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ABSTRACT
The scarcity of data is likely to have a negative effect on machine learning (ML).
Yet, in the health sciences, data is diverse and can be costly to acquire. Therefore, it
is critical to develop methods that can reach similar accuracy with minimal clinical
features. This study explores a methodology that aims to build a model using minimal
clinical parameters to reach comparable performance to a model trained with a more
extensive list of parameters. To develop this methodology, a dataset of over 1,000
COVID-19-positive patients was used. A machine learning model was built with over
90% accuracy when combining 24 clinical parameters using Random Forest (RF) and
logistic regression. Furthermore, to obtain minimal clinical parameters to predict the
mortality of COVID-19 patients, the features were weighted using both Shapley values
and RF feature importance to get the most important factors. The six most highly
weighted features that could produce the highest performance metrics were combined
for the final model. The accuracy of the final model, which used a combination of six
features, is 90% with the random forest classifier and 91% with the logistic regression
model. This performance is close to that of a model using 24 combined features (92%),
suggesting that highly weightedminimal clinical parameters can be used to reach similar
performance. The six clinical parameters identified here are acute kidney injury, glucose
level, age, troponin, oxygen level, and acute hepatic injury. Among those parameters,
acute kidney injury was the highest-weighted feature. Together, a methodology was
developed using significantlyminimal clinical parameters to reach performancemetrics
similar to a model trained with a large dataset, highlighting a novel approach to address
the problems of clinical data collection for machine learning.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science
Keywords Minimal data, Machine learning, COVID-19, Random forest, Kidney injury

INTRODUCTION
Machine learning has been used extensively in health care, demonstrating a promising
performance in predicting the outcome of diseases, including Alzheimer’s disease (Li et al.,
2021), cancer (Tran et al., 2021), diabetes (Oikonomou & Khera, 2023), and cardiovascular
diseases (Awan et al., 2018). It is commonly believed that the accuracy of the ML relies on
having access to extensive datasets for constructing models (Cirillo & Valencia, 2019; Ching
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et al., 2018). However, data generated from patients is often costly and time-consuming.
For example, in the emergency department, sparse features are common problems of
electronic medical record data (Wells et al., 2013). Sparse features, characterized by zero
values significantly larger than non-zero features, can significantly impact computing
memory and diminish the model’s ability to generalize. Particularly in small datasets, the
substantial noise within sparse features can hinder model training, preventing convergence
(Heinze, 2006; Chen et al., 2023). Recently, systematic approaches have been applied to
build a prediction model to address this question, including a Random Forest (RF) for
missing values, k-means for imbalanced data, and principal component analysis (PCA)
for sparse features (Chen et al., 2023). Therefore, proving a methodology that similar
effectiveness can be reached using minimal features compared to large datasets is essential
to improve future applications to use ML in medicine.

Coronavirus disease 2019 (COVID-19) caused by the virus SARS-CoV-2 is a crucial
disease that often affects the respiratory system (Lu et al., 2020). In January 2020, the global
pandemic situation had been declared by the World Health Organization (WHO) (Shi et
al., 2020). As of November 2023, COVID-19 had resulted in more than 6.9 million deaths
worldwide, according to WHO. Despite the fact that vaccines for COVID-19 had been
provided in the majority of the world and was effective for the prevention of COVID-19,
delayed vaccination in underdeveloped countries or people who are against vaccination,
and immune escape by variants will still result in COVID-19 infection (Dunkle et al., 2022;
Eyre et al., 2022). The COVID-19 disease could progress in a variety of ways, from mild
symptoms that go away on their own to serious and fatal side effects like acute respiratory
distress syndrome (ARDS) and multi-organ failure (Gautret et al., 2020). It had been
demonstrated that early therapies such antiviral drugs could stop clinical deterioration
in COVID-19 patients (Mathies et al., 2020). Consequently, there is a significant need for
early identification of potential severe outcomes in COVID-19 positive patients to enable
prompt measures that can help reduce the risk of critical complications associated with the
infection.

The pandemic has offered valuable datasets of clinical information linked to patient
outcomes, providing a unique opportunity to develop a methodology using minimal
clinical data for prediction. Recently, the potential of computational approaches proved to
be significant in the diagnosis of COVID-19 at earlier stages. Yao et al. (2020) proposed a
machine-learning-based model to detect the severity of COVID-19. The level of severity
of COVID-19 was demonstrated by support vector machine (SVM) with 32 features using
data from 137 COVID-19 patients. They further screened these 32 features for inter-feature
redundancies. The final SVMmodel was trained using 28 features and achieved the overall
accuracy 81% (Yao et al., 2020). In another study, a predictive model with top 20 features
including baseline radiological, laboratory, and clinical data was reported. For mortality
endpoint, the top model yielded an 80% accuracy using all features with balanced random
forest (Aljouie et al., 2021). Moreover, chest CT pictures had been used for the training
and prediction for COVID-19 outcome and become a valued feature of the assessment of
patients (Mei et al., 2020). Therefore, although various studies have been performed using
ML to predict the outcome for COVID-19 positive patients, very few studies have explored
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the uses of the minimal clinical parameters at early stage of the infection to assess mortality
risk.

