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ABSTRACT
Our study focuses on Traditional Chinese Medical (TCM) named entity recognition
(NER), which involves identifying and extracting specific entity names from TCM
record. This task has significant implications for doctors and researchers, as it enables
the automated identification of relevant TCM terms, ultimately enhancing research
efficiency and accuracy. However, the current Bidirectional Encoder Representations
from Transformers-Long Short Term Memory-Conditional Random Fields (BERT-
LSTM-CRF) model for TCM NER is constrained by a traditional structure, limit-
ing its capacity to fully harness the advantages provided by Bidirectional Encoder
Representations from Transformers (BERT) and long short term memory (LSTM)
models. Through comparative experiments, we also observed that the straightforward
superimposition of models actually leads to a decrease in recognition results. To
optimize the structure of the traditional BERT-BiLSTM-CRF model and obtain more
effective text representations, we propose the Dyn-Att Net model, which introduces
dynamic attention and a parallel structure. By integrating BERT and LSTM models
with the dynamic attention mechanism, our model effectively captures semantic,
contextual, and sequential relations within text sequences, resulting in high accuracy.
To validate the effectiveness of our model, we compared it with nine other models
in TCM dataset namely the publicly available PaddlePaddle dataset. Our Dyn-Att Net
model, based on BERT, outperforms the othermodels, achieving an F1 score of 81.91%,
accuracy of 92.06%, precision of 80.26%, and recall of 83.76%. Furthermore, its robust
generalization capability is substantiated through validation on the APTNER, MSRA,
and EduNERdatasets. Overall, theDyn-Att Netmodel not only enhancesNER accuracy
within the realm of traditional Chinese medicine, but also showcases considerable
potential for cross-domain generalization. Moreover, the Dyn-Att Net model’s parallel
architecture facilitates efficient computation, contributing to time-saving efforts inNER
tasks.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computational Linguis-
tics, Natural Language and Speech, Neural Networks
Keywords Traditional Chinese medical, Named entity recognition, Dynamic attention mecha-
nism, BERT, LSTM, CRF

INTRODUCTION
Traditional Chinese medicine (TCM) serves as a time honoured cornerstone of China’s
healthcare system, its roots reaching back over thousands of years, enriched by extensive
clinical wisdom. Central to TCM’s theoretical framework are the profound concepts of
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yin-yang equilibrium and the harmonious interplay of the five fundamental elements (Long
et al., 2019). TCM perceives the human body not in isolation, but rather as an integral part
of the broader natural ecosystem, emphasizing the intricate connection between human
health and the external environment (Chu et al., 2020).

During the unprecedented global upheaval brought about by the COVID-19 pandemic,
TCM emerged as a beacon of hope and healing. Its contributions in alleviating symptoms
and complementing conventional medical approaches garnered significant attention
and piqued the curiosity of scholars and practitioners worldwide (Ni et al., 2020). This
newfound recognition has elevated TCM’s status beyond national boundaries, making it a
subject of international research and exploration.

The textual treasure trove of TCM, brimming with centuries of accumulated knowledge,
holds immense value in both commercial and social spheres. Yet, the sheer volume of
information within this repository poses a formidable challenge—how to efficiently sift
through this wealth of text and leverage the power of artificial intelligence for information
extraction and automated processing (Ren, 2020). This undertaking represents not only
a critical component of preserving and fostering Chinese cultural heritage, but also a
dynamic and ever evolving field at the forefront of global medical research. The fusion of
ancient wisdom andmodern technology in the context of TCMopens new avenues not only
for healthcare, but also for understanding the intricate relationship between traditional
practices and contemporary science. Thus, TCM embodies the essence of a living tradition,
continuously adapting and shaping the healthcare landscape in profound ways.

Named entity recognition (NER) can automatically identify entities with specific
meanings from text, classify and annotate them, and provide reliable information support
and semantic understanding. Simultaneously, TCM NER carries substantial significance.
It empowers us to automatically detect and annotate critical data within texts pertaining
to traditional Chinese medicine. NER plays a pivotal role in enhancing the management
of knowledge in the medical field, rendering medical related information more easily
retrievable and applicable (Yousef et al., 2020). Furthermore, NER serves as the cornerstone
for constructing specialized knowledge graph in TCM (Osman, Noah & Saad, 2022;
Abu-Salih et al., 2023), thereby accelerating research in Chinese herbal medicine, the
identification of potential drug candidates, and the dissemination of invaluable healthcare
insights rooted in the principles of TCM.

However, in comparison to general domain NER, NER in the field of TCM faces a
unique set of challenges. Firstly, TCM NER encompasses a plethora of specialized terms
and named entities, such as herbal medicine, TCM treatments, and prescriptions. When
these entities are labeled using the Begin, Inside, Outside (BIO) tagging scheme, it results
in a more intricate and diverse set of labels. Table 1 illustrates the BIO labels employed in
our study, totaling 11 distinct entity types.

Secondly, the TCM domain is replete with specialized terminologies, contributing
to increased structural complexity within the text (Liu et al., 2023a). Consequently, the
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Table 1 TCM entity labeling form.

