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ABSTRACT
To resolve the challenges of low detection accuracy and inadequate real-time perfor-
mance in road scene detection, this article introduces the enhanced algorithm SDG-
YOLOv5. The algorithm incorporates the SIoU Loss function to accurately predict
the angle loss of bounding boxes, ensuring their directionality during regression and
improving both regression accuracy and convergence speed. A novel lightweight de-
coupled heads (DHs) approach is employed to separate the classification and regression
tasks, thereby avoiding conflicts between their focus areas. Moreover, the Global
AttentionMechanismGroup Convolution (GAMGC), a lightweight strategy, is utilized
to enhance the network’s capability to process additional contextual information,
thereby improving the detection of small targets. Extensive experimental analysis on
datasets from Udacity Self Driving Car, BDD100K, and KITTI demonstrates that the
proposed algorithm achieves improvements in mAP@.5 of 2.2%, 3.4%, and 1.0% over
the original YOLOv5, with a detection speed of 30.3 FPS. These results illustrate that
the SDG-YOLOv5 algorithm effectively addresses both detection accuracy and real-time
performance in road scene detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Intelligent driving, Road scene detection, Decoupled detection head, Attention
mechanism

INTRODUCTION
With the substantial rise in global vehicle ownership in recent years, there an increasing
pressure on road traffic resulting in a higher incidence of accidents. This highlights the
necessity for the development of effective intelligent driving systems to reduce the risk of
traffic incidents. Autonomous vehicles, which integrate various intelligent technologies,
primarily rely on a range of sensors and systems including ultrasonic radars, millimeter-
wave radars, LiDAR, and camera vision sensors to accurately perceive and interpret the
surrounding environment and obstacles (Xu et al., 2022b; Xu et al., 2022a; Du et al., 2022;
Lin et al., 2022). Among these sensors, low-cost camera vision sensors with integration
mechanisms have become a research hot spot in research focusing on detecting, recognizing,
and tracking road targets. In this context, target detection technology has emerged as a
central area of study in the intelligent driving domain, playing a fundamental role in camera
vision sensors. It predominantly employs deep learning algorithms to analyze image or
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video data, effectively identifying and locating various target objects such as pedestrians,
vehicles, and traffic signs within the visual content. This process is critical for achieving
reliable environmental perception in intelligent driving systems as it directly influences
decision-making and control mechanisms, ensuring safe and efficient vehicle navigation.
Presently, target detection algorithms are primarily classified into traditional methods
and those utilizing deep learning techniques (Liu et al., 2023b; Luo et al., 2022; Zhang et
al., 2023; Zhou et al., 2018; Zhou et al., 2021a). With the rapid advancements in computer
technology, deep learning-based target detection methods have attracted scholars due
to their high accuracy and real-time processing capabilities. However, the presence of
numerous challenging-to-detect targets in complex traffic environments adversely affects
the detection accuracy of conventional algorithms. Additionally, many high-precision
algorithms exhibit practical limitations in real-time tasks, failing to meet the demands of
intelligent driving. Accordingly, exploring ways to improve the precision of target detection
whilemaintaining real-time processing is of significant importance in the intelligent driving
field.

RELATED WORK
Deep learning object detection algorithms are primarily classified into one-stage and
two-stage categories based on different detection principles. One-stage object detection
algorithms, exemplified by YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016), employ
regression strategies for object detection. Two-stage object detection algorithms are
represented by R-CNN (Girshick et al., 2014), SSP-Net (He et al., 2015), and Fast R-
CNN (Liu et al., 2022). On the other hand, two-stage object detection algorithms,
represented by R-CNN (Girshick et al., 2014), SSP-Net (He et al., 2015), and Fast R-
CNN (Liu et al., 2022), generate proposal regions based on the original image, utilize
convolutional neural networks for feature extraction, and subsequently perform object
classification and detection. Although two-stage object detection algorithms, which scan
all image areas and process candidate boxes afterward, exhibit superior performance, these
algorithms lack real-time capability, thereby limiting their application in intelligent driving
systems. On the contrary, one-stage detection algorithms are end-to-end approaches based
on bounding box regression. These algorithms do not necessitate generating numerous
candidate regions, thus significantly reducing detection time and enhancing the real-time
performance of object detection. These algorithms offer certain advantages in engineering
applications and have shown considerable research progress. For instance, Redmon et
al. (2016) introduced the YOLOv1 algorithm, which utilizes global information from
an image for predictions. Nevertheless, its limitation in predicting only two boxes of
the same class per grid reduces its effectiveness in detecting closely situated objects and
small targets. Subsequently, Redmon & Farhadi (2017) modified the YOLOv1 algorithm
and developed YOLOv2 and YOLO9000 algorithms, introducing an anchor mechanism
that significantly improved the recall rate. However, detecting small objects remained
a challenge. To resolve this challenge, YOLOv3 was developed, incorporating a feature
pyramid network (FPN) to fuse features across multiple scales (Redmon & Farhadi, 2018).
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This algorithm, utilizing DarkNet-53 as its backbone network and multiscale prediction
in the output section, enhanced the accuracy of detecting smaller targets. Additionally, it
replaced softmax with logistic regression to improve accuracy while maintaining real-time
capabilities, although its accuracy was still insufficient for industrial applications. Further
advancements were made with the introduction of YOLOv4 (Bochkovskiy, Wang & Liao,
2020), which utilized the FPN+PAN structure to enhance feature communication and
employed CSPDarkNet-53 as the backbone network, resulting in improved detection
speed and accuracy. Cai et al. (2021) proposed YOLOv4-5D, focusing on intelligent
driving and enhancing small target detection accuracy by utilizing CSPDarknet53-dcn
as the backbone network and introducing the PAN++ feature fusion module along
with expanding to five detection layers. Moreover, Li et al. (2022) introduced YOLOv6,
designed for industrial applications, integrating the RepVGG re-parameterization structure
to expedite inference without compromising performance. Similarly,Wang, Bochkovskiy &
Liao (2023) proposed YOLOv7, incorporating techniques like E-ELAN, RepVGG structure,
and SimOTA. Recently, Wang et al. (2023) introduced CenterNet-Auto, which integrated
the RepVGG architecture into the backbone network, combined feature pyramids, and
employed deformable convolutions post-backbone. They also introduced an average
boundary model to address occlusion challenges in intelligent driving. Despite significant
advancements in enhancing detection accuracy through recent algorithmic developments,
two notable disadvantages have emerged: increased training resource consumption
and reduced detection speed. Incorporating structures like RepVGG and SimOTA has
prolonged training time due to increased network complexity, while the use of deformable
convolutions has escalated computational demands without achieving an optimized
balance between real-time performance and detection accuracy. Therefore, achieving this
balance is crucial in the field of intelligent driving.