In this study, a dataset encompassing over 1,000 patients was initially utilized for ML
training purposes. To enable early assessment, only data from routine lab tests were
included, excluding factors that signify patients are already in a severe condition. The
minimal set of six clinical parameters was identified to assess COVID-19 outcomes at an
early stage, demonstrating comparable accuracy to the use of 24 features.

MATERIALS & METHODS
Dataset
The dataset used in this study was from the Cancer Imaging Archive acquired at Stony
Brook University from patients who tested positive for COVID-19 (Saltz et al., 2021). This
collection includes associated clinical data for each patient. The clinical data consists of
diagnoses, procedures, lab tests, COVID-19 specific data values (e.g., intubation status,
symptoms at admission) and a set of derived data elements, which were used in analyses
of this data. The clinical data was stored as a set of csv files which comply with OMOP
Common Data Model data elements.

Data preprocessing
In the original dataset, each patient’s features mainly consisted of true or false statements.
All categorical features were binary encoded of features in order for the ML model to
work properly. The dataset consists of many values that were labeled as ‘‘NA’’. These null
values were removed from the dataset and the KNNImputer algorithm was used to fill in
these missing values. The KNNImputer algorithm uses the k-nearest neighbors method
to observe trends in the rest of the dataset and predict a value that best fits the missing
value. The variables that did not require binary encoding were left in their raw integer
state. However, the patients’ ages were rounded to 38, 66, and 82 depending on which one
they were closest to. Before preprocessing, this dataset originally contained 105 different
columns of data and most of the features were removed as they contained over 30% null
values so they would not be an accurate predictor. In this study, early detection is an
essential part in helping to lower COVID-19 morality rates. However, in order to predict
the outcome of a patient in the early stages of the disease, all the data that contained
hospitalization had to be removed. As a result, the patient’s ICU status, length of stay,
and ventilation during hospitalization were dropped. In addition, the patients ID and
their COVID-19 status were also dropped because all patients in the dataset were positive.
Eventually, 30 different clinical features were used for this study.

Machine learning algorithm selection
In the process of preparing the data for algorithm selection, patient results were isolated
into a separate variable. Subsequently, the remaining 24 features underwent an 80% split
into testing and training datasets. The objective was to identify the machine learning model
that would yield the highest performance with the given data.

Various machine learning algorithms were then employed and assessed for their efficacy:
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1. Support vector machine (SVM): SVM, a supervised machine learning algorithm,
utilizes a hyperplane to delineate data with the maximum margin. It serves the dual
purpose of classification and regression (Shilton et al., 2005).

2. K-nearest neighbors (KNN): KNN classification involves assigning unlabeled
observations to the class of the most similar labeled examples, providing a proximity-
based classification method (Zhang, 2016).

3. Random Forest (RF) Classifier: RF, an ensemble learning method, amalgamates
multiple decision trees to make predictions. The training of models was executed using
the training dataset, and accuracy was gauged by testing the trained model on the
testing dataset (Pedregosa et al., 2011).

4. Logistic regression (LR) Model: LR, a regression analysis applicable to datasets with
binary dependent variables, has found widespread use in epidemiology (Bender, 2009).
To enhance the performance of these machine learning algorithms, a grid search

approach was implemented to fine-tune hyperparameters. These hyperparameters,
additional parameters frequently adjusted by users, play a pivotal role in influencing
prediction metrics (Sah et al., 2022).

This rigorous evaluation process aimed to determine the algorithm that exhibited the
highest accuracy (ACC), ROC-AUC, and Matthew’s correlation coefficient (MCC) scores,
thus ensuring the selection of the most effective model.
1. Accuracy (ACC)

Accuracy=
TP+TN

TP+TN +FP+FN
0.0<=Accuracy<= 1.0 (1)

ROC-AUC

ROC−AUC=
∫ 1

0
TPR(FPR)dFPR0.0<=ROC−AUC<= 1.0 (2)

Matthew’s Correlation Coefficient (MCC):

MCC=
TP×TN −FP×FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

−1.0<=MCC <= 1.0 (3)

These metrics, derived from the confusion matrix variables (true positive, true negative,
false positive, and false negative), provide a comprehensive evaluation of the model’s
performance.