Entity type Marking form

TCM diagnosis B-TCM diagnosis, I-TCM diagnosis
Western medicine diagnosis B- Western medicine diagnosis, I- Western medicine

diagnosis
TCM treatment B- TCM treatment, I- TCM treatment
Chinese herbs B- Chinese herbs, I- Chinese herbs
TCM syndrome B- TCM syndrome, I- TCM syndrome
Prescription B- Prescription, I- Prescription
TCM treatment principles B- TCM treatment principles, I- TCM treatment principles
Clinical manifestations B- Clinical manifestations, I- Clinical manifestations
Western medicine treatment B- Western medicine treatment, I- Western medicine

treatment
Other treatments B- Other treatments, I- Other treatments
Non-Entity 0

柴胡达原饮治疗脾胃湿热型功能性消化不良随机对照试验柴胡达原饮治疗脾胃湿热型功能性消化不良随机对照试验

Prescription
TCM

syndrome
Western medicine

 diagnosis

Text：：

Tag:

Figure 1 An example of TCM corpus.
Full-size DOI: 10.7717/peerjcs.2022/fig-1

process of NER becomes notably more demanding. Figure 1 presents an example from the
dataset used in this research.

Lastly, prevailing NERmodels in the TCM domain predominantly rely on BERT-LSTM-
CRF architecture due to the unique advantages offered by each component. BERT, as a
pre-trained language model, excels at capturing contextual information and semantic
features from text data, while long short term memory (LSTM) is adept at capturing
sequential dependencies within text sequences. The conditional random field (CRF)
layer, on the other hand, enables the modeling of label dependencies and enhances the
coherence of predicted sequences. However, this model structure is relatively simplistic,
predominantly concatenating individual sub-models. This leads to suboptimal overall
model efficiency and may fail to fully capture crucial text features. The experimental results
of this study indicate that simply stacking sub-models does not necessarily yield accuracy
improvements (Shen, Lin & Huang, 2016). For instance, the inclusion of LSTM between
BERT and CRF could inadvertently blur the representation of text features that BERT has
processed, potentially impacting overall performance.

To better address these challenges and accurately identify named entities in the field
of TCM, we propose Dyn-Att Net. This model optimizes the structure of the traditional
BERT-BiLSTM-CRF model by employing parallel pathways for encoding and feature
extraction of the input text sequence. One pathway utilizes BERT to encode words into
word vectors and extract semantic features, while the other pathway employs LSTM to
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capture contextual relationships. Following feature extraction, we introduce a dynamic
attention mechanism to fuse the two representations based on their importance for
TCM NER tasks, resulting in more effective text representation. Finally, the fused text
representations are fed into the CRF layer for label prediction, effectively recognizing
complex professional terminologies in TCM NER.

The main contributions of this article can be summarized as follows: (1) We introduce
the Dyn-Att Net model for Traditional Chinese Medicine Named Entity Recognition
(TCM NER) tasks. By incorporating a dynamic attention mechanism and fusing the
representations from the BERT and LSTM pathways based on their importance, we achieve
more effective text representations. (2) We propose a parallel architecture instead of a
sequential structure to minimize unnecessary waiting time in TCM NER deep learning
models. (3) Extensive experimental results demonstrate that our proposed Dyn-Att Net
model can significantly improve the TCM NER performance. Furthermore, these results
confirm our model’s strong generalization capabilities and outstanding performance
across various domains, as demonstrated through experiments on the APTNER, MSRA,
and EduNER datasets.

The remainder of the article is organized as follows. ‘Related Work’ reviews the related
work on TCM NER. ‘Materials and Methods’ presents the main idea of the proposed
Dyn-Att Net model. ‘Experimental Settings’ demonstrates the experimental results and
analysis. ‘Experimental Results and Analysis’ concludes our work.

RELATED WORK
Named entity recognition
The dictionary and rule based method is an early approach to NER that uses pre-built
dictionaries and some rules to identify named entities in text (Salah et al., 2022; Tarmizi
& Saad, 2022). Humphreys et al. (1998) developed the LaSIE-II system for the MUC-7
task, which used rule-based methods to implement a NER system. Bao, Song & Zhang
(2022) proposed a novel NER method for Traditional Chinese Medical classics, combining
semi-supervised learning and rule-based approaches. Experimental results demonstrated
its effectiveness. However, this approach required much workforce to build dictionaries
and rules, and identifying newly named entities may have been significantly affected.

The machine learning based method can better adapt to different text data types, fields,
and languages than the rule-based method. Machine learning based methods for NER
mainly include the hidden Markov model (HMM) (Rabiner, 1989), the support vector
machines (SVM), and the conditional random fields (CRF) (Lafferty, McCallum & Pereira,
2001). Among them, the CRF model is the most common. Lei et al. (2014) used this
model for NER in the medical records of the Peking Union Medical College Hospital,
and the results were better than those of SVM and maximum entropy (ME). Zhang et al.
(2023) stressed the need for multi-class NER in TCM, covering various entity types like
herbal names, prescriptions, and medical conditions. Conventional machine learning is
less suitable for TCM NER’s complexity (Xu et al., 2021), so researchers combine domain
knowledge and deep learning techniques to improve recognition, given the unique nature
of TCM. Wang et al. (2014) concentrated on symptom name recognition (SNR) within
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TCM records. They utilized sequence labeling techniques, favoring CRF over HMM and
MEMM for SNR. However, the study’s scope was restricted to SNRwithin chief complaints,
which was one aspect of TCM records.