Based on the conducted literature review, this study employs YOLOv5 as the base model
for improvement, ignoring newer algorithms like YOLOv6, v7, and v8. This decision
was made considering various factors such as overall performance, efficiency, maturity,
and community support. While YOLOv6 exhibits notable detection capabilities with the
RepVGG structure, it introduces hardware dependencies and resource-intensive training.
Furthermore, YOLOv7’s enhancements in precision through E-ELEN and MP structures
come at the expense of increased model parameters, impacting efficiency. In contrast,
YOLOv5 offers a balance of maturity and community backing, making it the preferred
choice for developing a stable and widely supported algorithm. Accordingly, the article
introduces SDG-YOLOv5, an algorithm developed for road scene detection. Addressing
challenges such as target diversity and background complexity, the article proposes the SIoU
Loss function to optimize angular loss in prediction boxes, thereby enhancing regression
precision and convergence speed. Additionally, to resolve focus conflicts inherent in
traditional coupled detection heads, lightweight decoupled heads (DHs) are devised to
separate classification and regression tasks and improve detection accuracy and efficiency.
Furthermore, considering the intricacies of road scenes and the need for algorithms to
grasp contextual nuances and object relationships, the article introduces a lightweight
Global Attention Mechanism Group Convolution (GAMGC). This mechanism allows the

Lv et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2021 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2021


algorithm to capturemore contextual information, enhancing object recognition, especially
in complex scenarios like occlusions or varying lighting conditions. Finally, experiments
were conducted on various datasets, including Udacity Self Driving Car, BDD100K, and
KITTI to evaluate the effectiveness of the developed algorithm in road scene detection.

METHODOLOGIES
Considering the variations in model structure depth and width, the YOLOv5 series is
categorized into four versions based on the scale: YOLOv5-s, YOLOv5-m, YOLOv5-l, and
YOLOv5-x. Among these versions, YOLOv5-s stands out with the smallest parameter count,
making it ideal for applications requiring rapid response times. Accordingly, this study
selects YOLOv5-s as the basic model to meet strict real-time performance demands. As the
compact and efficient iteration within the YOLOv5 series, YOLOv5-s significantly enhances
detection accuracy and robustness while satisfying real-time requirements through the
integration of various innovative modules. Architecturally, the model adopts a Feature
PyramidNetwork (FPN) + Path AggregationNetwork (PAN) formulti-scale feature fusion,
optimizing the collaboration between the backbone andneck networks. Furthermore, cross-
level feature extraction and multi-scale feature aggregation are accomplished through the
inclusion of the CBS module, C3 module, and SPP module. The model adjusts the sizes
of anchor boxes and feature map inputs, employing three coupled heads to respectively
produce outputs for targets of varying scales, ensuring precise detection of both small
and large objects. Moreover, at the input stage, the algorithm employs a range of data
augmentation techniques like Mosaic and Mixup to dynamically adjust input images,
thereby increasing the diversity of training data and bolstering the model’s generalization
capability.

For road scene detection in intelligent driving applications, although the YOLOv5
algorithm demonstrates impressive detection speed, it should be optimized in terms of
detection accuracy. The algorithm exhibits several deficiencies, as follows:

• The utilization of Complete-IoU Loss (CIoU Loss) in the network initially showed
promise but was found to have a slower convergence rate. Moreover, it degrades to
Distance-IoU Loss (DIoU Loss) as the aspect ratio of the predicted bounding box
approaches that of the ground truth bounding box (Zheng et al., 2020). This degradation
poses a concern as it could negatively impact the convergence speed and the accuracy
of the model. Unlike CIoU Loss, DIoU Loss lacks penalties for discrepancies in aspect
ratio and center points between predicted and ground truth boxes. Consequently, the
model may converge prematurely or fail to adequately penalize localization errors during
training, thereby compromising the final detection performance.
• The original network design incorporates a coupled detection head, merging the
classification and regression tasks. While this design simplifies the network architecture,
it introduces several drawbacks. Notably, coupling the tasks can lead to interference
due to inherent differences in the objectives and optimization paths of classification
and regression. The classification task aims to identify object categories, whereas
regression focuses on accurately localizing object bounding boxes. When both tasks
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Figure 1 SDG-YOLOv5 network structure.
Full-size DOI: 10.7717/peerjcs.2021/fig-1

share the same detection head, the model may struggle to optimize conditions for
each task simultaneously, compromising their respective accuracies. Additionally, this
coupled design may restrict the model’s adaptability and tunability for individual tasks,
making task-specific optimization more challenging and further impacting detection
performance.
• Within the YOLOv5 network structure, the prominent utilization of CBS and C3
configurations is remarkable. These configurations employ convolutional operations
to generate a substantial number of feature maps. While effective in extracting diverse
feature information, this approach presents a notable issue: the creation of redundant
feature maps. This redundancy increases the computational costs on the network and
masks crucial information, potentially undermining the model’s accuracy in certain
tasks.

