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ABSTRACT
Knowledge representation is increasingly recognized as an effective method for
information extraction. Nevertheless, numerous studies have disregarded its
potential applications in the zero-shot setting. In this article, a novel framework,
called knowledge-based prompt tuning for zero-shot relation triplet extraction
(KBPT), was developed, founded on external ontology knowledge. This framework
serves as a catalyst for exploring relation triplet extraction (RTE) methods within
low-resource scenarios, warranting further scrutiny. Zero-shot setting RTE aims to
extract multiple triplets that consist of head entities, tail entities, and relation labels
from an input sentence, where the extracted relation labels are those that do not exist
in the training set. To address the data scarcity problem in zero-shot RTE, a
technique was introduced to synthesize training samples by prompting language
models to generate structured texts. Specifically, this involves integrating language
model prompts with structured text methodologies to create a structured prompt
template. This template draws upon relation labels and ontology knowledge to
generate synthetic training examples. The incorporation of external ontological
knowledge enriches the semantic representation within the prompt template,
enhancing its effectiveness. Further, a multiple triplets decoding (MTD) algorithm
was developed to overcome the challenge of extracting multiple relation triplets from
a sentence. To bridge the gap between knowledge and text, a collective training
method was established to jointly optimize embedding representations. The
proposed model is model-agnostic and can be applied to various PLMs. Exhaustive
experiments on four public datasets with zero-shot settings were conducted to
demonstrate the effectiveness of the proposed method. Compared to the baseline
models, KBPT demonstrated enhancements of up to 14.65% and 24.19% in F1 score
on the Wiki-ZSL and TACRED-Revisit datasets, respectively. Moreover, the
proposed model achieved better performance compared with the current state-of-
the-art (SOTA) model in terms of F1 score, precision-recall (P–R) curves and AUC.
The code is available at https://Github.com/Phevos75/KBPT.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Natural Language and
Speech, Neural Networks
Keywords Knowledge-based, Zero-shot relation triplet extraction, Prompt tuning

INTRODUCTION
Relation extraction (RE) endeavors to discern and extract the relationship existing between
provided entity pairs from unstructured resources. Due to its capability of extracting
essential information, RE is widely utilized in various downstream tasks of natural
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language processing (NLP), such as information retrieval (Yao et al., 2023) and knowledge
base construction (Morio et al., 2022). At present, supervised learning (Han et al., 2018)
based on labeled training data and distant supervision strategy (Ji et al., 2017) have
emerged as prominent methods in RE. However, both methods possess drawbacks.
Supervised learning is constrained by the quantity of labeled training samples due to the
substantial human and financial resources required for manual labeling. Moreover,
training samples generated by distant supervision tend to be noisy, further complicating
the learning process. To address the aforementioned challenge, few-shot learning (Ye et al.,
2020) has emerged as a promising approach. This method requires only a small amount of
annotated data to achieve remarkable training performance. The earliest application of
few-shot learning originated from computer vision, and many subsequent studies (Lifchitz
et al., 2019; Li et al., 2020; Ye et al., 2020) have emerged since then. Research has gradually
expanded to other application fields, such as information extraction (Gao et al., 2019; Hui
et al., 2020) and natural language understanding (NLU) (Gao et al., 2020). Despite the
effectiveness of these approaches with a limited amount of training data, they may still be
ineffective in scenarios where no annotated samples are available.

The current approaches to address data scarcity can be categorized into three main
categories. Firstly, constructing large-scale corpora through distant supervision (Ji et al.,
2017), although this method is limited by a fixed number of relation types and suffers from
poor annotation quality (Smirnova & Cudré-Mauroux, 2018). Secondly, defining task
objectives to accommodate an unconstrained label space, as seen in open information
extraction (OIE) (Angeli, Premkumar & Manning, 2015), which directly extracts relations
from open corpora. However, this approach may struggle with effectively identifying
meaningful relation patterns and filtering out irrelevant information. The third direction
involves leveraging pre-trained language models (PLMs) (Lee & Toutanova, 2018) with
task-specific prompt templates, enabling models to generalize to new tasks with minimal
or no training samples, such as zero-shot classification (Zhong & Chen, 2020). Nonetheless,
constructing prompt templates (Cui et al., 2021) can be challenging and may lack
generalization ability. A recent study (Chia et al., 2022) suggested the use of relation labels
as prompts for the generation of synthetic training samples. The aim of this method is to
uncover semantic knowledge in relation labels to represent unseen relations. However,
relying solely on relation labels may result in incomplete relational semantics and hinder
the generation of high-quality training samples.

The aforementioned methods primarily focus on analyzing relational data characterized
by incomplete semantic information. Illustrated in Fig. 1, when the prompt template
exclusively features the relational label Created by without incorporating detailed
conceptual attribute descriptions from the ontology schema (Horrocks, 2008), such as
Organization, Person, etc., the resulting synthetic samples are susceptible to semantic
incompleteness. Therefore, more expressive prior knowledge is expected to boost the
quality of the generated synthetic samples. In the present study, an ontology scheme
sourced from an external knowledge base was utilized to enhance prompt information.
The ontology schema represents a general pattern of concepts (that is, the types of things)
that exist in a specific domain, and the property is used to link the semantic relation
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between concepts. It can represent a wealth of valuable information, such as concept
hierarchy and meta-data (that is, textual definitions, comments, and descriptions of
concepts). Several instances of ontology schema are shown in the upper part of Fig. 1, and a
more detailed description is shown in ontology knowledge transformation.

While the integration of ontology knowledge enhances understanding of relational
semantics to some extent, several significant challenges persist. Primarily, a considerable
level of noise is present in the external knowledge base (Ye et al., 2022). Studies (Liu et al.,
2020; Zhang et al., 2021a) have shown that not all external knowledge is beneficial for
improving task performance, and blind knowledge injection may not be conducive to the
model’s performance. As such, it is imperative to curate learnable knowledge that
harmonizes the prompt template, thereby enhancing the coding performance of relational
triples. Additionally, employing specific markers to encode structured text offers benefits
for decoding triples. Moreover, crafting a pragmatic prompt template capable of encoding
multiple triples may compromise the generation quality of synthetic samples, given the
model’s challenge in processing multiple relations simultaneously. Thus, the focus of the
present study was on generating single-triplet samples and investigating how the
downstream relation extractor can mitigate this constraint.

Figure 1 The overall framework of prompt template construction. The formation of the external
ontology schema (A) and Ontology Transformation (B). w1;w2 and w3;w4 in the blue squares are the
learnable virtual tokens, and it is the relation label in red square, which consisting prompt template
together. Full-size DOI: 10.7717/peerj-cs.2014/fig-1
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In this article, we propose a novel zero-shot relation triplet extraction framework called
KBPT. The proposed framework not only enhances the relation semantics with an
ontological schema, but also employs an ontology-based generative prompt template to
synthesize training samples for unseen relational categories. Specifically, an ontology
embedding technique was first proposed for learning meaningful embedding
representations of unseen relation categories from the ontological schema. Subsequently, a
generative model was employed to produce features and create training samples tailored to
the desired relation, effectively transforming the zero-shot setting problem into a
supervised learning scenario through empirical methods. This operation is viable and
substantiated by research (Keskar et al., 2019), which enables prompting the language
model to generate domain-specific structured text. For instance, when presented with the
relation label Created by as depicted in Fig. 1, it is reasonable to prompt the language
model to generate a sentence incorporating the relevant entity. This entity signifies the
entity that was uncovered, initially described, or invented, among other possibilities.
Therefore, a possible output sentence could be The county was created in 1818 by the
Virginia General, which contains head entity Virginia General and tail entity The county,
respectively. Therefore, given enough high-quality synthetic training samples, the zero-
shot potential is possible by leveraging the semantic information in prompts to transform
it into a supervised learning task. In summary, the main contributions of the present study
include:

� Knowledge-based prompt tuning (KBPT) was introduced for zero-shot relation triplet
extraction, which overcomes the limitation of data sparsity in traditional tasks by
expanding the scope of relation triplet extraction to zero-shot scenarios.

� The proposed knowledge-based method not only incorporates prior knowledge from
ontological schemas, which enhance semantic representations, but also employs a
generative prompt model to synthesize training samples for unseen relational types.

� A multiple triplet decoding (MTD) algorithm was proposed to achieve the goal of
extracting multiple relation triplets from a sentence at once.

� Finally, KBPT was evaluated on four public datasets, namely FewRel (https://thunlp.
github.io/1/fewrel1.html) (Han et al., 2018), NYT (https://Github.com/davidsbatista/
Annotated-Semantic-Relationships-Datasets/blob/master/datasets/DataSet-
IJCNLP2011.tar.gz) (Riedel, Yao & McCallum, 2010), TACRED-Revisit (https://
paperswithcode.com/dataset/tacred-revisited) (Alt, Gabryszak & Hennig, 2020), and
Wiki-ZSL (https://raw.githubusercontent.com/dinobby/ZS-BERT/master/resources/
property_list.html) (Chen & Li, 2021). The experimental results illustrate that KBPT
attained state-of-the-art performance, producing instances that were both reasonable
and diverse. These generated instances can be utilized as training data, thereby
establishing a benchmark for subsequent research endeavors.

The overall structure of this article is organized as follows: “Related Works” provides an
overview of related works concerning prompt tuning and zero-shot learning. “Knowledge-
Based Prompt Tuning Methodology” elaborates on the proposed method, presenting the
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knowledge-based prompt tuning methodology in detail. “Experiments and Results”
encompasses the experiments, which include the presentation of experimental results and
their analysis. Finally, “Conclusion” and future work concludes the studies discussed in
this article and offers insights into potential avenues for future research.

RELATED WORKS
Zero-shot setting for relation extraction
Zero-shot learning can be broadly categorized into two approaches. The first involves
projecting features from seen classes onto the space of unseen classes through mapping, as
demonstrated by Kodirov, Xiang & Gong (2017). However, this method is susceptible to
domain drift, as highlighted by Tomani et al. (2021). The second approach entails
generating synthetic training samples from seen classes to supervise the training of another
model, effectively reframing the zero-shot learning challenge as a supervised learning task,
as proposed by Qin et al. (2020). Despite utilizing samples from seen classes, the latter
method demonstrates strong generalization to unseen classes based on their semantic
relations.