With the advancement of deep learning research, further optimizations have been
made to NER. Deep learning enables the learning of more complex language features and
handles problems inNER such as ambiguity and cross-domain recognition. Currently, deep
learning-based methods for NER mainly include Word2Vec (Mikolov et al., 2013b), LSTM
(Greff et al., 2016), Transformer (Vaswani et al., 2017), Bert (Devlin et al., 2018), and other
models. Deng, Fu & Chen (2021) proposed a Robustly optimized Bidirectional Encoder
Representations from Transformers a method for automatically recognizing entities in
TCM patent texts, achieving superior performance over baseline methods. However, this
method cannot handle complex sentence structures and specific domain terms in TCM
patent texts. Wang et al. (2022a) proposed the BERT-BiGRU model and used Softmax
to identify patients’ diseases, thus helping TCM practitioners make clinical decisions. Yu
et al. (2022) focused on Mineral NER from unstructured Chinese mineral texts, whereby
significant achievements were obtained using the BERT-BiGRU-CRF model. Chang et al.
(2021) proposed that the BERT-BiLSTM-IDCNN-CRFmodel enhances NER by addressing
polysemy and context issues in TCM NER. Experiments on the CLUENER dataset showed
81.18% F1 score, outperforming the BiLSTM-CRF benchmark by 4.79%. Yanling et al.
(2021) used BiLSTM and CRF to extract information from unstructured Chinese medicine
records and built a Chinese medicine knowledge graph using Neo4j. Souza, Nogueira &
Lotufo (2019) used the BERT-CRF architecture for Portuguese NER tasks and achieved
good results by fine tuning the model on the HAREM I dataset.

The BERT-LSTM-CRF model is one of the most popular NER models and has been
proven effective inmany experiments.Qu et al. (2020) used the BERT-BiLSTM-CRFmodel
for NER in TCM texts and showed excellent performance, partially solving the challenge of
recognizing ambiguous entities in TCM. Liu et al. (2023b) addressed the need for structured
knowledge in citrus pests and diseases, and proposed a model using BERT-BiLSTM-CRF
for entity extraction. Xuefeng et al. (2022) developed an ALBERT-BiLSTM-CRF model for
NER in TCM traumatology electronic medical records, which has fewer parameters and
reduces hardware requirements during model training. Yang et al. (2022) compared four
different pre-training models namely BERT, A Lite Bidirectional Encoder Representations
fromTransformers (ALBERT) (Lan et al., 2019), Robustly optimized Bidirectional Encoder
Representations fromTransformers approach (RoBERTa) (Liu et al., 2019), GPT2 (Radford
et al., 2019), and GPT3 (Brown et al., 2020) using a TCM dataset. They confirmed the
effectiveness of combining pre-training models with BiLSTM-CRF.

While the above mentioned research methods have shown promising results, they
all adopt conventional sequential structures, leading to low efficiency and inability to
effectively exploit the specific advantages of each algorithm and model. Hence, we propose
a solution to this problem based on the dynamic attention network (Dyn-Att Net), which
aims to overcome these limitations by introducing a more adaptive and dynamic approach,
allowing for a more efficient integration of diverse algorithms andmodels. This, we believe,
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will lead to a more effective and nuanced understanding of the intricate patterns present
in TCM data.

Attention mechanisms
The utilization of attention mechanisms in NER processes is paramount for enhancing the
performance and efficacy of neural network-based models. By dynamically learning the
importance weights of different positions in text sequences (Galassi, Lippi & Torroni, 2020),
attention mechanisms facilitate the extraction of relevant information, thereby improving
the accuracy and robustness of NER systems. Presently, a wealth of research substantiates
the notion that the utilization of attention mechanisms typically yields commendable
outcomes (Gkoumas et al., 2021; Zhu et al., 2023).

Attention mechanisms can enhance information utilization, as demonstrated by Jin
et al. (2019), Zhang et al. (2022), Liu et al. (2021), Kong et al. (2021), and Zhao et al. (2021),
thus enabling models to capture both local and global information within text sequences
effectively. This enhanced information utilization allows the models to discern subtle
patterns and dependencies crucial for accurate entity recognition.

Models equipped with attention mechanisms, such as the character-based gated
convolutional recurrent neural network with attention (GCRA) proposed by Jin et al.
(2019), and the Dynamic Cross and Self-lattice Attention Network (DCSAN) introduced
by Zhao et al. (2021), exhibit adaptability to complex textual structures. This adaptability
is essential, particularly in languages like Chinese, where characters and words may convey
nuanced semantic information.

Incorporating attention mechanisms allows for the integration of multi-level features,
as demonstrated by Kong et al. (2021). By combining multi-level convolutional neural
networks (CNN) with attention mechanisms, the model can capture hierarchical
representations of entities, enhancing the discernment of fine-grained correlations in
the character-word space.

Attention mechanisms also have improved performance in domain-specific NER
tasks, such as traditional Chinese medicine named entity recognition (Liu et al., 2021). By
introducing novel word character-integrated self-attention modules, models can effectively
identify domain-specific entities, showcasing the significance of attention mechanisms in
addressing the challenges inherent to specialized domains.