This section focuses on modifying the traditional YOLOv5-s structure. These
improvements involve refining the loss function, optimizing the detection head, and
incorporating an attention mechanism. The main objective is to address issues like low
detection accuracy and inadequate real-time performance in road scene detection for
intelligent driving. The updated network is named SDG-YOLOv5, and its structure is
depicted in Fig. 1.

Optimization of loss function
The overall loss function of the YOLOv5 detection algorithm combines Confidence Loss,
Classification Loss, and Localization Loss, which are weighted and summed together.
Specifically, for the bounding box regression loss function, CIoU Loss is utilized in the
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form below:

LCIoU = 1− IoU+
ρ2
(
b,bgt

)
c2

+αυ (1)

where IoU = |B∩B
gt |

|B∪Bgt | represents the intersection ratio between the predicted bounding box
B and the actual bounding box Bgt , ρ

(
b,bgt

)
= d is the Euclidean distance separating the

center point of B and Bgt , c denotes the diagonal distance of the smallest bounding box
that wraps around B and Bgt , α is the weight parameter, which is defined as follows:

α=
υ

(1− IoU )+υ
(2)

where υ is the aspect ratio, which is employed to evaluate the conformity of the aspect
ratio between B and Bgt . When the center points of B and Bgt coincide, υ can be expressed
in the form below:

υ =
4
π2

(
arctan

wgt

hgt
−arctan

w
h

)2

. (3)

CIoU Loss primarily consolidates bounding box regression metrics such as centroid
distance, intersection ratio, and aspect ratio. However, it does not explicitly address aligning
the orientation between predicted and real bounding boxes. Additionally, when the width
and height of bounding boxes B and Bgt converge to

{(
w = kwgt ,h= khgt

)∣∣k ∈R+ }, the
width and height of the bounding box regression B cannot simultaneously increase or
decrease. This phenomenon leads to delayed convergence of the predicted bounding box
during training, thereby hindering the real-time capabilities of the detection method.

SIoU Loss is composed of Angle Loss 3, Distance Loss, Shape Loss, and IoU Loss. The
Angle Loss 3 is defined as follows:

3= 1−2*sin2
(
arcsin

(ch
σ

)
−
π

4

)
= cos

(
2*
(
arcsin

(ch
σ

)
−
π

4

))
(4)

where σ =

√(
bgtcx −bcx

)2
+
(
bgtcy −bcy

)2
and ch=max

(
bgtcy ,bcy

)
−min

(
bgtcy ,bcy

)
; σ represents

the distance from the center point of bounding boxes B and Bgt ; ch denotes the disparity in
height between the center point of bounding boxes B and Bgt ; bcx , bcy , b

gt
cx , b

gt
cy are the center

coordinates of bounding boxes B and Bgt ; ch
σ
is the opposite side of the right triangle relative

to the hypotenuse sin(α); In the training process, when α > π
4 , 3 takes β, otherwise, it

takes α. The distance Loss can be expressed as:

1=
∑
t=x,y

(
1−e−γ ρt

)
= 2−e−γ ρx −e−γ ρy (5)

where ρx =
(
bgtcx−bcx
cw1

)2
, ρy =

(
bgtcy−bcy

ch1

)2

, γ = 2−3,and cw1, ch1 are the width and height

of the smallest outer rectangle of bounding boxes B and Bgt , respectively. The shape loss is
defined in the form below:

�=
∑
t=w,h

(
1−e−wt

)θ
=
(
1−e−ww

)θ
+
(
1−e−wh

)θ (6)
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Figure 2 The concepts of SIoU Loss regression.
Full-size DOI: 10.7717/peerjcs.2021/fig-2

where ww =
|w-wgt |

max(w,wgt )
, wh =

|h-hgt |
max(h,hgt)

; w, h, wgt , and hgt correspond to the width and

height of bounding boxes B and Bgt , respectively. θ governs the degree of attention given to
shape loss. To prevent an excessive focus on shape loss and minimize the displacement of
the prediction bounding box, the value range of θ was set from 2 to 6. SIoU Loss is defined
as follows, and its regression principle is shown in Fig. 2.

LSIoU = 1− IoU+
1+�
2

. (7)

Given that the angle loss cos
(
2*
(
arcsin

( ch
σ

)
−
π
4

))
of arcsin

( ch
σ

)
−

π
4 = α−

π
4 and

β = π
2 −α become identical following the cos function, the angle loss is minimized when

α= 0 and maximized when it approaches π/4. This facilitates quicker movement of the
prediction bounding boxes towards the nearest axis. Consequently, subsequent regression
only necessitates X or Y coordinates, leading to a significant improvement in both model
detection accuracy and training speed.