The zero-shot setting for relation extraction can be defined as a slot-filling task with the
neural reading-comprehension technique (Levy et al., 2017). Nonetheless, such approach
can only generate new relation classes well if each relation label template requires manual
design. An alternative approach involves conceptualizing the zero-shot relation
classification task as textual entailment, leveraging pre-existing textual entailment models
(Obamuyide & Vlachos, 2018). However, a drawback of this method is that the space of
relation labels is not fixed. Moreover, it is suitable for text classification and does not
perform well in zero-shot relation extraction. A recent study (Gong & Eldardiry, 2020) on
the zero-shot setting in relation extraction garnered considerable interest. This study
utilized prototypical networks to leverage auxiliary information for recognizing new
relations. However, the complexity associated with embedding side information hampers
the portability of this approach, particularly when applied to the large scale of the zero-shot
setting task. The most related research to this study is OntoZSL (Geng et al., 2021). This
approach addresses the inadequacies of prior knowledge by incorporating external
ontology knowledge. It leverages seen classes to generate synthetic training samples for a
range of downstream tasks, including relation extraction. Inspired by this method,
knowledge-based prompt tuning (KBPT) was proposed for zero-shot relation triplet
extraction. A distinguishing feature is the utilization of the advanced language
comprehension capabilities inherent in pre-trained language models. Additionally, the
integration of insights from the human wisdom knowledge graph enhances the
effectiveness of prompting the language model to generate synthetic training samples. As
far as current knowledge suggests, we are the first research team to apply knowledge-based
prompt tuning to zero-shot setting relation triplet extraction.

Prompt tuning for PLMs
Prompt-tuning (Zhang et al., 2021b; Schick & Schütze, 2020) is a new methodology aimed
at bridging the divide between PLMs and fine-tuning for downstream tasks. Originally
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conceptualized as a cloze task, prompt-tuning has evolved into a burgeoning research
domain that has garnered significant academic interest in recent times. Prompt tuning
with GPT-3 (Brown et al., 2020) has effectively mitigated its limitations and resolved
numerous issues associated with fine-tuning across diverse application scenarios in NLP.
These scenarios include text classification (Han et al., 2021), relation extraction (Chen
et al., 2022b), and other domain-specific tasks (Yeh, Lavergne & Zweigenbaum, 2022). In
addition, prompt tuning has also achieved favorable performance in the low-data regime
and overcomes deficiencies of GPT-3 with large-scale language models (Gu et al., 2021).
The recent work by Chia et al. (2022), termed RelationPrompt, concentrates on leveraging
seen relation labels to produce synthetic training samples for unseen relation classes,
achieving notable performance. On the other hand, KPT, introduced by Hu et al. (2021),
utilizes external knowledge bases to generate label words corresponding to each label. It
integrates this external knowledge into the verbalizers to facilitate prompt learning.
Although the aforementioned approaches demonstrate relatively good performance, they
are constrained by their focus on single semantic knowledge within relation labels or
external knowledge. Moreover, they only partially exploit the potential of fused semantic
knowledge to complement each other.

Notably, there have been more recent research attempts to inject external knowledge
into the prompt template. KnowPrompt (Chen et al., 2022a) leverages latent knowledge
embedded within relation labels. It incorporates this knowledge into the prompt template
by constructing virtual type words and answer words. This approach significantly
enhances the model’s performance. To fully exploit the prior knowledge in the relationship
category, Han et al. (2021) proposed prompt tuning with rules (PTR) that leverage logic
rules consisting of the sub-prompt for text classification. Knowledgeable prompt-tuning
(KPT) (Hu et al., 2021) integrates external knowledge into the verbalizer using a
knowledge graph. This process aids in forming the prompt template for text classification
tasks. To address the challenge of knowledge gaps, Ye et al. (2022) introduced ontology-
enhanced prompt-tuning (OntoPrompt). This method converts structured knowledge into
text format using an external knowledge graph. Inspired by these methodologies, we
incorporate external ontology knowledge to enrich relation semantics, thereby
supplementing incomplete prior knowledge in the prompt template for zero-shot relation
triplet extraction.

Knowledge-enhanced learning
PLMs have exhibited superior performance improvements in various NLP tasks (Brown
et al., 2020) by leveraging powerful language representation capabilities. However, direct
fine-tuning often results in suboptimal performance, particularly on knowledge-intensive
tasks. Thus, the injection of external knowledge plays a certain role in relieving this issue
through auxiliary language understanding (Zhang et al., 2022). Recently, Deng et al. (2021)
integrated ontology knowledge into the PLMs for event detection, with a considerable
performance improvement being achieved. Geng et al. (2021) investigated rich prior
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knowledge models by incorporating inter-class relationships through ontological
knowledge representation. They utilized this approach to generate synthesized training
data across various domains in the zero-shot setting. Other approaches obtain knowledge
by explicitly injecting entity representation into PLMs. To illustrate, OntoEA (Xiang et al.,
2021) adapts the entity alignment approach that relies on ontology schema. It integrates
knowledge graphs and ontology knowledge in a joint embedding framework. OntoPrompt
(Ye et al., 2022) injects ontological knowledge into a prompt template for few-shot
learning. This integration aims to mitigate issues related to knowledge incompleteness and
heterogeneity. Yao et al. (2023) proposed a retrieval-augmented approach, which retrieves
schema-aware references as prompt (RAP) for data-efficient knowledge graph
construction. Several studies used label ontologies, such as the one in OWL (Web
Ontology Language) (Chen et al., 2020), to explore interclass relationships. Morio et al.
(2022) employed graph-based parsers to capture subjective aspects of structured
sentiments for information retrieval. However, this external knowledge also has its
limitations. Moreover, while graph-based structures offer valuable insights, they may
encounter challenges in comprehending contextual coherence.

KBPT is related to the aforementioned approaches, but there is a considerable
difference. First, ontology knowledge sources from the external knowledge base were
integrated into PLMs to construct a prompt template, which is different from the
aforementioned works. The ontology knowledge used in the present model contains richer
semantics, and it is mainly in the form of multi-relational graphs composed of RDF triples,
which is easier to model using various successful triple embedding algorithms. This differs
from the construction of the ontologies used in previous research (Chen et al., 2020), which
heavily depends on manual annotation. Second, a novel ontology transformation strategy
was proposed for alleviating the ontology knowledge encoding issue in knowledge-
enhanced learning. Third, in addition to the external ontology knowledge, the relation
labels and the generated virtual tokens (for example, special tokens in the vocabulary) form
the main components of the prompt template, allowing for the semantic knowledge
contained in the relational labels to be fully exploited. Finally, collective training is utilized
to jointly optimize those parametric representations.

KNOWLEDGE-BASED PROMPT TUNING METHODOLOGY
The proposed framework contains two modules: relation data generation(RDG) for
synthetic relation samples and relation triplet extraction, which will be trained on the
synthetic data and used to predict triplets for unseen relations. In order to fusion
ontological prior knowledge, we design structured prompt templates. We further propose a
multiple triplet decoding (MTD) algorithm to overcome the challenge of generating
relation samples with multiple triplets from a sentence.

Preliminary work with prompt tuning
Zero-shot setting preliminary
Zero-shot setting relation triplet extraction aims to recognize the new relation triplets that
do not exist in the training set Ds. We define Ds ¼ fðx; yÞjx 2 Xs; y 2 Ysg, where x denotes
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the token in a sentence Xs, and y denotes the relation label in Ys. The dataset with unseen
label is denoted as Du ¼ fðx; yÞjx 2 Xu; y 2 Yug, where Yu denotes the unseen relation set.
Ds and Du are originally split from the full dataset which defined as D ¼ fS;T;Yg, where S
denote contained sentences, T denote output relation triplets and Y denote the contained
relation label set. The relation triplet is represented as t ¼ fðy; ehead; etailÞjy 2 Yg; t 2 T ,
where ðy; ehead; etailÞ denotes relation label, head entity, and tail entity, respectively. Note
that the unseen relation set Yu have no intersection with Ys, i.e., Ys \ Yu ¼ [. The seen
and unseen relation sets are predefined as C 2 Rn�ðjYsjþjYujÞ. We define the zero-shot
relation triplet extraction task in a supervised manner by generating synthetic training
samples with fDs;Ysg.
Ontological knowledge preliminary
The ontology, denoted as O ¼ fC;E;Dg, is multi-relational ontology graph. where C
represents the concept nodes set, E is the property edges set that connects the ontology
nodes, and D is the ontology description. In general, the ontology description is a set of
RDF triples. The concept nodes in this article take different formats according to the
specific domain. For instance, we select the ontology types that are more relevant to
entity mention as the logical semantic relation between entity mention and relation labels.
As for the connected property edges E, it refers to a link between two concept nodes. We
leverage relation property and combine domain-specific properties with RDFS (https://
www.w3.org/TR/rdf-schema/) to create edges in the ontology. For example, the
knowledge representation {rte:stateorprovince_of_headquarters, rdfs:subClassOf, rte:
country_of_headquarters} in Fig. 1 and the relationship {stateorprovince_of_headquarters}
are the subclasses of relationship {country_of_headquarters}, which are denoted as the
headquarters of a country and the headquarters of a state or province, respectively. In
addition to the structural RDF triplets with structural relationships between concepts, each
concept node also contains a textual description in the ontological schema. In this article,
we utilize the textual description of ontology knowledge as an auxiliary prompt (details are
described in “Knowledge-based prompt temple construction”).

Knowledge-based prompt temple construction
The process of prompt template construction involves ontology transformation, and the
converted text format is more conducive to knowledge injection. The overall generation
and extraction process can refer to Algorithm 1.

General formulation of prompt template
Let Xin ¼ fx1; x2;…; xLg be a input a sentence, where L denotes the sequence length and xi
denotes the i th token in the sentence. Firstly, Xin is converted into a fixed format sequence
~Xin ¼ ½CLS�Xin½SEP�, then we put ~Xin into a PLMs and encode a corresponding hidden
vector hk ¼ fhCLS; h1; h2;…; hk;…; hSEPg, and hk 2 Rk�d . The vanilla fine-tuning
approach in prompt learning (Zhang et al., 2021b) utilizes the MLP layer to predict the
relation class with an activation function. The parameters in PLM are constantly updated
by optimizing the value of the loss function over PðyjxÞ on the training set. The general
practice is to manually design a prompt template Tmð�Þ and label set V, and then predict
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the [MASK] via PLMs where the predicted class is contained in the label space. Specifically,
the template involves the [MASK] position and the number of added prompt words. For
each input sequence Xin, the prompt template aims to map the input sample
Xprompt ¼ TmðXinÞ. Defining the label words by injective mapping M : MðYÞ ! V to the

specific label class in the vocabulary space, and V denotes the label words set. Besides, one
or more [MASK] is inserted into the prompt template to predict the label words. The
specific prediction form is denoted as PðyjxÞ ¼ Pð½MASK� ¼ MðYÞjXpromptÞ.