In essence, the integration of attention mechanisms in NER processes enhances
information utilization and adaptability, facilitates the integration of multi-level features,
and improves performance in domain-specific tasks. Inspired by the aforementioned
research methodologies, we designed a dynamic attention mechanism to effectively
integrate the representations generated by the BERT and LSTM models. This mechanism
adaptively adjusts the importance of BERT and LSTM models for the NER task, thereby
fully leveraging the advantages of both models.
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MATERIALS AND METHODS
In this section, we commence by presenting an overview of the overall architecture of the
Dyn-Att Net model. Following that, we provide a detailed explanation of the deep learning
models employed within the Dyn-Att Net model. Finally, we elaborate on the deployment
of the dynamic attention mechanism within the Dyn-Att Net model.

Overall architecture
Due to the simple structure of the BERT-BiLSTM-CRFmodel and its low training efficiency,
it takes work to handle more complex tasks. In this study, we propose the Dyn-Att Net
model based on the traditional BERT-BiLSTM-CRF model. First, the input text sequence
is not simply encoded into word vectors through BERT, but rather encoded and feature
extracted through two different paths. One path uses BERT to encode words into word
vectors and extract semantic features, and BERT itself encodes the text sequence into word
vectors. The other path uses LSTM to extract contextual relationships. Since LSTM cannot
encode words into word vectors, we first use Word2Vec to build a word vector table for
the corresponding corpus, encode the words in the input sequence into word vectors by
looking up the word vector table, and then pass them to LSTM. For the features extracted
by these two paths respectively, this study uses a dynamic attention mechanism to fuse
them, which is conducive for retaining the advantages of both the BERT and LSTMmodels.
Next, the fused attention value matrix is passed into CRF as an emission matrix, combined
with the transition matrix trained by CRF itself, and the label with the highest probability
is selected as the output of the final model. The Dyn-Att Net model is shown in Fig. 2.

Dyn-Att net layer
After processing the input text through parallel BERT and Word2Vec-LSTM models, two
distinct feature representations are obtained. The BERT-based representation encompasses
richer semantic features, while the Word2Vec-LSTM-based representation captures more
contextual features. Subsequently, these two sets of features are passed to the Dyn-Att net
layer, where they complement each other’s advantages, combining to yield a higher-level
feature correlation representation. The Dyn-Att net is a type of attention mechanism
used in deep learning, which can help models automatically learn higher-level feature
representation in different feature representations and dynamically adjust weights to
improve performance. For NER tasks, the attention weights of context information and
semantic relationships can be dynamically adjusted to improve the accuracy of NER.
This study designs a dynamic attention structure based on this principle. The model first
averages and transforms the outputs of LSTM and BERT into two numerical values using
a linear network. Then, the tanh activation function is used to map these two values into
the range of [−1,1], and they are concatenated into a 2D vector. The attention weight
values are computed using the Softmax function, and the outputs of LSTM and BERT are
weighted accordingly. Finally, the weighted results are added to obtain the attention values
dynamically combining BERT and LSTM. This approach can help models automatically
learn critical information in input sequences and dynamically adjust weights to improve

Hou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2022 7/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2022


Figure 2 The overall architecture of the Dyn-Att Net.
Full-size DOI: 10.7717/peerjcs.2022/fig-2

performance, thereby improving model robustness and optimizing model structure. The
Dyn-Att Net structure is shown in the right side of Fig. 2.
We denote the outputs processed through LSTM as T and those processed through BERT

as B. First, we compute the mean of these two vectors, followed by linear transformation
and activation function processing:

T ′=mean(T )
B′=mean(B)
T ′′= Linear(T ′)=Wt ′T ′+bt ′
B′′= Linear(B′)=Wb′B′+bb′
T ′′′= tanh(T ′′)
B′′′= tanh(B′′).
WhereWt ′ ,Wb′ are weights, bt ′ and bb′ are bias. Next, by concatenating the two vectors

and mapping them to the same space, and then applying a Softmax operation, we obtain
the corresponding weight coefficients for T and B. These weight coefficients dynamically
adjust with variations in input and the effectiveness of LSTM and BERT:

Concat (T ′′′,B′′′)= [T ′′′;B′′′]
[Wt ;Wb] = Softmax(Concat (T ′′′,B′′′))
Finally, the attention values, denoted as V , are computed by combining the results:
V =WtT+WbB.

BERT layer
BERT (Devlin et al., 2018) is an encoder model based on the Transformer architecture.
By pre-training on a large corpus of unannotated data, it learns a universal language
representation, which can be fine-tuned for downstream tasks such as text classification,
sequence labeling, and question answering. The word embedding layer of BERT includes
three parts: token embedding, segment embedding, and position embedding, which are
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Figure 3 BERTmodel.
Full-size DOI: 10.7717/peerjcs.2022/fig-3

summed together to represent the input sequence as a vector. Pre-training in BERT consists
of two main phases: masked language model (MLM) and next sentence prediction (NSP),
which learn language modeling and sentence relationships. MLM requires BERT to predict
masked words, like completing a fill-in-the-blank exercise, while NSP randomly selects two
sentences and predicts whether they are contiguous. BERT models generally come in 12
layers and 24 layers, with each layer composed of Transformers. Their main contribution
is the universal language representation learned through pre-training, which can be shared
and transferred across various natural language processing tasks, significantly improving
their performance. The BERT model is shown in Fig. 3.