The loss function adopted in this article enables faster and more effective alignment
of predicted bounding boxes with actual boxes compared to the loss function utilized
in the algorithm outlined in Cai et al. (2021). This facilitates expedited training on large
datasets, reduces time costs, and enhances the labeling accuracy of predicted bounding
boxes on image instances. While the YOLOv6 algorithm employs an anchor-free SIoU
Loss, this article utilizes an anchor-based SIoU Loss. Although the anchor-based approach
marginally affects detection speed, it notably enhances detection accuracy. In summary,
the loss function employed in this study is better suited for intelligent driving application
scenarios.
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Figure 3 Decoupled heads diagram.
Full-size DOI: 10.7717/peerjcs.2021/fig-3

Optimization of the detection head
The original YOLOv5 detection algorithm adopts a coupled head format, as illustrated in
Fig. 1, which outputs classification and regression tasks after a convolution layer. However,
this approach leads to a conflict between classification, which emphasizes the resemblance
of extracted features to specific categories, and regression, which focuses on adjusting
predicted bounding box parameters based on differences from actual coordinates. To
resolve this problem, Ge et al. (2021) introduced YOLOX with a decoupled head (DH)
architecture. This architecture begins with a 1×1 convolution to alter the channel number
to 256 before branching into two paths for classification and regression, with an additional
IoU branch under the regression path. Each path undergoes two 3×3 convolution layers
and a 1×1 convolution layer, resulting in separate heads for classification and regression.
Studies Ge et al. (2021) demonstrated that DH enhances training speed and accuracy
by resolving task conflict. However, the performed experiments indicate that while DH
improves performance, it also increases the parameter count and floating-point operations
(Gflops), resulting in higher memory usage and diminished real-time capability of the
network. Therefore, this article introduces an enhanced decoupled head, named DHs,
which replaces the network’s Head component, as illustrated in Fig. 3.

Figure 3 reveals that the input features H×W ×C undergo an initial 1×1 convolution
to compress the channel number to 256. Subsequently, in both parallel branches, one 3×3
convolution is removed to reduce the number of parameters. Finally, a 1×1 convolution
is employed to extract features for classification and regression tasks. Compared to the
coupled head structure of YOLOv5, the classification detection head in the DH improves
the prediction of positive samples, while the regression detection head enhances the
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accuracy of bounding box regression. Ultimately, experimental results demonstrate that
the developed DHs, despite reducing a significant number of parameters and floating-point
operations, still maintain the advantages of the DH architecture.

In the algorithm outlined in Cai et al. (2021), the number of coupled detection heads
was increased from three to five, resulting in a significant enhancement in the precision of
predictions for small objects. In contrast, the proposed algorithm replaces three coupled
detection heads with decoupled heads, thereby improving the prediction accuracy for
small objects while concurrently reducing the number of parameters and the volume of
floating-point operations. In comparison to the decoupled heads utilized in the YOLOX
algorithm, the decoupled heads in the proposed algorithm maintain detection accuracy
while substantially reducing the number of parameters and floating-point operations.
Consequently, this accelerates the detection rate and renders it more suitable for practical
application scenarios.

Integration of lightweight global attention mechanism
The concept of the attentionmechanism originated in the field of visual imagery and gained
prominence with an article published by Google DeepMind (Mnih, Heess & Graves, 2014).
By integrating the attention mechanism into the image processing workflow of computers,
neural networks can emulate the human visual cognitive requirement of rapidly focusing on
key information while neglecting less important data. This approach significantly conserves
computing resources. Squeeze-and-Excitation Network (SeNet) focuses on the differences
in channel information, adaptively adjusting the model based on the attention weights of
each channel. However, this can lead to inefficiency issues when suppressing important
information (Hu, Shen & Sun, 2018). The Convolutional Block AttentionModule (CBAM)
serially integrates attention weights in both channel and spatial dimensions on top of the
input features, while the Bottleneck Attention Module (BAM) processes channel and
spatial dimensions in parallel. However, both overlook the interaction between channel
and spatial dimensions, losing cross-dimensional information (Woo et al., 2018; Park et al.,
2020). Considering the importance of interactions between cross-dimensional information,
the Triplet Attention Module (TAM) aims to enhance network efficiency by leveraging
attention weights between channel, spatial width, and height dimensions. Yet, the attention
operation is still applied to only two dimensions, not three (Misra et al., 2021). To amplify
the interaction between the three dimensions, this article utilizes an attention mechanism
called Global Attention Mechanism (GAM) capable of capturing important features
in all three dimensions. Similar to CBAM, the overall structure employs a sequential
arrangement of channel and spatial attention modules. The distinctions include not only
the elimination of pooling operations to preserve as much information as possible but also
the incorporation of an MLP to reduce the number of parameters. The specific network
structure is depicted in Fig. 4 and mathematically expressed in Eqs. (8) and (9), where F1
represents the input feature, F2 denotes the intermediate state, and F3 is the output feature,
while Mc and Ms respectively represent the channel and spatial attention, and ⊗ denotes
the element-wise multiplication.

F2=Mc (F1)⊗F1 (8)

Lv et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2021 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2021


Figure 4 Structure of the GAM network.
Full-size DOI: 10.7717/peerjcs.2021/fig-4

Figure 5 Channel attentionmodule.
Full-size DOI: 10.7717/peerjcs.2021/fig-5

F3=Ms(F2)⊗F2. (9)

In Fig. 4, the input feature F1 will initially pass through two branches. The feature of
the upper branch will undergo the channel attention module and then multiply with the
input feature F1 of the bottom branch to obtain F2. Subsequently, F2 will go through two
branches again. The feature of the upper branch will be multiplied with the input feature
F2 of the bottom branch through the spatial attention module to obtain the output feature
F3.

The channel attention module removes the max pooling operation to preserve the
integrity of information. It employs a permutation approach to retain information across
three dimensions. Subsequently, it utilizes a two-layer multi-layer perceptron (MLP)
with an encode-decode structure, having a reduction ratio of γ , to amplify the dependency
relationship between channels and spatial dimensions. This process is specifically illustrated
in Fig. 5.

In the spatial attention module, to focus on spatial information, two convolutional
layers are utilized for the extraction of spatial information. A channel reduction ratio of γ
is employed to decrease the number of parameters. This process is schematically illustrated
in Fig. 6.