In this article, we follow previous studies (Schick & Schütze, 2020) and design a prompt
template for zero-shot tasks to generate synthetic training examples that represent the
desired relation class. Specifically, to inspire inherent knowledge in the PLM, we formulate
Xprompt containing relation label, ontology knowledge, and the virtual tokens wv with the

Xin is directly tasked with the PLM as follows:

Algorithm 1 Knowledge-based prompt tuning for relation triplet extraction.

Input: Training samples Ds, Test samples Du, Ontology knowledge Ko, D ¼ Ds [ Du

Output: Multiple relation Triplets Tr

1 Training(Ds,PLMg) ! PLMg;finetune

2 Training(Ds,PLMe) ! PLMe;finetune

3 Generating(PLMg;finetune þ Syntax� AwareAttentionNetworkðSAANÞ;Kt;Yu) ! Dsy

4 Training(PLMe;finetune þ SAAN;Dsy) ! PLMe;finished

5 /*For a detailed description of the SAAN refer to Algorithm 2*/

6 Predict(PLMe;finished;Du) ∪ Multiple Triplets Decoding (MTD) ! Tr

7 /*For a detailed description of MTD refer to Algorithm 3*/

8 Return Multiple relation triplets Tr

Bi-LSTM

Input Text Ontology Text #1 Ontology Text #2 Meta-Relation

Input Text Ontology #1Template Ontology #2 Meta-Relation

A(Q,K)

CLS Russian brewing beer SEP named corporate entity SEP Person family SEP Entrepreneur UniversityTemplate

0

1

2

3

4

5

6

7

8

9

Russion River Brewing Company

named corporate ,organizational

Entrepreneur founded

Template

Fou
nd by

R
us

si
an

R
iv

er
B
re

w
in

g

or
ga

ni
za

tio
n

na
m

ed

Per
so

n
N

am
ed

Ent
re

pr
en

eu
r

fo
un

de
d

Block

Figure 2 Illustration of span-level knowledge injection. In this instance, htexti indicates hidden vectors obtained by the BiLSTM. The text in blue
and red squares is a virtual token and relation label. The rectangle on the right represents the span-level knowledge matrix, where the dark blue
blocks represent the knowledge most relevant to the relation triplets in the input text. Full-size DOI: 10.7717/peerj-cs.2014/fig-2
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Xprompt ¼ ½CLS�Xin½SEP�Tm½SEP�: (1)

The overall framework of knowledge-based prompt template construction is shown in
Fig. 2. Specifically, the external ontology schema as auxiliary knowledge is injected into the
prompt template to enhance relation semantics. The primary ontology knowledge includes
entity type information and relation scope information. For instance, there are many
relation scopes shown in Fig. 1, such as winery_in_city, has_office_in_city. The ontology
schema has rich semantic information, which can assist in knowledge reasoning and
decision-making in specific application scenarios. In this article, we mainly utilize it to
make up for the missing relation semantics in the prompt template. For the specific format
of ontological schema, refer to the Ontology knowledge transformation.

Ontology knowledge transformation
The ontology knowledge in the knowledge base has been standardized by RDFS, including
five categories of entity class: rdfs:Class, relation constraints: rdfs:domain, rdfs:range,
hierarchical structure relationship of parent class and subclass level rdfs:subClassOf, rdfs:
subProperty. To describe the ontology information more clearly, let h; t; e 2 E denote the
entity variable, rd; rp; r 2 R denote relation variable, and co; cohe; c

o
te; c

o
d; c

o
p 2 Co denote

meta-type variable in external knowledge base. To take full advantage of the completeness
of knowledge representation, we further normalize the entity-relation information by
logical rules. Specifically, the standard format is as follows:

– The input sequence’s head entity class and tail entity class have been restrained by the
relation knowledge.

ðr; h; tÞ ^ ðr; domain; coheÞ ! ðh; class; coheÞ
ðr; h; tÞ ^ ðr; range; coteÞ ! ðt; class; coteÞ
– Structured knowledge is valuable for uncovering the implicit relation semantics in the

external knowledge base.
ðco; subClassOf ; cos Þ ^ ðcos ; subClassOf ; copÞ ! ðco; subClassOf ; copÞ
ðr; subPropertyOf ; rdÞ ^ ðrd; subPropertyOf ; rpÞ ! ðr; subPropertyOf ; rpÞ
The additional capabilities of knowledge reasoning in ontological knowledge can

uncover the deeper implicit semantics, which assists in generating desire relation instances
in a zero-shot setting application scenario.

The ontology representation is denoted as O ¼ fC;E;Dg. As the above mentioned,
ontology knowledge contains detailed description information, which are lexically
meaningful information of concepts, and it also can be denoted as a triplet with properties,
e.g., rte:domain as shown in Fig. 1. We utilize the entity type as an external knowledge
injection. Moreover, to intuitively utilize the lexically semantic in the ontology schema, we
first conduct ontology transformation before injecting the prompt template. Specifically,
we extract all concept nodes with the assistance of an external ontology schema and then
convert this ontology knowledge into the original text descriptions.

For real-world relation triplet, entity class rdf:Class semantic information is generally
constrained by the various relations in ontology schema. In this article, the MUC (Vilain
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et al., 1995) is used to define entity concept. The final prompt template is defined as [CLS] ¡
InputText¿ [SEP] ¡ Template¿ [SEP] ¡ OntologyText¿ [SEP] is shown in Fig. 1. Note that
the relation label as the internal prompt in ¡ Template¿, we also define several special
tokens1 to build in the ontological edges (e.g., rdfs:instance_of), where [w1]–[w4] as the
virtual tokens on both sides of the relation label. The virtual tokens are the words with
certain relational semantics generated from the relation label, which can assist the model in
learning the most relevant entity class for prompt text. Moreover, we construct
placeholders in the ¡OntologyText¿ and fill it with text descriptions. Besides, we leverage
the path between entity pairs from the ontology as meta-relation text to enhance the
¡OntologyText¿ as shown in Fig. 1.

Previous study (Liu et al., 2020) indicated that superabundant external knowledge
injection might introduce extra noise, resulting in poor performance. To alleviate this
issue, we propose utilizing the span-level attention matrix to weaken the effects of
irrelevant external knowledge. The specific schematic diagram is shown in Fig. 2.
Specifically, given the input sequence Xin ¼ ½x1; x2;…; xL� with L tokens, to constrain the
impacts of external knowledge injection on the input text, a banded mask matrix

MðRÞ 2 RN�N is defined. R denotes the predefined constant radius representation
centered at each word of the context sequence, and the total context size of each word can
be calculated as ð2Rþ 1Þ. In the specific Transformer network architecture (Vaswani et al.,
2017), the attention weight matrix is ahead of the Softmax classifier. Therefore, we
redefined the mask matrix as follows:

MðRÞi;j ¼
0 xi; xj 2 Xin and ji� jj � R
0 xi; xj 2 Xo and ji� jj � R
0 xi 2 Xin; xj 2 Xo and i ¼ pk
�1 else

8>><
>>:

(2)

where xi; xj are tokens from input Xin and ontology description text Xo, respectively. Note
that �1 denotes obstructing token i from approaching token j, and 0 does the exact
opposite, encouraging them to attend to each other. Moreover, xi can approach xj
condition to both of them pertaining to Xj, or the ontology description Xo. Another
situation is that token xi is an entity mention, and xj comes from the ontology description
Xo. The pk denotes the position of the entity span in the input text.

Given the input text and the ontology description text, we first convert the tokens into
embedding representations and then feed them into a deep neural network bidirectional
LSTM (Bi-LSTM) (Melamud, Goldberger & Dagan, 2016) to obtain the hidden vector
H ¼ fHin;Hog, where Hin, Ho indicate the input hidden vector and ontology hidden
vector, respectively, and; denotes the connect operation. Besides, Hin 2 RL�d and

Ho 2 RN�d , N is the length of tokens in ontology text, and d is the dimension of hidden
state in bidirectional LSTM. To leverage the self-supervised attention in Transformer
(Vaswani et al., 2017), the vector H is projected into different subspaces to obtain the
queries vector Q 2 RðLþNÞ�d , keys vector K 2 RðLþNÞ�d , and the value vector

V 2 RðLþNÞ�d with linear transformation. Then we calculate the attention weight matrix A
by using the mask matrix MðRÞi;j as follows:

1 The number of tokens is a hyper-
parameter.
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A ¼ MASK ATTðQ;KÞ ¼ SoftMaxðQKT þMðRÞÞ; (3)

where i; j 2 f1; 2;…; ðLþ NÞg, and A 2 RðLþNÞ�ðLþNÞ. Therefore, when the value of the
mask matrix is negative infinity, the attention weight Ai;j tends to zero, for xi, the
information of xj is ignored. Moreover, it assists in filtering out irrelevant noise knowledge
with a static working scope for all input sequences, and the injection process of the
attention mask matrix is shown in Fig. 2.

The overall framework of the span-level matrix knowledge injection process is shown in
Fig. 2. First, the input text and ontology knowledge are fed into a BiLSTM network and
converted the text sequence into a hidden vector htexti , then filtering on irrelevant ontology
knowledge with the mask matrix AðQ;KÞ. Specifically, when the value of the mask matrix
is negative infinity, Ai;j becomes zero and is calculated by Eq. (3). Therefore, for token xi,
the token xj from ontology text is ignored. For each token in the input text, only the
previous R tokens and the following R tokens are attended to. In this way, the ontology
knowledge related to entity ei and within the range of ð2Rþ 1Þ is reserved, and knowledge
beyond the range is filtered. The entities mentioned in Fig. 2 are depicted in dark color, and
the ontology knowledge retained is shown in the blue and grey rectangle below.