Feature importance evaluation
In the pursuit of determining the optimal number of features for maximal predictive
performance, a comparative analysis was conducted between the random forest feature
importance analysis algorithm and Shapley values obtained using XGBoost. The process
involved multiple steps:
1. Random Forest feature importance: The weight of each feature was initially determined

using the random forest feature importance analysis algorithm. This analysis assessed
the relative importance of features based on their position within decision trees.
Features at the top of the tree, with higher depth, were deemed more impactful in
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determining final predictions. The expected fraction of sample contributions, combined
with impurity reduction through splitting, generated a standardized measure of each
feature’s predictive capability (Pedregosa et al., 2011). The mean decrease in impurity
(MDI), an aggregated metric, was utilized for subsequent feature selection (Louppe,
2014).

2. Shapley values using XGBoost: Shapley values, rooted in game theory and proposed
by Shapley (1953), were employed to assess the average marginal contribution of each
feature to the results. XGBoost, an implementation of gradient boosted decision trees
(Parsa et al., 2020), facilitated the computation of Shapley values.

3. Comparison and selection of features: The six features with the highest weights from
the random forest feature importance analysis were juxtaposed with the six features
possessing the highest Shapley values. Features exhibiting superior metrics were then
used to construct a refined dataset, subsequently employed to train a new model.
This rigorous analysis, depicted in Fig. 1, aimed to identify a subset of features that,

when employed in model training, would yield superior predictive performance.

RESULTS
In this section, a comprehensive analysis of the results is presented. Leveraging 24 features
initially, various machine learning algorithms were employed, with Logistic Regression
and Random Forest emerging as the top performers.

Using the 24 features, it was shown that the Support Vector Machine (SVM) produced
an accuracy of 0.8596, ROC-AUC score of 0.5, and an MCC score of 0. The K-Nearest
Neighbors (KNN) classifier produced an accuracy of 0.8681, ROC-AUC score of 0.6190,
and anMCC score of 0.3284. The Random Forest classifier produced an accuracy of 0.9106,
ROC-AUC score of 0.7198, and an MCC score of 0.5744. The logistic regression classifier
produced an accuracy of 0.9191, an ROC-AUC score of 0.7755, and anMCC score of 0.6322
(Fig. 2). The logistic regression and RF models obtained a better accuracy than the SVM
and KNN classifiers after hyperparameter tuning. The higher accuracy of the RF classifier
suggests that it was able to capture the underlying patterns and relationships within the
dataset effectively. This is likely due to the ensemble nature of RF, which combines multiple
decision trees to make more accurate predictions. The higher performance metrics of the
logistic regression classifier suggests that it was able to capture the underlying patterns and
relationships within the dataset effectively.

Furthermore, to identify minimal clinical parameters that could be associated with the
mortality of COVID-19, the random forest feature importance analysis algorithm was
employed. This approach allowed for the determination of the relative importance of each
feature in observing outcomes (Fig. 3A). Among the 24 features, the six most important
features were acute kidney injury status, serum glucose level, age, high troponin level
(above 0.01), acute hepatic injury, and blood oxygen level measured by pulse oximeter
(under 90). These features have an importance of 0.15, 0.13, 0.07, 0.06, 0.04, and 0.04,
respectively. Using XGBoost, the Shapley values of all features were determined (Fig. 3B).
The six features with the highest Shapley values were acute kidney injury, age, serum glucose
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Figure 1 Schematic explanation of the methods using in this study.
Full-size DOI: 10.7717/peerjcs.2017/fig-1

Figure 2 Performance metrics of four prediction algorithms trained using all features. The x-axis con-
tains the four ML algorithms. The y-axis contains the values of these metrics.

Full-size DOI: 10.7717/peerjcs.2017/fig-2

level, pulse oximeter (under 90), aspartate (over 40), and MAP (above 90). The Shapley
values for these features were 1.5, 1.1, 0.67, 0.62, 0.52, and 0.5. Next, Shapley values of each
feature were compared with their random forest feature importance. To determine which
list of features to train the final model with, logistic regression models were trained with
the top six features from the Shapley values and the Random Forest feature importance
(Fig. 4A). The model that was trained with the Shapley value features produced an accuracy
of 0.9064, a ROC-AUC score of 0.7808, and an MCC score of 0.5931. The model trained
with the RF features produced an accuracy of 0.9149, a ROC-AUC score of 0.7857, and an
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Figure 3 Comparison between Shapley values and RF feature importance. (A) The predicted weight
of each feature using the random forest feature importance algorithm. (B) The predicted Shapley value of
each feature using XGBoost.