When employing the GAM, a notable drawback arises from the significant increase in the
number of parameters due to the two convolutional layers in its spatial attention module.
To resolve this issue, the standard convolutions are replaced with group convolutions (GC)
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Figure 6 Spatial attentionmodule.
Full-size DOI: 10.7717/peerjcs.2021/fig-6

Figure 7 Improved attentionmechanism structure diagram.
Full-size DOI: 10.7717/peerjcs.2021/fig-7

and depthwise separable convolutions (DW). The process is schematically illustrated in
Fig. 7.
• Group Convolution divides the input feature map and convolution kernels into separate
groups, executing convolution operations within these groups to diminish the number
of parameters. Suppose the input feature map size is C ×H ×W and it undergoes
N standard K ×K convolutions. In that case, the total number of parameters is
N ×C ×K ×K . With Group Convolution, the standard convolution is segmented
into g groups, with each convolution size being C

g ×K×K , resulting in the total number
of parameters being N × C

g ×K ×K . Consequently, the final parameter count is 1
g of

the original. In this article, the group convolution is divided into four groups, and the
modified attention mechanism with group convolution is called GAMGC.
• Depthwise Separable Convolution breaks down a standard convolution into a
depthwise convolution and a 1×1 pointwise convolution. Unlike standard convolutions
that consider semantic information across all channels, each kernel in a depthwise
convolution concentrates on a single channel. The size of the depthwise convolution is
K×K×1, resulting in a parameter count of K×K×1×N . The pointwise convolution,
utilizing a 1×1×C kernel, extracts semantic information between channels, with a
parameter count of 1×1×C×N . Thus, the total number of parameters for Depthwise
Separable Convolution is K×K×1×N+1×1×C×N , which is even smaller than that
of Group Convolution. In this article, the attention mechanism replaced by Depthwise
Separable Convolution is termed GAMDW.

In Fig. 7, the two convolutions within the spatial attention module are substituted with
DWs and GCs to decrease parameter counts. Experimental analysis demonstrates that these
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modifications not only reduce the number of parameters but also improve the extraction
of essential semantic information. It is worth noting that the performance of GAMGC
surpasses that of GAMDW, leading to the selection of GAMGC for incorporation into the
YOLOv5 network in this research.

In the algorithm outlined in Zhu et al. (2021), the CBAM attention mechanism is
integrated into the neck network of YOLOv5, effectively diminishing the influence
of ambiguous information in images on the algorithm’s detection performance. This
integration enables the algorithm to concentrate on vital semantic information across
two dimensions. Conversely, in this article, the GAMGC is incorporated into both the
backbone and neck networks of YOLOv5. This methodology facilitates the capture of
critical semantic information across three dimensions, thereby improving target detection
accuracy while keeping the parameter count and floating-point operations low.

EXPERIMENTS
Experimental dataset & evaluation index & experimental environment
The datasets chosen for this experiment include the Udacity Self Driving Car, BDD100K,
and KITTI datasets. The Udacity dataset provides 2D annotations for continuous video
images, covering 11 categories: biker, car, pedestrian, traffic light, traffic light-green, traffic
light-green left, traffic light-red, traffic light-red left, traffic light-yellow, traffic light-yellow
left, and truck. However, to maintain consistency and reduce variability in model results,
the category traffic light-yellow left, which has a limited number of labels, was excluded,
resulting in 10 categories for the experiment. This dataset comprises a total of 29,800
images with a resolution of 512×512, split into training and testing sets in a 9:1 ratio, with
26,579 images for training and 3,221 for testing. The BDD100K dataset consists of 70 k
images for training and 10 k for validation. Due to the inadequate number of labels in the
train category, this dataset was divided into 12 categories: Person, Rider, Car, Bus, Truck,
Bike, Motor, Traffic Light_Green (TL_G), Traffic Light-Red (TL_R), Traffic Light-Yellow
(TL_Y), Traffic Light-None (TL_N), and Traffic Sign (TS). The KITTI dataset comprises
7,481 images for training and 7,518 for validation. Since the validation set lacks labels,
the 7,481 training images were divided into training and validation sets in an 8:2 ratio.
The dataset was categorized into three classes: Car, Pedestrian, and Cyclist. Some images
extracted from these databases are depicted in Fig. 8.

The evaluation metrics employed in the experiments include precision (P), recall
(R), accuracy (mAP@. 5), number of parameters (Parameters), floating-point operations
(GFLOPS), and frame rate (FPS). These metrics are defined as follows:

P =
TP

TP+FP
(10)

R=
TP

TP+FN
(11)

mAP@.5=
∑Nclass

i=1
∫ 1
0 PiRidR

Nclass
(12)
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Figure 8 Sample images extracted from datasets.
Full-size DOI: 10.7717/peerjcs.2021/fig-8

where TP refers to the number of true positive detections with an IoU greater than a
specified threshold, FP refers to the number of false positive detections with an IoU less
than or equal to this threshold, and FN indicates the number of undetected true boxes.
Furthermore, @.5 denotes an IoU threshold of 0.5, Nclass represents the total number of
classes,

∫ 1
0 PiRidR represents the accuracy of the ith class target, and mAP stands for the

mean average precision across all class targets.
The experimental setup and server environment are as follows: the GPU model utilized

is an NVIDIA RTX 3090 with 24 GB of VRAM, while the CPU model is an Intel Xeon
Platinum 8,350 C. The software stack includes PyTorch version 1.10.0, Python 3.8, and
CUDA 11.3, operating on the Ubuntu 20.04 as operating system. The training parameters
are configured as follows: the input image size is set to 640×640, with a maximum of 300
iterations and a batch size of 32. The optimizer employed is SGD with a momentum of

Lv et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2021 13/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2021/fig-8
http://dx.doi.org/10.7717/peerj-cs.2021


Table 1 Ablation experiment on Udacity self driving car dataset.

