimized according to the actual situation. Therefore, we will
discuss the effect of other intelligent algorithms to solve the multiobjective problem of the
power financial system in the future and update and optimize management strategies in
real-time according to the changes in the power market, policy adjustments, and other
factors to ensure the accuracy and effectiveness of the power financial information.

CONCLUSION
This study focuses on enhancing the multiobjective differential evolutionary algorithm
concerning optimizing fuel cost, active network loss, and voltage quality within the power
financial system. To address this, mathematical models corresponding to each objective
have been formulated. Equation and inequality constraints are introduced, with state
variables constrained through penalty functions. The differential evolutionary algorithm
is then applied for refinement, optimizing the algorithm’s parameters considerably.
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Subsequently, experiments utilizing standard test functions are conducted, showcasing the
algorithm’s enhanced performance resulting from these refinements. The Pareto frontiers of
the power system’s two-dimensional and three-dimensional objective spaces are computed
for each algorithm. Comparative analysis between the improved differential evolution
algorithm and its predecessor demonstrates the superior efficacy of the refined approach.
The experiments validate each algorithm’s effectiveness in resolving the multiobjective
optimization challenges within the power financial system.
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