Word2Vec layer
Word2Vec (Mikolov et al., 2013a) is a type of distributed representation model for word
vectors. It includes two models, continous bag-of-word (CBOW) and Skip-gram. In the
CBOW model, the center word is inferred from the words in its context, which is defined
by the window size. The inference process uses a three layer neural network, so the text
must be onehot encoded before being passed into the CBOWmodel to vectorize the words
for computation and optimization. Finally, Softmax is used to calculate the probability and
output the word with the highest probability, achieving the goal of predicting the center
word. The Skip-gram model is the opposite of the CBOW model, inferring the context
words from the center word. The CBOW and Skip-gram models are shown in Fig. 4.

LSTM layer
LSTM (Hochreiter & Schmidhuber, 1997) is a type of recurrent neural network (RNN)
model developed to address the issue of vanishing and exploding gradients in traditional
RNN models. In traditional RNNs, the gradient can exponentially increase or decrease
during backpropagation, making it difficult to propagate the gradient effectively in deep
networks. LSTM overcomes this problem by introducing structures such as forget gates,
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Figure 4 The CBOWmodel on the left and the Skip-grammodel on the right.
Full-size DOI: 10.7717/peerjcs.2022/fig-4

update gates, and output gates to control the gradient, and it has achieved good results in
long sequence tasks. The architecture of LSTM is shown in Fig. 5.

Firstly, there are three inputs to the LSTM model: Ct−1, which records information
from the previous time step, andHt−1, which represents the hidden state. Furthermore, Xt

represents the input information at the current time step. Ht−1 and Xt are concatenated
and passed to the LSTM model. The first gate is the forget gate, which uses the sigmoid
function to forget the less important information. The second gate is the update gate,
split into two paths: one path normalizes the input using the tanh activation function. In
contrast, using the sigmoid function, the other path forgets the less critical information.
The final result is obtained by multiplying the results of the two paths and adding them to
Ct−1 to obtain the updated information Ct , which will be the input for the next time step.
The third gate is the output gate, which applies the tanh function to normalize Ct and uses
the sigmoid function to determine the information to be output for the current time step.

Ft = δ(Wf Xt +UfHt−1+bf )
It = δ(WiXt +UiHt−1+bi)
Ot = δ(WoXt +UoHt−1+bo)
Ĉt = tanh(WcXt +UcHt−1+bc).
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Figure 5 LSTMmodel.
Full-size DOI: 10.7717/peerjcs.2022/fig-5

The above explanation outlines the process of computing. The specific formulas for these
calculations are shown below, where W and U are weight values, b is the bias parameter,
and δ represents the sigmoid function.

CRF layer
CRF (Sutton & McCallum, 2012) is an undirected graphical model in which nodes represent
variables and edges represent relationships between variables, and the weights on nodes and
edges are all related to probabilities. The CRF model predicts the optimal label sequence
through Viterbi decoding, implemented based on dynamic programming. The expression
for Viterbi decoding is as follows:

y∗= argmax p(y|x
′

W ,b).
Due to the constraints set on the predicted labels by CRF, the model can avoid illegal

label sequences and improve recognition accuracy. Suppose a text input sequence
is X = (X1+X2+ ..+Xi+ ..+Xn), where the subscript of X represents the index
position of the word in the text. The corresponding output sequence to the text is
Y = (Y1+Y2+ ..+Yi+ ..+Yn). When the sequence satisfies the corresponding Markov
distribution, it can be represented by the CRF model:

p(y|x;W ,b)=
∏n

i=1φi(yi−1,yi,x)∑
y′ ∈Y (z)

∏n
i=1φi(y

′

i−1,y
′

i ,x)
.

Here, φi(y
′

i−1,y
′

i ,x)= EXP(W T
y ′ ,y

xi+byi,y). In this formula, W T
y ′ ,y

represents the weight

parameter of predicting the next label y when the previous label is y
′

, and byi,y represents
the offset of this linear expression. The numerator represents the probability of the optimal
path, and the denominator represents the probability of all possible paths.
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The calculation method of the loss function in CRF is different, and it usually uses the
log-likelihood function for calculation. The expression for the log-likelihood function is as
follows:

L(W ,b)=
∑

i logp(y|x;W ,b).

EXPERIMENTAL SETTINGS
To validate the effectiveness of the Dyn-Att Net model, this topic encompasses a
comprehensive experimental design. We begin by introducing the datasets employed
in this research. Subsequently, we present the four evaluation metrics utilized in the
experiments. Finally, we provide details regarding the experimental setup, including the
environmental conditions and model parameters.

DataSet
The dataset (Qiangchuan, 2022) used in this study was sourced from the open source
dataset provided by Baidu on the PaddlePaddle platform. The dataset consists of 6,574
sentences, with approximately 5,259 sentences in the training set, 657 sentences in the
validation set, and 658 sentences in the test set. The dataset primarily consists of electronic
medical records in traditional Chinese medicine. It encompasses 10 labels, including 15,846
entity types and 183,900 non-entity types. The details are shown in Table 2.

BIO tags are used in this study dataset. The primary role of BIO tags is to label whether a
word belongs to an entity and provide information for each entity’s start and end position.
Due to the specificity of text data in the field of TCM, it contains a considerable number
of entity types; there are are 11 entity types used in this study. The BIO annotation form is
shown in Table 3.