Methods P R mAP@.5 (%) Parameters (MB) GFLOPS FPS

Baseline 91.2 74.5 86.1 6.76 16.6 55.6
+SIoULoss 90.2 75.6 86.8 6.76 16.6 62.5
+DH 80.1 87.1 87.4 13.73 57.1 34.5
+DHs 73.1 88.2 86.8 10.35 37.2 41.7
+GAM 94 76.2 87.9 28.65 74.3 21.3
+GAMGC 89.8 76.2 87.1 12.57 31.9 41.7
+GAMDW 92.3 75.5 87.2 7.76 19.3 47.6
SIoU+DHs+GAMGC 76 88.6 88.3 16.16 52.6 30.3

0.937 and a weight decay coefficient of 0.0005. The initial learning rate is established at
0.01, with dynamic adjustments according to the cosine annealing algorithm, leading to a
final learning rate of 0.002.

Analysis of experimental results
In the research conducted, an ablation experiment methodology was employed on
the Udacity Self Driving Car dataset, mirroring the approach used by YOLOX. This
methodology involved a strategy of parallel insertion of each module, aiming to assess
the individual contribution of each module to the overall performance of the model.
By utilizing this parallel ablation approach, the study aimed to precisely determine the
effectiveness of eachmodule and its impact on fine-tuning the algorithm. Thismethodology
ensures that the effects of each module are evaluated independently, providing a direct
means to observe how each component influences the system’s accuracy and efficiency in
real-world intelligent driving scenarios. The experimental results are presented in Table 1.

Table 1 indicates that the YOLOv5 algorithm achieves a detection accuracy of 86.1% for
road scenes, but with a relatively low recall rate. Conversely, combining SIoU Loss, DHs,
and GAMGC algorithms enhances detection accuracy while sustaining the detection rate.
Specifically, for road scene detection, the accuracy reached 88.3%, marking a 2.2% increase
in mAP@.5.

These enhancements were sequentially integrated into the YOLOv5 network, leading to
notable improvements in detection accuracy.

• After integrating the SIoU Loss, there was a notable improvement in various metrics.
Specifically, the recall rate, mAP@.5, and the frame rate increased by 1.1%, 0.7%, and
6.9 FPS, respectively. This indicates that the angle loss component within the SIoU Loss
plays a crucial role in refining the regression of predicted bounding boxes, particularly
benefiting categories with fewer labels. The effectiveness of SIoU Loss may be attributed
to its comprehensive design, which accounts for not only the size, position, and aspect
ratio of bounding boxes but also their orientation. By considering these geometric
properties, SIoU Loss enables a more accurate alignment of predicted boxes with actual
ones, especially in scenarios involving closely packed or partially obscured objects.
Through better management of angular discrepancies between predicted and actual
boxes, SIoU Loss effectively enhances overall precision and detection speed.
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• Following the integration of the DH, there was a notable enhancement in various
metrics. Specifically, mAP@.5 and the recall rate increased by 1.3% and 12.6%,
respectively, indicating a promising accuracy in predicting positive samples and precision
in bounding box regression. However, this improvement came at the cost of increased
model parameters and computational load, thereby elevating the model’s complexity.
To address this challenge, a lightweight version of the decoupled head, termed DHs,
was developed. Experimental validation revealed that after incorporating DHs, although
there was a slight reduction in mAP@.5 (a decrease of 0.6% compared to +DH, but
an improvement of 0.7% compared to the original network), there was a substantial
reduction of 24.6% in the model’s parameter count and a decrease of 19.9 GFLOPS in
computational load (floating-point operations). Additionally, there was an increase in
frame rate by 7.2 FPS. These results demonstrate the capability of DHs to significantly
reduce computational costs and enhance processing speed without compromising
detection performance significantly, thereby validating the effectiveness and practicality
of the optimization strategy employed.
• According to Table 1, the investigation highlights the effectiveness of GAM, GAMGC,
and GAMDW methods. The results demonstrate that each method notably enhances
the accuracy of the model. GAM utilizes large 7×7 convolutions to enhance the model’s
ability to capture intricate features. While achieving a 1.8% improvement in mAP@.5
compared to the original network, it also substantially increases the model’s parameters
and floating-point operations, thereby impacting the frame rate and detection efficiency.
To resolve this challenge, GAMGC employs group convolution, processing input feature
maps in groups to reduce themodel’s parameters and computational load while retaining
sufficient feature learning capabilities. This enhancement enables GAMGC to improve
mAP@.5 over the original network while significantly reducing parameters by 56%
and floating-point operations by 42.4 GFLOPS, with a substantial frame rate increase
of 20.4 FPS. This observation demonstrates GAMGC’s effectiveness in reducing the
model’s burden while maintaining detection accuracy. Similarly, GAMDW, by utilizing
depthwise separable convolutions, decomposes traditional convolutions into depthwise
and pointwise convolutions, further decreasing parameter count and computational
complexity. GAMDW achieves a 1.1% mAP@.5 improvement over the original network
and outperforms GAM in reducing model parameters by 72.9% and floating-point
operations by 55 GFLOPS, with a frame rate increase of 26.3 FPS. The adoption of
depthwise separable convolutions not only significantly reduces computational load but
also enhances detection accuracy.