To filter out noise effectively and learn token-specific knowledge adaptively, we utilize a
feed-forward neural network (FFN) (Schmidhuber, 2015) to determine the different
context ranges of each token. Therefore, each token can obtain an apposite context size in
this way. We further define a learnable token radius vector ~r 2 RLþN to denote the
represented context radiuses. For the i� th token, each value ~ri 2 R represents the learned
textual radius and its value between 0 and R. The radius vector ~r is defined as follows:

~r ¼ rððHWr þ brÞWr0 þ br0 Þ � R (4)

rðxÞ ¼ 1
1þ expð�xÞ (5)

where Wr 2 R2d�d, Wr0 2 Rd , br; br0 2 RLþN are learnable parameters. � denotes dot
product operation, and rð�Þ is the sigmoid activate function ranging from zero to one. Note
that there is no ontology information when ~r is zero. Therefore, to ensure at least one token
is utilized to represent the ontology knowledge, the radius vector ~r is further revised as
below:

~r ¼ 1þ rððHWr þ brÞWr0 þ br0 Þ � ðR� 0:5Þ (6)

where 1 2 RLþN is a tensor with each value equal to one. Thus, we can obtain the mask
matrix with each row by utilizing the learned textual radius. Then, each token is
constrained into different span sizes according to the attention weights (shown in the dark-
colored blocks in Fig. 2). To obtain the integer attention weight matrix ~A, we leverage the
end-to-end manner to train the model and do not lose the differentiability. Specifically, for
the i� th token, the attention weight matrix ~A is defined as follows:

~Aði;Þ ¼
X

p
softmaxðSi þMðpÞiÞ � ~Kð~ri; pÞ (7)

~Kða; bÞ ¼ maxð0; 1� ja� bjÞ (8)
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where ~Aði;Þ denotes the i� th row in matrix ~A. The learnable attention weight matrix has a
different token-level context radius for all tokens in an input sequence. Si ¼ QKT denotes
the attention score matrix of the i� th row, and p counts the number of integral textual
radius in the input sequence. MðpÞi denotes the mask matrix with textual radius value is p.
~Kð�Þ is the Relu activation function with a faster convergence speed and can effectively
relieve the vanishing gradient problem.

Relation data generation
PLMs are implicitly capable of zero-shot generalization based on their general and large-
scale pre-training. Therefore, we utilize the external ontology knowledge and the relation
label as prompts to generate structural training data by conditioning on the target unseen
relation labels. Specifically, the PLM BERT (Devlin et al., 2018) combined with the syntax-
aware attention network as the language model. The output prompt is denoted as
~H ¼ ~AH, where ~H 2 RðLþNÞ�d as the input of the language model.

Syntax-aware attention network

To enhance the fusion of relation semantic and external ontology knowledge, we add a
syntax-aware attention network (SAAN) in the last k layer of PLM. Specifically, the external
knowledge representation and relation label embedding are joint as slot entries in the syntax-
aware network. In addition, we also designed the read and write operators well, allowing
relation labels to attend to the highly correlated external ontology knowledge representation.
Besides, we initialize the input of the attention network by ontology description and meta-
relation embedding representation. Concretely, the length of ontology knowledge tokens is
fixed as N, and the embedding representation is denoted as ~Ho ¼ f~ho1; ~ho2…; ~hoNg, and the
relation label embedding is denoted as ~Hr ¼ f~hr1; ~hr2…; ~hrmg, m is the length of relation
token. Finally, composing the representation matrix of keys by connecting operations
�K ¼ f~Hr; ~Hog, and further gain the representation matrix of values that denoted as
�V ¼ f�ho1; �ho2;…; �homg by the linear operation.
The prompt vector ~H is converted into token representation embedding ~HðlÞ after the

l � th layer of PLM. Furthermore, we carefully design a multi-dimensional read operation
to capture this associated semantic knowledge in the SAAN. Specifically, given a linear
transformation matrices fWo

1 ;W
o
2 ;…;Wo

Ng 2 RN�d , whereN denotes the sequence length
in ontology text, and generating the multiple semantic similarity matrices

fSo1; So2;…; SoNg 2 RN�d between ontology tokens and relation representation within the

attention network, then output the vector representation by an aggregate function. The
specific semantic vector Soi is defined as follows:

Soi ¼ ~HðlÞ
o Wo

i
�KT (9)

where Wo
i is the learnable parameter matrix, and Soi ðj; kÞ denotes semantic similarity

between j� th token and k� th token in the visualization matrix. We further update the
token representation by utilizing the semantic similarity matrix with an aggregate
operator, and the calculation formula is as follows:
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~HðlÞ0
o ¼ ~HðlÞ

o þ ½a1 �V ; a2 �V ;…; aL �V �Wo0 (10)

ai ¼ softmaxðSoi Þ (11)

where Wo0 2 RN�d denotes the learnable parameter matrix and ai denotes attention
weight that following the values matrix �V . In this way, the relation label can be
complementary with external ontology knowledge to generate more conducive synthetic
samples for the unseen relation. After that calculation, the obtained vector representations

~HðlÞ0
o are fed into the next layer of PLM to assist in generating synthetic training data, where

the integrated knowledge from syntax attention network is beneficial to capture the
essential information in the Transformer.

After updating the text representation, we use the attention network to implement the
relation label embedding. Specifically, we leverage multi-dimension similarity matrices

Sr 2 Rm�d calculating attention weight distribution b with input token representation, and
then obtain the new knowledge representation by an aggregated function. The calculation
formula is as follows:

�V 0 ¼ ½b1 ~Hr; b2 ~Hr;…; bm ~Hr�Wr (12)

bi ¼ softmaxðSri ÞT (13)

where �V 0 2 Rm�d. Wr 2 RN�d is learnable parameter matrix. To further fuse relation
representation and the ontology embedding, a gated recurrent unit is integrated with the
aggregated relation representation, and the updated relation representation calculation
formula is as follows:

v ¼ rð�V 0Wv1 þ �VWv2Þ (14)
~V ¼ v � �V 0 þ ð1� vÞ � �V (15)

where Wv1, Wv2 are learnable parameter matrices with the dimension d. The updated
relation representation is also fed into the PLM. Thus, relation representation and
ontology embedding are fused to aggregate more effective knowledge to assist in the
generation of synthetic training samples.

Decoding relation triplets
We further propose a generation decoding method in order to improve the zero-shot
extraction performance on sentences that contain multiple triplets. The constructed
ontology knowledge prompt is denoted as {Relation:ys;Ontology:Xo}, and the output text
in the form of {Text:T; Relation:yu; Head entity:ehead, Tail entity:etail}. The hidden feature
embedding is denoted as ~HðlÞ ¼ fhðlÞ1 ; hðlÞ2 ;…; hðlÞLþNg. To further enhance the fusion of
relation label and ontology knowledge, we utilize the continual pre-training in the seen
dataset. Finally, the conditional probability is represented to predict each generated token
as follows:
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LðxÞ ¼
Yn
i;j¼1

Pðxijxj<iÞ (16)

Pðxijxj<iÞ ¼ expðhTi =tmÞPjVj
j¼1 expðhTj =tmÞ

(17)

where n denotes the length of the sequence, and Pðxijxj<iÞ represents the conditional
probability that predicts tokens of the synthetic training samples in the position i, hi is the
hidden vector. To keep the generated synthetic data as diverse as possible, we utilize a
prediction model with temperature tm (Hinton, Vinyals & Dean, 2015) on the vocabulary
size V, and the loss function also changes accordingly. During training, the decoding layer
predicts target token xi, which encourages the decoder to generate target tokens that are
close to the seen relation tokens yi by the probability distribution Pðxijxj<iÞ. A squared
error loss function is utilized as follows to update the weight parameter:

Lloss ¼ 1
jV j

XjVj

j¼1

XjVj

i¼1

ðPðxijxj<iÞ � yiÞ2: (18)

To alleviate error decoding, we utilize the squared error loss function rather than cross-
entropy loss. The format of the generated structured synthetic instances are represented as
{Context:, Head entity:, Tail entity:}, where the unseen relation is contained in the Context.
We discard the error sample if an entity is not found in the generated sequence and
continue to search until reach a fixed number of synthetic samples.

Multiple relation triplets extraction with multiple triplets decoding
The synthetic training samples generated for unseen relations are employed to train the
model during the relation triplet extraction phase. Subsequently, a relation extractor is
trained utilizing the pre-trained language model (PLM) BERT to extract multiple relation
triplets. An overview of the overall framework is depicted in Fig. 3. Specifically, fine-tuning
is first conducted on the seen datasetDs and then further tuning is performed on the model
Me on the synthetic training samples. Finally, the trained model is utilized to predict the
unseen relation triplets Te. In addition, the model also fully utilizes the SAAN mentioned
in Syntax-aware attention network(SAAN), enhancing its design sophistication to tackle
various tasks effectively. The input text Context : s is fed into the middle layer of the
relation extractor. The output sequence format is represented as Relation:yu, Head Entity:
ehead, Tail Entity: eTail. Please refer to the structure diagram depicted in Fig. 3 for visual
representation. The standard decoding layer of PLMs excels at performing decoding and
greedy generation tasks flawlessly. Additionally, the language model can independently
predict multiple relation triplets from an input sentence s, and it can decode output
sequences without requiring any initialization. In the event of decoding a faulty entity or
relationship, it will be discarded and treated as a null prediction.

To improve the zero-shot triplet extraction performance, the multiple triplets decoding
algorithm (MTD) was proposed based on the beam search algorithm (Wang et al., 2021).
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The aim of the algorithm is to search multiple triplets that interest the unseen relation in a
sentence via an attention score. Because the generated synthetic data only comprises a
relation triplet, standard models typically underperform within the current framework.
This is because they often assume that a training instance must include multiple triplets
when conducting triplet prediction. The conventional approach based on beam search may
try to alleviate this issue but cannot migrate to the large-scale relation triplet extraction
task, and it is not easy to extract multiple triplets at once in a sentence. Hence, to address
this limitation, the Multiple Triplets Decoding algorithm (MTD) was proposed, which
enables the extraction of multiple relation triplets simultaneously from a single sentence.

The essential concept of the MTD algorithm is to frame this extracted process as a
conditional search task. In general, given an input sentence into the PLM extractor, it can
output a sequence through autoregression and greedy decoding. Nevertheless, MTD can
deliver multiple sequences at once, and each of them corresponds to various candidate
triplet sets. The specific description is shown in Algorithm 3. Subsequently, the attention
mechanism is used to calculate a similarity threshold to control the final output number.
The main approach involves determining multiple output sequences from candidate head
entities, tail entities, and relation labels through a probability distribution model.
Specifically, the sentence in Fig. 1 can be taken as an example. The subsequence {Head
Entity:} can be denoted as the initiating sequence, and the following token can be denoted

Algorithm 2 Syntax-aware attention network (SAAN).