Full-size DOI: 10.7717/peerjcs.2017/fig-3

Figure 4 Performance metrics of logistic regressionmodels trained with the six most important fea-
tures. (A) The features were determined using Shapley values and random forest feature importance anal-
ysis. (B) Performance metrics of logistic regression models trained with the five and seven most important
features. Features were determined with the RF feature importance analysis algorithm.

Full-size DOI: 10.7717/peerjcs.2017/fig-4

MCC score of 0.6225. As a result, the features that were determined using the RF feature
importance analysis algorithm were better suited for this study.

To confirm that six features can produce the highest performance metrics, two Logistic
Regressionmodels were trainedwith five or seven features (Fig. 4B). Themodel trainedwith
the top five most important features produced an accuracy of 0.8894, a ROC-AUC score
of 0.7835, and a MCC score of 0.5534. The model trained with seven features produced an
accuracy of 0.8979, a ROC-AUC score of 0.8138, and a MCC score of 0.5987. The model
trained with six features produced the highest performance metrics, proving that it is the
best option.
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Figure 5 Acute kidney injury is the most important feature determined by using ablation experiment.
Performance metrics of logistic regression models trained during an ablation experiment executed with
the six most important features determined using the RF feature importance algorithm. The y-axis con-
tains the name of the feature that was removed. The x-axis contains the values of the performance metrics.

Full-size DOI: 10.7717/peerjcs.2017/fig-5

To confirm the importance of each feature, an ablation experiment was conducted.
Using the logistic regression ML algorithm, the performance metrics were gathered for
models trained with the six most important features determined with the RF feature
importance analysis algorithm (Fig. 5). For each of six tests, one of the six features was
removed. When acute hepatic injury was removed the accuracy was 0.8894, the ROC-AUC
score was 0.7835, and the MCC score was 0.5534. Without saturation of oxygen in the
blood (under 90) the model produced an accuracy of 0.8809, a ROC-AUC score of 0.7279,
and a MCC score of 0.4814. When troponin above 0.01was removed, the accuracy became
0.9021, the ROC-AUC score became 0.8036, and the MCC score became 0.5998. When
age was removed, the accuracy was 0.8723, the ROC-AUC score became 0.6722, and the
MCC score became 0.4027. When serum glucose level was removed, the accuracy became
0.9149, the ROC-AUC score became 0.7857, and the MCC score became 0.6225. When the
acute kidney injury was removed, the model produced an accuracy of 0.8638, a ROC-AUC
score of 0.5785, and a MCC score of 0.2583. Without acute kidney injury, the model’s
performance decreased the most, meaning that acute kidney injury is the most important
feature.

Finally, to confirm logistic regression is the best model to be used on the six most
important features, each model was reassessed with the smaller set of data (Fig. 6A).
Using six features, the SVM classifier produced an accuracy of 0.8596, ROC-AUC score of
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Figure 6 The metrics produced are similar, using only six features compared to 24 features. (A) Per-
formance metrics of four prediction algorithms trained using the highest weighted six features determined
with the random forest feature importance algorithm. (B) Performance metrics for logistic regression
models trained with the most important six features and all 24 features.

Full-size DOI: 10.7717/peerjcs.2017/fig-6

0.5000, and an MCC score of 0.0000. The KNN classifier produced an accuracy of 0.8596,
ROC-AUC score of 0.6141, and an MCC score of 0.2981. The random forest classifier
produced an accuracy of 0.8979, a ROC-AUC score of 0.7378, and a MCC score of 0.5359.
The logistic regression model produced a surprising accuracy of 0.9149, a ROC-AUC score
of 0.7857, and a MCC score of 0.6225. The logistic regression model was able to produce
the best performance metrics confirming that it is the best ML algorithm to use. Therefore,
the performance metrics produced are similar using only six features compared to 24
features (Fig. 6B).

DISCUSSION
This study addresses the challenges posed by limited data availability in machine learning
applications within clinical settings, particularly emphasizing the need to develop
methodologies that can offer valuable insights into patient outcomes based on a restricted
set of clinical parameters. The article takes advantage of the publicly available dataset of the
COVID-19 patients and aims to observe potential mortality indicators in the early stages
of COVID-19 infection. The study uses features that are obtained through routine lab test
results while excluding features that indicate the patient is already in a severe condition.
Employing a logistic regression model, the research achieved an accuracy of 0.9191, a
ROC-AUC score of 0.7755, and a MCC score of 0.6322 by using 24 clinical parameters.
The investigation found that the six most highly weighted clinical parameters were acute
kidney injury, glucose level, age, troponin, oxygen level, and acute hepatic injury. The final
logistic regression model, trained with these six features, produced an accuracy of 0.9149, a
ROC-AUC score of 0.7857, and an MCC score of 0.6225. The study outlines the feasibility
of utilizing minimal clinical parameters for COVID-19 outcome estimation. It highlights
the potential for creating ML models in future using a handful of key features, showcasing
their potential in yielding precise predictions in studies concerning human health.