While the combination of GAMDW+SIoU Loss+DHs reached anmAP@.5 performance
of 87.5%, slightly lower than the combination with GAMGC, this discrepancy may be
attributed to GAMDW’s reduction in model parameters and computational complexity
through depthwise separable convolutions. Although this design improves computational
efficiency, it may not capture complex features as effectively as GAMGC. Consequently,
when combined with optimization techniques aimed at improving detection accuracy,
GAMDW’s limitations might hinder these techniques from reaching their full potential,
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resulting in a less pronounced overall performance improvement compared to GAMGC.
Given that the performance of GAMDW combined with SIoU Loss and DHs, although
superior to the original network, still falls short compared to GAMGC, the choice was
made to integrate GAMGC into the YOLOv5 network. This decision allows for more
effective utilization of the performance enhancements brought by SIoU Loss and DHs
while reducing the computational burden. As a result, high accuracy is achieved while
optimizing the model’s computational efficiency and detection speed.

To validate the advantages of the proposed SDG-YOLOv5 over the original YOLOv5
model in terms of detection accuracy for each category on the Udacity Self Driving
Car dataset, a category-specific comparative experiment was conducted. This approach
aimed to reflect the performance improvements of SDG-YOLOv5 across different
categories, allowing for an accurate assessment of the enhanced model’s performance
and adaptability in complex scenarios. Through this category-based comparison, the
changes in detection accuracy were explored for each category, demonstrating the overall
performance enhancement of the model and revealing its strengths and potential areas
for improvement in specific categories. The training results of mAP@.5 before and after
the improvements are depicted in Fig. 9. In this figure, the average precision (AP) for
the categories biker, car, pedestrian, traffic light, traffic light-green, traffic light-green left,
traffic light-red, traffic light-red left, traffic light-yellow, and truck are represented by the
numbers 1–10, respectively.

Figure 9 reveals notable improvements in detection accuracy across various categories in
the enhanced network. Specifically, the ‘biker’, ‘car’, and ‘pedestrian’ categories increased
by 2.8%, 0.4%, and 2.7%, respectively. Among the categories related to traffic signals,
‘trafficLight’, ‘trafficLight-Green’, and ‘trafficLight-GreenLeft’ increased by 1%, 2.4%,
and 3.2% , respectively, while ‘trafficLight-Red’, ‘trafficLight-RedLeft’, and ‘trafficLight-
Yellow’ improved by 2.8%, 2.6%, and 3.9%, respectively. Moreover, it is observed that
the detection accuracy of ‘truck’ category is enhanced by 0.6%. These improvements may
be attributed to the synergistic effects of several optimization techniques. SIoU Loss, by
considering the orientation of bounding boxes, enhanced geometric alignment, leading to
improved detection accuracy. The lightweight DHs effectively reduced model complexity
while maintaining sufficient feature representation capabilities. Additionally, the attention
mechanism (GAMGC) played a crucial role in recognizing small targets like traffic lights by
focusing on key features. By incorporating these optimization measures, the SDG-YOLO
algorithm achieved performance enhancements across all categories of the Udacity Self
Driving Car dataset, significantly improving the accuracy ofmulti-category target detection.

To evaluate the effectiveness and generalization capability of the proposed SDG-
YOLOv5 algorithm, this study conducts comparative experiments on both YOLOv5
and SDG-YOLOv5 algorithms using the BDD100K and KITTI datasets. This experimental
approachwas chosen because these datasets represent distinct driving scenes and challenges,
enabling a comprehensive evaluation of SDG-YOLOv5’s detection accuracy across diverse
environments and categories. Through such comparative experiments, the performance of
SDG-YOLOv5 can be compared with the original YOLOv5 model in different scenarios.
Consequently, the algorithm’s generalization ability can be evaluated, thereby ensuring
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Figure 9 Accuracy chart before and after training on Udacity Self Driving Car dataset.
Full-size DOI: 10.7717/peerjcs.2021/fig-9

Table 2 Accuracy comparison between YOLOv5 and SDG-YOLOv5 on datasets BDD100K and KITTI.

BDD100K Person Rider Car Bus Truck Bike Motor TL_G TL_R TL_Y TL_N TS mAP@.5(%)

YOLOv5 57.1 41.5 75.5 57.8 59.1 44.6 40.5 59.8 52.7 21.7 48.4 64 51.9

Ours 60.4 44.5 77.7 60 60.6 48.2 43.6 64.3 56.7 24.6 54.7 67.7 55.3

KITTI Car Pedestrian Cyclist mAP@.5(%)

YOLOv5 98.1 88 94.5 93.6

Ours 98.4 89.6 96 94.6

its reliability and effectiveness in practical applications. Table 2 presents the detection
accuracies of SDG-YOLOv5 and YOLOv5 over BDD100K and KITTI datasets.

Table 2 indicates that the mAP@.5 achieved by the YOLOv5 algorithm was 51.9% and
93.6%, respectively. In contrast, the mAP@.5 for the SDG-YOLOv5 algorithm reached
55.3% and 94.6%, representing an improvement in detection accuracy of 3.4% and 1.0%
over the original algorithm, respectively. A detailed analysis of the AP values for each
category detected by YOLOv5 and SDG-YOLOv5 demonstrates that SDG-YOLOv5 not
only achieved significant accuracy enhancements in conventional large target categories
such as ‘Car’, ‘Bus’, ‘Pedestrian’, and ‘Cyclist’, but also realized substantial accuracy
improvements in small target categories, including different states of traffic lights (‘TL_G’,
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Table 3 Performance comparison on the dataset Udacity Self Driving Car.