Evaluation indices
In NER tasks, the following four metrics are commonly used to evaluate the performance
of models. Precision refers to the proportion of samples predicted by the model as named
entities. Accuracy refers to the ratio of all correctly predicted samples to total samples. Recall
refers to the proportion of all indeed named entities correctly expected as named entities
by the model. The F1-score is the weighted average of precision and recall, representing a
performance metric considering both precision and recall. The corresponding calculation
formula is as follows:

Precision= TP
TP+FP ×100%

Accuracy = TP+NP
TP+FN+FP+TN ×100%

Recall = TP
TP+FN ×100%

F1− score= 2×Precision×Recall
Precision+Recall ×100%.

Experimental environment
The experimental environment is shown in Table 4.

Experimental parameters
Isnain, Sihabuddin & Suyanto (2020) employed Word2Vec with a CBOW structure for
tweet vectorization, followed by LSTM for feature extraction to detect hate speech. They
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Table 2 Distribution of entity types in the dataset.

Entity category name Number

TCM diagnosis 336
Western medicine diagnosis 3,082
TCM treatment 1,325
Chinese herbs 3,540
TCM syndrome 1,464
Prescription 1,243
TCM treatment principles 397
Clinical manifestations 3,812
Western medicine treatment 562
Other treatments 85

Table 3 BIO tagging meaning.

BIO Marker meaning

B Indicates the location of the start of the entity
I Indicates the position inside the entity
O A tag indicating that it does not belong to any entity

Table 4 Experimental environment.

Experimental environment configuration Introduce

Deep learning framework Pytorch 1.10.1
Programming language Python 3.8
Memory 8GB
Hard disk 1TB
GPU RTX 3090

achieved a commendable F1 score of 96.29%. Their CBOW training involved 10 epochs,
a hidden layer with 200 neurons, and a window size of 5. Consequently, we adopt these
identical parameters for theWord2Vec layer of the Dyn-Att Net model in our study, aiming
for improved outcomes. Table 5 provides the specific parameter settings.

In order to find a set of parameters suitable for the Dyn-Att Net model, the experiments
in this subsection focus on four parameters of the model namely Epoch, Batch size,
optimizer, and learning rate. The results of the four comparison experiments are presented
in Tables 6 to 9.

After conducting various experiments and evaluations, we determined the optimal
parameter settings for our model. In the Epoch parameter comparison experiment,
increasing the Epoch value resulted in improved accuracy, precision, recall, and F1 score.
The model exhibited its best performance at Epoch 30 and 35, with identical metrics. This
result suggests that increasing the epoch beyond 30 did not lead to further improvements
in model performance. Therefore, we chose Epoch 30 as the optimal choice. Similarly,
in the batch size comparison experiment, a batch size of 64 yielded the highest accuracy,
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Table 5 Word2vec algorithm related parameters.

Parameter names within theWord2Vec Parameter value

Epoch 10
Vector size 200
Window size 5
Word vector model CBOW

Table 6 Epoch parameter comparison experiment.

Epoch Precision Recall F1 score

10 78.99% 74.53% 76.53%
20 78.77% 77.19% 77.97%
30 80.26% 83.76% 81.91%
35 80.26% 83.76% 81.91%

Table 7 Batch size parameter comparison experiment.

Batch size Precision Recall F1 score

32 80.99% 77.58% 79.24%
64 80.26% 83.76% 81.91%
128 77.96% 77.05% 77.41%

precision, recall, and F1 score, making it the preferred choice. Furthermore, we explored
different optimizers (SGD, ADAM, and ADAMW) and found that the ADAMW optimizer
delivered the best performance in terms of accuracy, precision, recall, and F1 score. Lastly,
we investigated various learning rates (2e−4, 2e−5, and 2e−6) and concluded that a
learning rate of 2e−5 achieved the highest metrics, with lower and higher rates exhibiting
suboptimal performance. Therefore, our parameter comparison experiments identified
optimal parameter settings, leading to improvedmodel performance across variousmetrics,
as depicted in Table 10.

EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we first verify the effectiveness of the Dyn-Att Net model for TCMNER and
its capability to optimize the traditional BERT-LSTM-CRF model through the comparison
of different models and comparison with the basic model. Subsequently, we experiment
with three NER datasets: APTNER, MSRA, and EduNER, derived from different domains,
to demonstrate the commendable generalization capability of the Dyn-Att Net model.

Comparison of different models
We evaluated the performance of classical models within the field of TCM on our dataset,
using it as a benchmark for assessing the Dyn-Att Net model. A comprehensive comparison
of all model evaluations is presented in Table 11. The fluctuation of accuracy and loss values
for the Dyn-Att Net model is depicted in Fig. 6.
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Table 8 Optimizer parameter comparison experiment.

Optimizer Precision Recall F1 score

SGD 80.60% 73.43% 76.84%
ADAM 79.43% 74.61% 76.91%
ADAMW 80.26% 83.76% 81.91%

Table 9 Learning rate parameter comparison experiment.