Input: Ontology representation ~Ho 2 RN�d , Relation embedding ~Hr 2 Rm�d

Output: Integrated embedding ~HðlÞ0
o 2 RN�d , ~V 2 Rm�d

1 Initialize: Key �K ¼ f~Hr; ~Hog, �K 2 RðNþmÞ�d , Values matrix �V 2 Rm�d ;

2 for hidden embedding ~HðlÞ from L layer PLM do

3 Calculate the similarity matrix Soi

4 for each Wo
i in linear transformation matrices fWo

1 ;W
o
2 ;…;Wo

Ng 2 RN�d do

5 ~HðlÞ
o Wo

i
�KT ! Soi , ðSoi ½j; k� j 8j; k 9hj 2 ~Ho; hk 2 �K and ~Ho; �K 6¼ [Þ

6 . Case1(update ontology embedding �V):

7 for each Soi in So, So 6¼ [ do

8 Softmax ðSoi Þ ! ai,~H
ðlÞ
o þ ½ai �V �Wo0 ! ~HðlÞ0

o ; Saving vector

f~hðlÞ0o1 ;
~hðlÞ0o2 ;…; ~hðlÞ0oN g ! ~HðlÞ0

o ; ~HðlÞ0
o 2 RN�d

9 . Case2 (update relation embedding ~Hr):

10 for Sri in Sr; Sr 6¼ [ do

11 Calculating attention weight bi, Softmax ðSri Þ ! bi; bi 2 ½0; 1�
12 Aggregated operation �V 0; ½b1 ~Hr; b2 ~Hr;…; bm ~Hr� �Wr ! �V 0

13 . InitializeWv1;Wv2 � Wo, update relation embedding: rð�V 0;Wv1;Wv2Þ ! v; v � �V 0 þ ð1� vÞ � �V ! ~V

14 return ~HðlÞ0
o ; ~V

15 return ~HðlÞ0
o ; ~V

16 Update hidden vectors in the L-1 layer of PLM
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as the generated head entity such as Brewing Company calculated by the softmax
probability model pðehijHeadÞ, where ehi denotes the i� th possible head entity. Moreover,
the attention mechanism is utilized to calculate an attention score, which is used to identify
the next generated tokens of the entity sequence with the largest attention weight.

The model decodes the top-k sequence based on the highest top-k probability
pðehijHeadÞ and generates top-k entities rather than greedily decoding the whole sequence.
Subsequently, this sequence continues to decode until generating the marked token {Tail
Entity:}, and the next predicted token is the first token of the tail entity. The probability
model of the first token in j� th tail entity is represented as pðetjjehiÞ, which is conditioned
to the generated head entity. Therefore, for each head entity, there are also top-k tail entity
sequences based on the top-k highest conditional probability pðetjjehiÞ. In this way, the
sequence greedily decodes in the same way until it generates the unique token {Relation:},
and then the generated next token becomes the first token of z � th relation by means of
the probability prediction model p such as Created by in Fig. 1. In turn, the k relation
condition is determined based on the output entity pairs with the top-k probability
pðyzjehi; etjÞ. For each instance, the decoding process is greedy until the end token is

generated. The specific algorithm pseudocode is shown in Algorithm 3, and the
algorithmic inference process can be calculated as follows:

Relation label embedding Ontology Knowledge Representation

semantic similarity matrix

e
Softmax Layer 

e
Softmax Layer 

Linear()

cos()

Connect Operation

Linear()

Attention Aggregation Attention Aggregation

sin()

v weight matching

Output embedding of 
prompt layer 

PLM Layer 1

PLM Layer L

Syntax-Aware Attention Network
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PLM Layer L

PLM Layer 1
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MTD Decoding
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Figure 3 The illustration of relation data generation and relation triplet extraction. The model encodes the input text and prompt template using
PLM, and the SAAN is added in the last L layers to fuse embedding representations. The hidden embedding from the prompt layer generates
synthetic data during the Data Generation phase, and then the model with generated synthetic data to output the relation triplets during the relation
triplet extraction phase. The SAAN (dark green on the left of the figure) is utilized in both stages, and the detailed calculation process of the SAAN is
described on the right of this figure. Full-size DOI: 10.7717/peerj-cs.2014/fig-3
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pðtripleti;j;zÞ ¼ pðehi; etj; yzÞ
¼ pðyzjehi; etjÞ � pðetjjehiÞ � pðehiÞ:

(19)

According to the Formula (19), the conditional probability model does not directly
attend to context due to the existence of special tokens in the generated template.
Additionally, the formula does not include the input sentence because it is treated equally
when outputting multiple triplet sequences, which is only used for one sample.
Consequently, there are different triplet sequences corresponding to k3 for each instance.
Therefore, a threshold over the validation F1 metric (Powers, 2020) is calculated to select
the suitable output triplets. The specific parameter settings can be found in
Hyperparameters study.

The approach of MTD can achieve a directly calculated probability of each output
triplet by utilizing pðtripleti;j;zÞ, and can also restrict the number of output triplets with a
specific threshold value compared to another extract approach (Wang et al., 2021).
Further, it utilizes the structured text format for greedy decoding to achieve a one-to-one
mode. Additionally, the zero-shot setting relation triplet extraction allows the relation

Algorithm 3 Multiple triplet decoding (MTD).

Input: The synthetic sample sequence Dsy.

Output: Multiple relation triplets Tz.

1 Initialize: Initialize special subsequence vth ¼ 0, HeadEntity : [;

2 for each token in Dsy do

3 Calculating pðehiÞ ¼ softmaxðtokeniÞ; Dsy 6¼ [

4 for l ¼ 0; l < k; l þþ do

5 Calculating ehl ¼ maxðpðehiÞÞ; ehl ! eh Obtain the top-k head entities: eh ¼ feh1; eh2;…; ehkg
6 while tokeni ¼¼ Tail Entity : do

7 the j tail entity: etj ! pðetjjehiÞ ¼ softmaxðtokenjÞ
8 for l ¼ 0; l < k; l þþ do

9 Calculating embedding and saving etl ¼ maxðpðetjÞÞ; etl ! et

10 Obtaining the top-k tail entities et ¼ fet1; et2;…; etkg
11 while tokeni ¼¼ Relation : do

12 the z-th relation yz ! pðyzjetj; ehiÞ ¼ softmaxðtokenzÞ
13 for l ¼ 0; l < k; l þþ do

14 Calculating and Saving yr ¼ maxðpðyrzÞÞ; yrz ! yr

15 Obtaining the top-k relations yr ¼ fer1; er2;…; erkg
16 Saving Triplets pðehi; etj; yrzÞ ! pðTripleti;j;zÞ;

Dsy ¼¼ [;attenðehi; etj; yrzÞ ! vth; i; j; z 2 ½0; k�;top vthðTripletsÞ ! Tz

17 return Tz

Guo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2014 18/45

http://dx.doi.org/10.7717/peerj-cs.2014
https://peerj.com/computer-science/


extraction model to extract multiple triplets simultaneously despite training on synthetic
samples with a single triplet each.

EXPERIMENTS AND RESULTS
In this section, we evaluate the KBPT on four public datasets. They are FewRel, Wiki-ZSL,
NYT, and TACRED-Revisit, respectively. We conduct exhaustive experiments for the
zero-shot setting scenarios to demonstrate the effectiveness of the proposed model. The
detailed description and analysis will be divided into chapters below.

Datasets and evaluation metrics
To evaluate the performance of the KBPT in the zero-shot setting scenario, we re-split
these public datasets for training, validation, and testing set according to a specific ratio.

FewRel is human-annotated, and each relation corresponds to 700 samples. Please refer
to Table 1 for detailed statistics. The initial assessment of this benchmark is for the low-
resource relation classification (RC). However, to meet the needs of the zero-shot setting,
we reset the ratio of seen and unseen relations to 1:1, i.e., 40 seen and 40 unseen relations,
ensuring disjoint relation categories in training and test sets. Specifically, To include seen
relation instances in the test set, we set each seen relation in the training set to contain 500
cases and the remaining 200 samples in the test set. In the test set, 40 unseen relations, each
relation corresponds to 700 instances. Note that we fine-tuned our model on the Wiki-ZLS
validation set and transferred the model to the FewRel directly without tuning parameters.

Wiki-ZSL is constructed by distant supervision over Wikipedia articles from the
Wikidata knowledge base. To meet the requirements of the zero-shot setting, we follow the
same processing procedure of Chen & Li (2021). Specifically, we randomly select a certain
amount of relations as the novel relation and the remaining labels as seen relation during
the training phase. For better contrast, we set the different sizes of the unseen label as q and
want to identify more unseen relation labels. However, different from Chia et al. (2022), we
set q 2 f5; 10; 15g in our experiment. To reduce data noise, we repeat the label selection
process six times to divide it into different data blocks with varying random seeds. First, we
predefine 10 seen relations in the validation set and the remaining seen relations in the
training set. Then, for each data block, the instances belonging to the new relation label in
the test set and the seen relations are in the validation and training set. Note that the
validation set is used for fine-tuning hyperparameters and early stopping. In this way, our
proposed model achieves the zero-shot setting in which the relation labels in training,
validation, and test sets belong to disjoint label sets.

NYT The NYT dataset is constructed with the relations from aligning Freebase by
distant supervision over the New York Times crops (NYT). It is a noisy and uneven
distribution dataset with 53 relation labels. We divide 15 seen relation labels as the training
set, and each relation label has 7 k sample instances. Besides, we divide 10 seen relation
labels as the validation set, and each relation label carries 1 k data samples. The rest of the
relation labels and sample instances in the test set constitute the unseen relation samples.
Generally, the relation labels are 15, 10, and 28, respectively, and the data samples are 105,
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10, and 3 k in training, validation, and test set. Hence, we achieve the zero-shot setting over
this dataset.

TACRED-Revisit TACRED (Zhang et al., 2017) is a large-scale dataset for relation
extraction, consisting of 106 k instances of crowd-sourcing from the TACKBP4 and 42
relation categories (the particular relation label no_relation is contained). The original
dataset consisted of more than 68 k instances for training, 23 k for validation, and 15 k for
testing. The recently released TACRED-Revisit dataset corrects many mislabels in the
TACRED dataset. Hence, we adopt the TACRED-Revisit dataset to conduct experiments
and re-partition this dataset to meet the requirements of the zero-shot setting. Specifically,
we divided 20 seen relation labels in the training set corresponding to 45 k sample
instances, 10 seen relation labels in the validation set corresponding to 22 k sample
instances, and the rest as unseen relation labels and corresponding sample instances in the
test set. In general, it achieves the requirements of the zero-shot setting.

Since our main target is to extract multiple triplets, the evaluation results in this study
are for the instances that contain single and multiple triplets separately. To the evaluation
metric of multiple triplets extraction, we follow the typical relation extraction metric micro
F1 score, precision (Prec.), and recall (Rec.). The standard micro accuracy (Acc.) is utilized
for single triplet extraction because it only contains one possible triplet in each sentence.
These formulas are calculated as follows:

Prec ¼ TP
TPþ FP

;Rec ¼ TP
TPþ FN

(20)

Acc ¼ TPþ TN
TPþ TNþ FPþ FN

(21)

F1 ¼ 2 � TP
2 � TPþ FPþ FN

¼ 2 � precision � recall
precisionþ recall

(22)

where TP denotes the actual positives are correctly predicted positives that are called true
positives, FP is called false positives, denotes actual negatives that are wrongly predicted
positives. TN is called true negative, which denotes the actual negative and is correctly
predicted. FN denotes the actual positive that is wrongly predicted negative and is called
the false negative.