Detector Backbone mAP@.5 (%) FPS

FasterR−CNN (Ren et al., 2017) ResNet-50 78.6 10.7
AD−FasterR−CNN (Zhou et al., 2021b) AD-ResNet-50 82.3 6
SSD (Liu et al., 2016) VGG-16 52.1 21.8
YOLOv3 (Redmon & Farhadi, 2018) DarkNet-19 81.3 49.3
YOLOv4−CSPResNeXt (Priya, Rajalakshmi & Jebamalar,
2022)

CSPResNeXt 83.4 52.3

YOLOv5 C3 86.1 55.6
TPH−YOLOv5 (Zhu et al., 2021) C3-Transformer 87.9 36.3
BIGA−YOLO (Liu et al., 2023a) C3-Ghost 84.1 114.9
CF−YOLOX (Wu, Yan &Wang, 2023) C3-CBAM-G 85.8 75.1
YOLOv8 C2F 87.3 87.1
SDG-YOLOv5 (Ours) C3 88.3 30.3

‘TL_R’, ‘TL_Y’, ‘TL_N’). These findings effectively validate the efficiency and superiority of
the SDG-YOLOv5 algorithm in processing complex traffic scenes, as well as its exceptional
generalization capability across datasets.

To demonstrate the superiority of the algorithm proposed in this article, a comparison of
its detection accuracy was conducted with current mainstream object detection algorithms
on the Udacity Self Driving Car dataset. The experimental results are presented in Table 3.
By selecting widely recognized and representative algorithms in this field as benchmarks,
the aim is to comprehensively explore the performance advantages of the algorithm in
processing complex road scenes. Moreover, this comparison allows for a more objective
evaluation of its position and value in the current object detection technology landscape.

Table 3 presents a comparative analysis between SDG-YOLOv5 and existing mainstream
algorithms on the Udacity Self Driving Car dataset. In contrast to traditional two-stage
algorithms like Faster R-CNN and its enhanced version AD-Faster R-CNN, SDG-YOLOv5
demonstrates an improvement in the mAP@.5 metric by 9.7% and 6%, respectively, along
with a boost in frame rate by 19.6 FPS and 24.3 FPS, respectively. This advancement not
only demonstrates SDG-YOLOv5’s superiority over traditional two-stage algorithms in
effectively integrating spatial and contextual information but also reflects its progress
in frame rate, a crucial factor for real-time applications such as intelligent driving.
When compared to the single-stage algorithm SSD, SDG-YOLOv5 achieves a notable
enhancement of 36.2% in the mAP@.5 metric and an 8.5 FPS increase in frame rate.
Additionally, compared toYOLOv3 andYOLOv4-CSPResNeXt, SDG-YOLOv5 respectively
exhibits a 7% and 4.9% increase in mAP@.5, demonstrating its effectiveness in improving
detection accuracy. In comparison to CF-YOLOX, which incorporates the CBAM attention
mechanism, SDG-YOLOv5 has demonstrated a 2.5% enhancement in the mAP@.5
metric, reflecting its effectiveness in improving context-aware features. Additionally,
when compared to TPH-YOLOv5, which integrates a self-attention mechanism, SDG-
YOLOv5 exhibited a 0.4% increase in the mAP@.5 evaluation metric. While self-attention
mechanisms are recognized for improving a model’s feature learning capabilities, they
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often require longer training periods. The enhancements integrated into SDG-YOLOv5
enable it to notably boost detection accuracy while reducing the training duration, which
is particularly vital for applications like intelligent driving requiring rapid iteration and
deployment. Against BIGA-YOLO, utilizing lightweight Ghost modules, SDG-YOLOv5
has displayed a 4.2% rise in the mAP@.5 metric. Furthermore, in comparison to the
latest YOLOv8, SDG-YOLOv5 showcased a 1% improvement in the mAP@.5 metric,
affirming its superior detection accuracy in intelligent driving scenarios. The analysis of
the data presented in the table indicates that the proposed algorithm, SDG-YOLOv5, has
achieved the highest accuracy while maintaining a frame rate of 30.3 FPS, thus meeting
the requirements for real-time detection. Although the detection speed of SDG-YOLOv5
may be slightly slower compared to some mainstream algorithms, prioritizing increased
detection accuracy while ensuring real-time performance is deemed more critical in the
context of intelligent driving applications.

To evaluate the efficiency of the proposed algorithm, random tests were conducted on
theUdacity Self Driving Car dataset using themodel loaded with training-exported weights.
The test results depicted in Fig. 10 reveal that the original network encounters challenges
in accurately detecting certain object categories. Specifically, it demonstrates tendencies
to misclassify crucial targets like traffic lights and pedestrians. Moreover, instances of
missed detections are observed, where it fails to identify some small and distant objects,
thus constraining its utility in traffic scenarios. In contrast, the SDG-YOLOv5 algorithm
outlined in this article effectively tackles these issues. It adeptly identifies and precisely
localizes targets across diverse road conditions, markedly enhancing the precision of object
detection.

CONCLUSION
The present study develops the SDG-YOLOv5 algorithm to achieve high real-time
performance and precision in smart driving object detection scenarios. To this end,
the CIoU Loss is replaced with SIoU Loss to accelerate network convergence, facilitating
quicker and more accurate alignment of predicted bounding boxes with actual ones.
Subsequently, lightweight DHs are introduced to replace the original detection head,
effectively segregating classification and regression tasks and significantly reducing the
number of parameters while maintaining accuracy compared to the traditional decoupled
head. Furthermore, the lightweight GAMGC is incorporated into the original network,
resulting in a notable reduction in the parameter count and floating-point operations
compared to conventional attention mechanisms. The performed analyses demonstrate
that the algorithm achieves mAP@.5 scores of 88.3%, 55.3%, and 94.6% on the Udacity Self
Driving Car, BDD100K, and KITTI datasets, respectively, under testing conditions with an
NVIDIA RTX 3090. Additionally, the detection speed is 30.3FPS, significantly enhancing
the detection of road scenes while balancing real-time performance.
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Figure 10 Comparison of test results obtained from different algorithms.
Full-size DOI: 10.7717/peerjcs.2021/fig-10
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