Learning rate Precision Recall F1 score

2e−4 76.03% 57.64% 65.57%
2e−5 80.26% 83.76% 81.91%
2e−6 71.18% 63.28% 66.95%

We compared models 6, 7, 8, 9 with models 1 and 2, as illustrated in Table 11, and
observed a significant performance boost when employing BERT. This underscores the
vital role of BERT in enhancing overall NER task performance. Furthermore, an overview
of the entire experimental model revealed that the addition of CRF or LSTM layer indeed
improved model performance to some extent. This serves as evidence that within complex
domains like TCM, CRF’s sequence labeling and label transition optimization, as well
as LSTM’s context understanding, contribute to model effectiveness. However, it is
noteworthy that in the comparison of models 7, 8, and 9, we noticed that the actual
performance either did not reach the theoretical expectations or, in some cases, decreased
when adding CRF to BERT-LSTM or LSTM to BERT-CRF models. This indicates that
blindly adding algorithms to traditional model structure increases the complexity of the
entire model, leading to unstable or even decreased model recognition.

To optimize the model structure, this study introduces the Dyn-Att Net model, which
enhances traditional NER models by incorporating a dynamic attention mechanism. The
Dyn-Att Net model is implemented in two variants, one based on BERT and the other on
ALBERT. In our study, when evaluating these BERT and ALBERT-based models, we found
that BERT consistently outperforms ALBERT across various metrics such as accuracy,
precision, recall, and F1 score in the TCM NER task we examined.

Comparison with the basic model
As shown in Table 11, the Dyn-Att Net consistently enhances the overall model
performance, whether integrated with ALBERT or BERT, thus highlighting its positive
impact. Subsequently, due to BERT’s superior performance, we concentrate primarily
on the comparative analysis of BERT-based models to affirm the effectiveness of the
BERT-based Dyn-Att Net model.

Firstly, compared to the widely-used BERT-LSTM-CRF model, our optimized model
has significantly improved all performance indicators, with the F1 score increasing from
80.69% to 81.91%. Consequently, the BERT-based Dyn-Att Net model demonstrates
notable performance enhancements over the BERT-LSTM-CRF model. Additionally, the
BERT-based Dyn-Att Net model outperformed the SoftLexicon model (Ma et al., 2020)
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Table 10 Dyn-Att net model parameters.

Model parameter name Parameter value

Epoch 30
Learning rate 2e−5
Batch size 64
Max len 128
Lstm units 128
Optimizer AdamW

Table 11 Evaluation results of all models. ∗Denotes results generated from our experiments.

Model number Model name Accuracy Precision Recall F1 score

1 LSTM∗ 83.74% 29.55% 45.13% 35.71%
2 LSTM+CRF∗ 84.59% 38.04% 38.25% 38.13%
3 SoftLexicon∗ 91.34% 78.19% 82.96% 80.46%
4 ALBERT+LSTM+CRF∗ 88.22% 70.84% 62.04% 66.14%
5 Dyn-Att Net based on ALBERT∗ 89.63% 76.73% 71.21% 73.92%
6 BERT∗ 91.74% 78.51% 82.36% 80.16%
7 BERT+LSTM∗ 92.04% 78.73% 83.72% 81.03%
8 BERT+CRF∗ 91.59% 79.86% 82.52% 81.32%
9 BERT+LSTM+CRF∗ 91.25% 78.04% 83.64% 80.69%
10 Dyn-Att Net based on BERT 92.06% 80.26% 83.76% 81.91%

across all metrics, with a noteworthy improvement of 1.45% in F1 score. Furthermore,
comparing the performance indicators of the BERT-based Dyn-Att Net model with models
6 and 7 demonstrates significant improvements across all four metrics, underscoring its
superiority over using only the BERT model or the BERT-LSTM model. Finally, when
comparing the BERT-based Dyn-Att Net model with models 7, 8, and 9, we observed that
the optimization of the Dyn-Att Net structure indeed yielded certain benefits. It effectively
leveraged each sub-model of model 9, resulting in consistent improvements across all
metrics compared to models 7 and 8.

The comparison of the core model running time is shown in Table 5. It is noticeable
that the BERT-based Dyn-Att Net model exhibits a shorter runtime compared to the
BERT+LSTM+CRF model, which suggests that the optimized parallel structure is more
efficient and reduces processing time.

Based on the above analysis, it is evident that the BERT-based Dyn-Att Net model not
only enhances TCM NER performance but also optimizes traditional model structures to
improve efficiency.

Comparison with the APTNER dataset
To further validate the model’s generalization capabilities in complex domains, we
conducted training and evaluation on the cyber threat intelligence (CTI) dataset introduced
by Wang et al. (2022b). This dataset (Wangxuren, 2022), currently the largest in the CTI
field, encompasses 21 distinct named entities, posing a substantial challenge. Our model’s
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Figure 6 On the left is the figure depicting changes in model accuracy, and on the right is the figure
displaying fluctuations in loss.

Full-size DOI: 10.7717/peerjcs.2022/fig-6

Table 12 Core model runtime.

Model name Running time

BERT+LSTM+CRF 908.5041613578796 s
Dyn-Att Net based on BERT 886.1882770061493 s

Table 13 Comparative experiment of the Dyn-Att Net model with the APTNER dataset. 1Indicates re-
sults fromWang et al. (2022b).

Model number Model name Precision Recall F1 score

1 BiLSTM-CRF1 68.78% 67.2% 67.98%
2 CNN-BiLSTM-CRF1 69.23% 67.08% 68.14%
3 LM-LSTM-CRF1 70.77% 65.46% 68.01%
4 BiLSTM-CRF+ELMo1 80.62% 78.68% 79.64%
5 BERT-BiLSTM-CRF 1 82.99% 81.64% 82.31%
6 Dyn-Att Net based on BERT(Our Model) 89.79% 90.88% 90.33%

performance in this domain proved exceptional, surpassing that of other models by a
significant margin.