Hyperparameters study
For the relation generating stage in Main experimental results, the PLM BERTBASE (Devlin
et al., 2018) is utilized, which comprises 110 M parameters. To extract multiple triplets

Table 1 Datasets statistic. The statistic of “Sentence Length” here means the average number of words
in a sentence.

Dataset Samples Entities Relations Sentence length

FewRel 56,000 72,954 80 24.95

Wiki-ZSL 94,383 77,623 113 24.85

NYT 118,000 170,000 53 25.60

TACRED-Revisit 91,467 – 40 24.01
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more efficiently, the PLM BERTLARGE (Devlin et al., 2018) was adopted, which has 340 M
parameters in the triplet extraction stage. All the implementations of the PLM were
sourced from the Transformers package (wolf2020transformers). In both of these two
phases, all fine-tuning operators are conducted on the complete training datasets with five
epochs, and early stopping refers to the loss on the validation sets. The learning rate is a
crucial parameter, and experimental results suggest that models of different sizes perform
optimally with varying learning rates. Therefore, different intervals were employed
corresponding to the various model sizes. Specifically, the stochastic gradient descent
(SGD) (Ketkar, 2017) algorithm is utilized to select optimal learning rate a among
f2e� 4; 5e� 4; 3e� 2g for BERTBASE, and f5e� 5; 2e� 4; 3e� 4g for BERTLARGE with a
linear warmup for the first 10% steps. In general, small models prefer a larger learning rate.
Further, to avoid model overfitting, the weight decay was set as 1e� 2. The model sourced
from the best efficiency over the validation set was saved for the test. For the detailed
hyper-parameter settings, refer to Table 2.

All experiments were conducted on the hardware infrastructure of 2 NVIDIA GeForce
RTX 3090 GPUs with a batch size of 64. A certain number of synthetic samples were

Table 2 Details of hyper-parameters setting.

Parameter Alternative values Final value

Manually tuned

Dataset split (train-test) {70–20%}{60–20%} {70–20%}

Hidden layer dimension d {100, 200, 300} 200

Hidden embedding dimension Up to 768 768

Maximum sequence length Up to 512 512

Pre-trained language model {none, GPT-2, RoBERTa,BERT} BERT

Tuned with KBPT

Epochs {5, 10, 15, 20, 25} 10

Batch size {4, 16, 32, 64, 128, 256, 512} 64

Warmup ratio {0.1, 0.15, 0.2, 0.3} 0.1

Initial learning rate a {5e� 5, 5e� 4, 3e� 4, 3e� 3, 3e� 2,2e� 4 } 3e� 3

Weight decay {1e� 2, 1e� 3, 2e� 2, 2e� 3, 2e� 4} 1e� 2

Training dropout probability {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 0.2

Network optimizer {SGD, Adagrad, Adadelta, Adam, Nadam, Adamax} SGD

Activation function {Linear, Sigmoid, TanH, SoftMax, ReLU, ELU, SeLU} {Sigmoid, SoftMax,
ReLU}

Loss function {Mean squared error, Mean absolute error, Categorical crossentropy, Sparse categorical
crossentropy, Squared hinge}

Mean squared error

Generating sampling top-k {20, 30, 40, 50, 60} 50

Generating samples each relation
label

{200, 300, 400, 500, 1,000} 300

Multiple triplet decoding Top-n
branches p

{2, 4, 6, 8} 4

Multiple triplet decoding
threshold t

{−0.912, −2.912, −3.912, −4.912, −5.912} −0.912
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produced for each unseen relation label at the stage of generating, and the synthetic relation
samples were used to supervise the model to extract multiple relation triplets further.
Moreover, the hyper-parameters were tuned on the validation set of Wiki-ZSL with 10 seen
relation labels. Specifically, the different values of f250, 300, 500, 1,000, 2,000g were
considered for the number of generated synthetic samples. Additionally, the value of the
threshold of MTD was also tuned. Specifically, sixty equally spaced values were set between
the output scores of multiple candidate triplets over the validation set. To conserve
computing resources, a fixed value for the number of branches in each stage was
established, and it was not adjusted as a hyperparameter. For specific evolvable hyper-
parameter settings, refer to Table 2. The remaining experiment section mainly describes the
experimental results, comparison methods, specific implementation process for multiple
triplet extraction, and further discussion and analysis of experimental results. Experimental
insights and results are primarily present in the form of graphs.

Main experimental results
In this subsection, we report specific experimental results and provide possible insights for
our proposed model. The best result is highlighted in boldface in the corresponding tables.

Baseline methods
Based on the particularity of the zero-shot setting, two baseline models were designed for
comparison with the proposed approach. First, for Wiki-ZSL and FewRel, a strategy
similar to RelationPrompt was adopted, denoted as “NoSyn,” which does not utilize
generated synthetic samples for training. The reason is that the model did not fine-tune the
synthetic training data during the extraction stage in all experiments. During the test
phase, the model was constrained to generate the unseen relation label by fine-tuning.
Second, the existing triplet extraction model TableSequence (Wang & Lu, 2020) was
compared with the proposed method. Experiments were conducted on synthetic training
data using supervised learning, as TableSequence cannot perform in the zero-shot setting.

The proposed model was compared with DEEPEX (Wang et al., 2021), REDN
(Li & Tian, 2020), and ZSLRE (Gong & Eldardiry, 2020) on the NYT dataset. The choice of
DEEPEX for comparison is motivated by its alignment with the present research
objectives. DEEPEX’s broader research scope and the design of a unified framework for
zero-shot information extraction make it a relevant point of comparison. The reported
results for DEEPEX on NYT in Table 3 were re-implemented, as their original evaluation
pertains to open information extraction. Additionally, the reported results for REDN and
ZSLRE were directly copied from the initial references. Notably, REDN was designed for
relation classification, hence only the pre-existing results were included in the experiment
for a fair comparison. For the TACRED-Revisit dataset, SOTA models were adopted for
comparison in a low-resource setting. Specifically, AdaPrompt-tuning (Chen et al., 2022b)
served as the reference standard, and K ¼ f8; 16; 32g instances were set for training in
few-shot scenarios.
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Results on Wiki-ZSL and FewRel
From the experimental data in Table 4, four conclusions could be drawn. Firstly, the
unstable precision-recall ratio of these baselines resulted in poor F1 score performance for
multiple triplet extraction. Secondly, the substantial gap in F1 score between NoSyn and
KBPT indicates the critical importance of utilizing synthetic training samples during the
generating phase for zero-shot settings, as the F1 score improved by up to 14.65% (from
7.54% to 22.19%). This also highlights the effectiveness and stability of synthetic data.
Thirdly, the generation of multiple triplets was non-trivial due to the presence of only a
single triplet in the synthetic training data during the extracting phase. Thus,
TableSequence performed considerably worse in F1 score compared to RelationPrompt
and the proposed method. Although TableSequence can also extract multiple relation
triplets through special design, its premise is that the training data may contain multiple
triplets in an instance. Fourthly, the experimental results in F1 score and the positive
differences between RelationPrompt and KBPT for multiple triplet extraction confirm the

Table 4 Results(%) for zero-shot setting relation triplet extraction on Wiki-ZSL and FewRel datasets. The numbers in parentheses are the main
differences between RelationPrompt and KBPT (our model) on different metrics. The best result is highlighted in boldface.

Unseen
labels (m)

Model Single triplet Multiple triplets

Wiki-ZSL FewRel Wiki-ZSL FewRel

Acc Acc Pre Rec F1 Pre Rec F1

5 TableSequence 14.47 11.82 43.68 3.51 6.29 15.23 1.91 3.40

RelationPrompt 16.64 22.27 29.11 31.00 30.01 20.80 24.32 22.34

NoSyn 11.23 20.32 19.61 48.57 27.94 14.29 16.46 15.30

KBPT (our model) 17.85 (+1.21) 24.19 (+1.92) 32.45 (+3.34) 31.64 (+0.64) 32.04 (+2.03) 23.15 (+3.07) 23.13 (−1.09) 24.28 (+1.94)

10 TableSequence 9.61 12.54 45.31 3.57 6.4 28.93 3.60 6.37

RelationPrompt 16.48 23.18 30.20 32.31 31.19 21.59 28.68 24.61

NoSyn 17.85 20.13 20.12 21.59 20.83 15.72 24.14 19.04

KBPT (our model) 20.45 (+3.97) 26.58 (+3.40) 32.47 (+2.27) 33.69 (+1.38) 33.17 (+1.98) 24.35 (+2.76) 27.28 (−1.40) 26.46 (+1.85)

15 TableSequence 9.20 11.65 44.43 3.53 6.39 19.03 1.99 3.48

RelationPrompt 16.16 18.97 26.19 32.12 28.85 17.73 23.20 20.08

NoSyn 19.03 20.97 15.78 28.81 20.39 10.83 5.78 7.54

KBPT (our model) 20.31 (+4.15) 22.46 (+3.49) 32.15 (+5.96) 29.39 (−2.73) 30.74 (+1.89) 19.61 (+1.88) 25.55 (+2.35) 22.19 (+2.11)

Table 3 Results of different models with the zero-shot setting on NYT (%). Our reimplementation is
marked with an asterisk (*). The best result is highlighted in boldface.

Model Pre Rec F1

CDNN 46.40 52.70 45.80

REDN 95.10 94.00 94.60

ZSLRE 98.10 97.90 97.60

DEEPEX* 90.34 81.15 85.50

KBPT (our model) 97.34 98.67 98.00
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superiority of KBPT. Further, all F1 scores for multiple triplet extraction in KBPT
outperformed RelationPrompt, indicating the robust ability of the proposed model to
leverage implicit knowledge obtained from external ontology knowledge.