The study contextualizes its findings within the broader landscape of machine learning
applications in healthcare, particularly in predicting COVID-19-related mortality. For
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example, one study used 15 parameters including gender, age, blood urea nitrogen (BUN),
creatinine, international normalized ratio (INR), albumin, mean corpuscular volume
(MCV), white blood cell count, segmented neutrophil count, lymphocyte count, red cell
distribution width (RDW), and mean cell hemoglobin (MCH) along with a history of
neurological, cardiovascular, and respiratory disorders to predict patient outcomes with
a sensitivity of 70% and a specificity of 75% (Jamshidi et al., 2021). Despite the limited
dataset, the study demonstrates that even a minimal set of clinical parameters can yield
insights into mortality risks associated with COVID-19, offering a pragmatic approach for
early-stage risk assessment.

Understanding the multifaceted effects of the COVID-19 pandemic on mortality across
different population levels presents a significant challenge for public health research. Two
recent publications demonstrated the direct COVID-19 contribution to excess mortality
exceeds 100% in the oldest age groups (Lee et al., 2023; Riou et al., 2023). The age groups
affected most by excess mortality were those over 70 years of age. Based on these studies,
patients aged over 74 have been selected and performance metrics on a logistic regression
model trained with all 24 features of these patients have been gathered. The model
achieved an accuracy of 0.8113, an ROC-AUC score of 0.7680, and a MCC score of 0.5553.
A logistic regression model trained with the top six features of these patients produced
an accuracy of 0.7736, an ROC-AUC score of 0.7092, and a MCC score of 0.4538. These
two models still produced similar performance metrics, meaning that using minimal
clinical parameters, one can still observe mortalities directly related to COVID-19. The
comparative performance of these models suggests that a select few clinical parameters can
indeed provide valuable insights intomortality risk, highlighting a potential area for further
research. This approach underscores the importance of identifying key indicators within
limited data sets, thus contributing to a better understanding of COVID-19’s impact while
acknowledging the limitations inherent in observational studies and the need for careful
interpretation of these correlations.

Using the RF feature importance analysis algorithm, Shapley value analysis, and ablation
experiment, this study has identified a strong association between acute kidney injury
and increased mortality among COVID-19 patients. This aligns with previous findings
indicating that acute kidney injury significantly elevates the risk of mortality in COVID-19
patients, with a risk ratio (RR) of 4.6 for mortality compared to those patients with
COVID-19 but without acute kidney injury (Fu et al., 2020). Pathological studies using
both live kidney biopsies and autopsy samples demonstrate that acute tubular injury is
the most commonly encountered findings in COVID-19 patients (Sharma et al., 2021). It
has been well acknowledged that COVID-19 patients with high blood glucose level will be
more likely to transform into severe and fatal cases (Cai et al., 2020; Coppelli et al., 2020;
Sardu et al., 2020). Surprisingly, the ablation experiment revealed that the exclusion of
the glucose level feature did not significantly affect the model’s outcome, suggesting a
nuanced relationship between glucose levels and COVID-19 mortality that needs further
investigation. This research underscores the correlation between acute kidney injury and
higher mortality rates in COVID-19 patients, emphasizing the critical need for monitoring
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of this condition in affected individuals. Further investigations need to be performed to
validate whether these parameters can be used as definitive predictors of mortality.

This study signifies a crucial advancement in the development of methodologies aimed
at utilizing a minimal dataset to identify and leverage the most significant features for
analysis. This approach has demonstrated the potential to achieve accuracies comparable
with those derived from more extensive datasets. Future efforts should focus on the
thorough validation of this approach across a variety of patient demographics to ascertain
its robustness and generalizability for predictive analytics in healthcare settings.

CONCLUSIONS
In conclusion, this research has successfully leveraged various machine learning models to
develop a novel methodology involving the use of minimal clinical parameters to generate a
model with similar performance to amodel trained with all features. This study also showed
that parameters such as acute kidney injury and glucose level are highly correlated with
high COVID-19 mortalities. Notably, the model relies on a mere six clinical parameters,
achieving an accuracy exceeding 90%. This groundbreaking achievement holds significant
potential by allowing for clinical data gathering to be more cost efficient and effective.
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