As illustrated in Table 13, when compared to the BERT-BiLSTM-CRFmodel, our model
exhibited substantial improvements across various performance metrics. Specifically,
our model achieved a 6.8% increase in precision, a 9.24% boost in recall, and a notable
8.02% enhancement in the F1 score. Meanwhile, compared to the BiLSTM-CRF (Lample
et al., 2016), CNN-BiLSTM-CRF (Ma & Hovy, 2016), LM-LSTM-CRF (Liu et al., 2018),
and BiLSTM-CRF+ELMo (Peters et al., 2018) models, the Dyn-Att Net model exhibits
improvements across all performance metrics.

Comparison with the MSRA dataset
Table 14 presents a comparative analysis of the Dyn-Att Net model on the MSRA dataset
(Levow, 2006). The MSRA dataset is a commonly used dataset for Chinese NER, published
by Microsoft Research Asia. It consists of Chinese texts from various sources such as news,
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Table 14 Comparative experiment of the Dyn-Att Net model with theMSRA dataset. 2Indicates results
from Johnson, Shen & Liu (2020).

Model number Model name Precision Recall F1 score

1 Conditional probabilistic models2 91.22% 81.71% 86.2%
2 Multi-phase model2 88.94% 84.2% 86.51%
3 Graph-based semi-supervised2 90.62% 77.84% 83.74%
4 adversarial transfer learning2 91.73% 89.58% 90.64%
5 Dyn-Att Net based on BERT (Our Model) 92.83% 89.66% 91.21%

Table 15 Comparative experiment of the Dyn-Att Net model with the EduNER dataset. 3Indicates re-
sults from Li et al. (2023).

Model number Model name Precision Recall F1 score

1 BiLSTM+CRF3 71.74% 51.90% 60.23%
2 LR-CNN3 64.87% 60.15% 62.42%
3 SoftLexicon3 67.02% 63.24% 65.07%
4 Dyn-Att Net based on BERT (Our Model) 71.77% 64.03% 67.63%

blogs, and web articles, used for training and evaluating NER algorithms. The dataset is
finely annotated with entity categories including personal names, location names, and
organization names, assisting researchers in developing and evaluating Chinese named
entity recognition models.

As observed in Table 14, our Dyn-Att Net model outperforms the other three models
in terms of precision, recall, and F1 score. Specifically, it achieves a precision of 92.83%,
recall of 89.66%, and F1 score of 91.21%. compared to the conditional probabilistic models
(Chen et al., 2006), multi-phase model (Zhou et al., 2006), graph-based semi-supervised
(Han et al., 2015), and adversarial transfer learning models (Cao et al., 2018), our Dyn-Att
Net model demonstrates superior performance across all metrics.

Comparison with the EduNER dataset
The EduNER (Li et al., 2023) dataset is a Chinese NER dataset focused on the education
domain, meticulously curated from various sources such as textbooks, academic papers,
and education-related web pages. The dataset defines an education-specific NER schema
by domain experts and is annotated by trained annotators. EduNER comprises 16 entity
types, including 11,000 sentences and 35,731 entities, making it the first publicly available
dataset tailored for the education domain NER task.

Our comparative experiments with the Dyn-Att Net model with the EduNER dataset,
as shown in Table 15, demonstrate that the Dyn-Att Net model outperforms the other
three models across all metrics. Specifically, compared to the BiLSTM+CRF model, the
Dyn-Att Net model achieves a 7.4% improvement in F1 score. Similarly, compared to the
LR-CNN model (Gui et al., 2019), it achieves a 5.21% improvement, and compared to the
SoftLexicon model (Ma et al., 2020), it achieves a 2.56% improvement in F1 score.
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CONCLUSION AND PROSPECT
This article addresses the structural simplicity of the traditional named entity recognition
model. The Dyn-Att structure is proposed based on BERT-LSTM-CRF. There are two
improvements of the Dyn-Att Net model compared to traditional NER models. The first
improvement is that it uses parallel connections instead of sequential connections for
deep learning models. The second improvement is the addition of a dynamic attention
mechanism to combine the features extracted byBERT andLSTM.By dynamically adjusting
the importance of the features processed by BERT and LSTM, the model structure is
optimized and recognition accuracy is improved. Compared to the currently most popular
BERT-LSTM-CRFmodel, the F1 score of thismodel is improved by 1.22%, and it consumes
less time. Moreover, its strong generalization capability is confirmed through validation
on the APTNER, MSRA, and EduNER datasets. Therefore, the Dyn-Att-Net model not
only effectively recognizes named entities in TCM but also demonstrates commendable
cross-domain generalization capability. Although the Dyn-Att Net model demonstrates
promising performance, it faces the challenge of entity imbalance within the field of
traditional Chinese medicine (TCM). For example, there are 336 entities related to TCM
diagnosis and 3,540 entities related to Chinese herbs in TCM dataset, representing a nearly
tenfold difference in the quantities of entities between these two categories. Currently, we
lack strategies to address this imbalance in entity quantities. In the future, we can employ
active learning techniques and data augmentation to mitigate this issue and reduce labeling
costs.
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