In addition to the aforementioned conclusions, varying m values of unseen relations can
affect the model’s performance. The experimental data in Table 4 shows that KBPT
continually outperformed several baseline methods over two datasets with different
numbers of unseen relation labels. In comparison, the proposed model exhibited a more
significant superiority when m ¼ 10. Such results indicate that the number of unseen
relation labels and the scale of the training data had a particular impact on the model’s
performance. To further explore the effects of data scale and the relationship between
varied m values, different m values were taken to test and observe the changes of F1 score.
A comparison of the schematic diagrams is shown in Fig. 4. From Fig. 4A, an observation
can be made that the improvement of the proposed method became more significant as the
data size increased. Fig. 4B indicates that KBPT achieved better performance when m was
smaller. In other words, increasing the value of m diminished its advantage. One possible
reason for this is that it became more difficult to correctly recognize the relation label with
limited knowledge as the number of unseen relation labels increased. In addition, another
reasonable inference can be speculated: although KBPT can uncover implicit semantics
within each relation, the semantic similarity between relations may lead to confusion in
predictions. In other words, the model is more likely to categorize semantically close
relations as correct ones. To further demonstrate this supposition, an instance is provided
in Case study.

l

l

Figure 4 Left (A) results of KBPT with the number of unseen labels m ¼ 10 and abscissa scales
represent different training data ratios on the Wiki-ZSL and FewRel datasets. Right (B) results of
different data sizes and varied m values on the Wiki-ZSL and FewRel datasets. Ordinate scales
represent the F1 score and the divergence of F1 score between KBPT and RelationPrompt, respectively.
The three columns represent the corresponding F1 score with different m values and data sizes over the
two datasets. The broken line represents the divergence of F1 score between KBPT and RelationPrompt
when the data size is set to 1.0 with different m values over the two datasets.

Full-size DOI: 10.7717/peerj-cs.2014/fig-4
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As revealed in Fig. 4, the performance in F1 score of the KBPT increased gradually with
the increase in training data over the two datasets. From Fig. 4A, an observation can be
made that the performance increases were more obvious on the Wiki-ZSL dataset.
Figure 4B illustrates the change of F1 score corresponding to different m values and data
sizes on the two datasets. According to Fig. 4B, the proposed model obtained the best
performance when m = 10 and the data size was 1.0 for the zero-shot prediction. The
specific reasons for this case have been previously explained. In addition, the line chart in
Fig. 4B also illustrates the stability and robustness of the proposed model, which
consistently outperformed RelationPrompt in F1 score across different m values on the two
datasets.

To further evaluate the effectiveness and stability of KBPT, the hyperparameter
sensitivity was also examined. The primary hyper-parameter includes the value of Top-n
branches p and threshold t in the multiple triplets decoding. Figure 5 demonstrates the
performance of different threshold values t with varying proportions of training data.
Notably, only the performance in the accuracy of KBPT on the Wiki-ZSL dataset was
reported to evaluate the effect of varying threshold value t. This is because the accuracy of
other baselines was not suitable for the zero-shot setting, where 100% of the relation labels
in the test set are unseen. In Fig. 5, the changes in accuracy values are illustrated by fixing
m = {5,10,15} and varying the threshold t and proportion of training data. The scale of
training data remained a critical factor affecting the model’s performance, as it determined
the quality of parameter updates during the training phase. Moreover, more training data

l

Figure 5 Accuracy of KBPT (our model) with varying threshold value t in the Wiki-ZSL dataset, and (A–C) corresponding to different values
of m. The x-axis represents the different proportions of training data, and the y-axis represents the percentage of correct trials for tests in each
proportion of training data. The best performance is achieved with m ¼ 10, in which the training data with different threshold values t achieve a
relatively stable and high accuracy. Full-size DOI: 10.7717/peerj-cs.2014/fig-5
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typically led to better performance. From Fig. 5, it can be observed that the model achieved
the best performance when m ¼ 10, consistent with the findings in Fig. 4B. Additionally,
the impact of different t values on the model’s performance was investigated. The
experimental results indicate that a minimum value of t was not practical for the model.
When t was too small, the search range between positive triplets and negative triplets
increased sensitivity. Therefore, during MTD, it was more prone to recognize the wrong
relation triplets. Ultimately, t ¼ �0:912 was set to achieve satisfactory results across
different datasets with faster search speed.

While the aforementioned experiments effectively verified the impact of varying
threshold value t on the performance of the proposed method, the effectiveness of greedily
decoding the entire sequence was evaluated by setting different values of branch parameter
p in MTD. Specifically, this was done by fixingm ¼ 10 and changing the value of branch p,
so as to obtain the performance changes of the KBPT in accuracy (%) on the Wiki-ZSL
dataset. In general, a larger value of p leads to better performance of the model. However, it
also results in a slower convergence rate. This is because as the value of p increases, the
generation is branched for the head entity or tail entity based on the numbers of p
sequences, leading to an exponentially larger search space of pðtripleti;j;zÞ. Consequently, a
greedy search becomes inappropriate. Therefore, p ¼ 4 was set to achieve satisfactory
performance across datasets.

Utilizing single triplet samples in synthetic training data during the triplet extraction
phase, the proposed relation extraction model, combined with the MTD approach,
effectively tackled the multiple triplet extraction problem by automatically searching and
enumerating multiple triplets at inference time. Once again, KBPT outperformed the
vanilla prompt tuning model, indicating the critical role of external ontology knowledge as
a prompt for generating synthetic training samples. Further, from the experimental data in
Table 4, it can be concluded that KBPT on the re-splitter dataset demonstrated
effectiveness and robustness for zero-shot relation triplet extraction.

To evaluate the effectiveness of the KBPT in actual application scenarios, the NYT
dataset was re-split and 28 unseen relation labels were set in the test sets. Only the
performance of the proposed model was compared with ZSLRE and DEEPEX because
other models such as CDNN (Zeng et al., 2014) and REDN do not meet the requirements
of the zero-shot setting as outlined in the existing literature. Moreover, the training data
and unseen relation label proportions in the test set were changed to observe the varying
performance of various models. The broken lines in Fig. 6 demonstrate the performance in
F1 score of KBPT and other baselines with different variables. From Fig. 6A, an observation
can be made that the F1 score increased rapidly with the increase of proportions in training
data. When increased to a certain extent, the F1 score increased slowly and almost
remained flat, which is consistent with previous results (Fig. 4A) on Wiki-ZSL and FewRel
datasets. From Fig. 6B, an observation can be made that the F1 score of all models
decreased when the unseen relation proportions increased, and the F1 score of DEEPEX
dropped most sharply with a drop of 10.17% (98.77–88.60%). However, the performances
of KBPT and ZSLRE were relatively stable. The reason is that it is difficult for the model to
detect unseen relations. Additionally, unseen relations still existed in the training set
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during the test phase, and the presence of more new relations in the test set made
recognition more challenging. Therefore, the F1 score of DEEPEX dropped sharply when
the unseen relation proportion reached the requirements of the zero-shot setting. The F1
score of the proposed method only decreased around 0.92%, indicating that the proposed
method had sufficient robustness when detecting unseen categories. Moreover, KBPT
outperformed all of the baselines in F1 score and recall rate, demonstrating the
achievement of the proposed method.

In addition to the aforementioned results, the impacts of varying threshold value t on
the KBPT were also investigated. The value of threshold t was utilized to filter the final
output relation triplets from multiple candidate sequences during the decoding phase.
Therefore, different threshold values t from (−5.912, −0.912) were set to test the model’s
performance with varying training data on the validation set. Figure 7 shows that the
accuracy values were extremely unstable when the threshold value t was between −5.912
and −3.912. By continuously adjusting the range of changes in the threshold value, the final
value was set as −0.912. From Fig. 7, an observation can be made that the value of threshold
tas −0.912, and the performances of KBPT were the most stable. This is likely because
when the threshold t was small, the output scores of all candidate triplets would fluctuate
significantly, which affected the accuracy of relation prediction during decoding.
Additionally, the proportion of new relations k also affected the performance of the
proposed model. Further, as the proportion of new relations increased, the performance of
the model decreased, consistent with the results of the previous analysis (Fig. 4). Values of
new relation proportion k ¼ f0:4; 0:8; 1:0g were set, and the threshold value t was fixed as
−0.912. The value of accuracy with a maximum difference was 3.2%, corresponding to
k ¼ 0:4 (97.89%) and k ¼ 1:0 (94.69%), respectively.

To more concretely test the implementation of the proposed method, several accuracy
experiments were also performed on the NYT dataset by varying the value of parameter

l

Figure 6 Results of different models with varying proportions of training data (A), and new relation
proportions (B) on the NYT dataset. The x-axis indicates the proportion of training data (A) and
unseen relation proportions (B), and the y-axis indicates F1 score (%). To better highlight the perfor-
mance of the zero-shot setting, we only select ZSLRE and DEEPEX as the comparative objects.

Full-size DOI: 10.7717/peerj-cs.2014/fig-6
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p. The plot is shown in Fig. 8. In the test, p indicates the number of branches that can be
used to avoid greedy decoding of the entire sequence during the decoding phase, and the
computational complexity exponentially increases with the increase in p value. That is to
say, there will be p3 candidate sequences corresponding to each relation triplet. To assess

l l l

l

Figure 7 Results of KBPT for varying threshold value t in multiple triplets decoding (MTD) over NYT dataset. This figure shows the accuracy
changes by continuously varying the scope of the new relations proportion, i.e. k ¼ f0:4; 0:8; 1:0g. The x-axis indicates the proportion of gradually
increasing training data, where we take the minimum proportion as 0.5, and the y-axis represents accuracy (%). The performance of KBPT
deteriorates as the proportion of new relation k increases, and the opposite with the proportion of training data, which is consistent with the
experimental conclusion in Fig. 6. Full-size DOI: 10.7717/peerj-cs.2014/fig-7

Figure 8 Results for varying branches p with the proportion of training data over the NYT dataset.
Setting the value of branch p is 2, 4, 6, 8. Each branch determines the number of generations during the
decoding phase. For the convenience of comparison, take the proportions of training data as (0.5, 1.0)
(x-axis). The y-axis indicates the accuracy (%). The polylines represent different parameter settings of
branch p corresponding to the value of accuracy (%). Full-size DOI: 10.7717/peerj-cs.2014/fig-8
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the performance of KBPT, p ¼ f2; 4; 6; 8g was set. An observation can be made from Fig. 8
that the KBPT reached the most stable status when p ¼ 4 and the accuracy performance
was higher (25.79%) compared to p ¼ f6; 8g. Such results can be attributed to the
candidate space of the relation triplets increasing exponentially with the increases in the p
value, which resulted in an additional candidate interference of relation triplets.
Subsequently, this caused a decline in the accuracy of probability prediction
pðtripleti;j;zÞ(that is, the value of accuracy would decrease). On the contrary, according to

Fig. 8, the accuracy performances were extremely unstable and fluctuated greatly, although
they reached a high accuracy value when p ¼ 2. Therefore, we suggest setting the value of
p ¼ 4 to achieve satisfactory results across datasets.

To provide a more comprehensive evaluation of our model, we also utilize another
evaluation strategy to measure the area under the PR curve (AUC) to assess the model’s
overall performance. Table 5 reports the AUC performance in open information extraction
with supervised methods. Experimental results indicate that our model outperforms the
fully supervised methods and zero-shot setting model in terms of F1 score and AUC. The
average AUC value can be calculated as follows according to the literature (Cortes &
Mohri, 2003).

Table 5 lists the experimental results of the different models with supervised learning
and zero-shot setting on the NYT dataset. From Table 5, it can be found that the proposed
model achieved state-of-the-art performance on the NYT dataset and also outperformed
the supervised learning method by 2.81% in accuracy and 71.95% in AUC.

Table 5 Results of different models with supervised learning and the zero-shot setting on NYT
dataset (%). The asterisk (*) represents the use of a supervised method. The best result is highlighted
in boldface.

Model F1(%) Accuracy(%) AUC(%)

MAMA** 32.90 94.73 9.40

DEEPEX 85.50 95.60 72.50

KBPT (our model) 98.00 97.54 81.35

Table 6 Results on TACRED-Revisit dataset with few-shot and zero-shot setting (F1 score %).
k ¼ f8; 16; 32g represents the number of instances per class in the few-shot setting. k = 0 represents
the zero-shot setting. Full denotes the complete training set used. The results for k = 0 are our re-
implementation experiments on the TACRED-Revisit dataset, and the results of k ¼ f8; 16; 32g are
directly copied from the original published literature. The best result is highlighted in boldface.

Model k = 0 k = 8 k = 16 k = 32 Full

Vali Test Vali Test Vali Test Vali Test Vali Test

SpanBERT 8.0 6.3 9.4 7.2 18.3 16.2 29.8 25.8 – 78.0

GDPNet 7.85 5.76 9.1 7.3 19.3 17.8 30.2 26.1 – 80.2

AdaPrompt-tuning 24.34 22.05 26.6 25.20 29.5 27.3 32.9 30.8 81.3 80.8

KBPT (our model) 31.14 29.95 35.34 30.13 36.73 32.56 40.15 38.84 88.18 89.86
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The following conclusions can be drawn from the experimental data in Table 6. First,
the KBPT in the zero-shot setting outperformed the supervised learning scenarios in k = 16
on the validation and test sets. Moreover, the proposed model yielded 6.88% and 9.06%
absolute improvements compared with AdaPrompt-tuning on the full dataset, being less
than the zero-shot setting but still considerable. Second, KBPT significantly outperformed
the SOTA model in the application scenario of a few-shot setting, both k = 8 and k = 16.
Additionally, the proposed model achieved a definite improvement of 2.35% (and 1.495%
on average) compared to the current SOTA model, AdaPrompt-tuning, in the setting of
k = 16. Thirdly, KBPT exhibited robustness comparable to the current SOTA model. In
summary, KBPT achieved state-of-the-art performance in various settings, and this can be
attributed to the ontology knowledge and relation labels injected into the prompt template,
which contain rich semantic information.

In addition to the aforementioned experimental results, it was also examined how
varying proportions of training samples and new relations affect the model’s performance.
Fig. 9 shows the F1 score trend of several models in the test dataset with various fractions of
training samples and new relations. From Fig. 9A, an observation can be made that the
performance of KBPT was relatively stable for the continuously increasing proportion of
new relations, reflecting the advantages of the proposed model for the zero-shot setting. In
contrast, other supervised learning models were susceptible to increased relation
proportion. That is to say, as the proportion of new relations continued to increase, the
performance of these models dropped sharply. Moreover, the performances of different
models were compared with the varying proportions of training samples. Figure 9B shows
that the KBPT outperformed all the supervised learning methods in various proportions of
training samples. In addition, the F1 score growth rate was the fastest compared with other

l

Figure 9 Comparison between the supervised learning and our proposed model when varying new
relation proportions (A) and the proportion of training data (B). The x-axis indicates the proportions
of the new relation (A) and the proportion of training data (B), that is, the zero-shot setting of the model
when the proportion of the new relation is 1.0. The y-axis indicates the F1 score (%). For the continuously
increasing proportion of new relations, the performance of the KBPT is relatively stable, reflecting the
advantages of our proposed model for the zero-shot setting.Full-size DOI: 10.7717/peerj-cs.2014/fig-9
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models, resulting in a faster convergence during the training phase. As such, the described
experimental results indicate the effectiveness and sustainability of the proposed model for
zero-shot settings. In summary, the adaptability of the zero-shot setting to unknown
relation types was verified. Exploring methods to recognize additional new relations in
real-world scenarios is an area worth investigating in future work.

Ablation studies
To further highlight the roles of different components in KBPT, we perform the ablation
experiments on the validation set of Wiki-ZSL and FewRel with 10 unknown relations
(m ¼ 10), and the experimental results are given in Table 7. Specifically, we examine the
performance of external ontology knowledge (EOK), SAAN, virtual tokens (VT), multiple
triplets decoding (MTD), and fine-tuning on synthetic samples (FTSS).

Effect of external ontology knowledge (EOK): To demonstrate the effects of external
ontology knowledge on prompt tuning, ablation experiments were conducted involving
the Wiki-ZSL and FewRel validation sets, and the results are shown in Table 7. Specifically,
when only the relation label and virtual tokens were employed as prompts, and external
ontological knowledge was removed, the F1 score dropped from 37.45% to 28.28% on
Wiki-ZSL and from 29.37% to 21.17% on FewRel (the bold part in Table 7), respectively.
Although relation labels contain rich semantic information that can prompt language
models to generate synthetic training instances, injecting ontology knowledge as additional
prompts can further enhance the discovery of relation-related knowledge, which had the
most significant effect on the entire experiment. The experimental results reveal that
injecting ontological knowledge to express the desired relations was critical for generating
synthetic training instances in zero-shot scenarios.

Effect of multiple triplet decoding (MTD): An ablation study was also conducted to
validate the effectiveness of the decoding method on both of the validation sets.
Specifically:

� Traversing all tokens in the sentence and recognizing all entity categories and relation
labels to generate the triplet sequence. Instances are discarded if part of the generated
sequence has an invalid format.

Table 7 Results of ablation studies over different components of KBPT on Wiki-ZSL and FewRel
validation sets. w/o EOK indicates the model without External Ontology Knowledge, and so on down
the line. A minus sign in parentheses indicates the drop percentage. The best result is highlighted in
boldface.

Model Wiki-ZSL FewRel

Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

Full Method (KBPT) 34.56 40.86 37.45 27.43 31.61 29.37

w/o SAAN 33.28 39.37 36.07 (−1.38) 26.57 30.31 28.32 (−1.05)

w/o FTSS 31.67 39.71 35.24 (−2.21) 26.13 28.93 27.46 (−1.91)

w/o EOK 25.48 31.77 28.28 (−9.17) 20.53 21.85 21.17 (−8.20)

w/o MTD 28.46 33.24 30.67 (−6.78) 23.19 23.71 23.45 (−5.92)

w/o VT 30.52 36.42 33.21 (−4.24) 25.89 27.37 26.61 (−2.76)
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� Utilizing the Greedy matching algorithm to dynamically match the input sentence and
the output sequence at the token level, and then using the Needleman-Wunsch
alignment algorithm to recognize the token span corresponding to entities in the
original sentence.

� Iterating through all words to seek the semantically closest token span to match the
predicted tail entity for each relation in the output sentence. The relation label is
discarded if such a token span does not exist. Finally, the extracted triplets, including
relations and entity pairs, are discarded if they are not contained in the original dataset.

The relatively large performance gap indicates that MTD is vital for multiple triplet
extraction in zero-shot settings. Moreover, the complete model outperformed the w/o
MTD by 6.78% and 5.92% in F1 score on Wiki-ZSL and FewRel, respectively. The results
suggest that the hierarchy and enumeration of multiple candidate schemes are of
comparatively high quality and demonstrate MTD’s applicability to extract multiple
relation triplets.

Effect of virtual tokens (VT): Ablation experiments were also performed to validate the
effectiveness of virtual tokens on both sides of the relation label. Specifically, the relation
label and external ontology knowledge were reserved in the prompt template, removing
the specific virtual tokens and randomly initializing the position of the original virtual
tokens. From the experimental data in Table 7, an observation can be made that removing
the virtual tokens seriously affected the model’s performance, causing the F1 score to
decrease by 4.24% on Wiki-ZSL and by 2.76% on FewRel, respectively. Moreover, such
results also suggest that preserving semantic information in relation labels as prompt
embedding is crucial for extracting multiple relation triplets, especially in low-resource
regimes.

Previous studies (Chen et al., 2022a; Chia et al., 2022) have demonstrated that relation
labels contain rich semantic knowledge. To effectively integrate this semantic knowledge
into the prompt template, we conducted a series of operations. First, a vocabulary of virtual

Table 8 Instances of relation labels in the TACRED-Revisit dataset.Wsub andWobj indicate the subject and object in relation triplets, respectively,
and Wv indicates the reconstructed relation tokens used for the virtual tokens.

Relation labels Wsub Wobj Wv (Disassembled Relation Prepared for Virtual Words)

org: country_of_birth Person Country {“country”, “of”, “birth”}

org: city_of_death Person City {“city”, “of”, “death”}

org: country_of_citizenship City Country {“country”, “of”, “citizenship”}

org: countries_of_residence Person Country {“countries”, “of”, “residence”}

org: country_of_headquarters Country City {“country”, “of”, “headquarters”}

org: top_members/employees Department Person {“top”, “members”, “employees”}

org: city_of_headquarters City Region {“city”, “of”, “headquarters”}

org: stateorprovince_of_headquarters State City {“stateorprovince”, “of”, “headquarters”}

per: stateorprovince_of_birth Person City {“stateorprovince”, “of”, “birth”}

per: cause_of_death Person Event {“cause”, “of”, “death”}
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tokens was constructed based on the relation labels, with the specific format of virtual
tokens shown in Table 8. Each relation label contained important entity information such
as person, location, time, organization, and others. Thus, the head layer of PLMs was
extended with learning relation representations to generate the virtual tokens. Second, to
assess the effectiveness of the injected virtual tokens, several comparative experiments were
conducted on Wiki-ZSL, and the performances are illustrated in Fig. 10. Removing the
virtual tokens on the left of the relation label, the performances of the model are shown in
Fig. 10A. An observation can be made that the performances of the model declined after
removing the virtual tokens by comparing them with the complete model. In particular,

l l

l

l

Figure 10 Precision and accuracy (y-axes) of KBPT with varying proportions of training data
(x-axes) on Wiki-ZSL. The first three illustrations on the left represent the performance (m = 10, 15)
of removing the left virtual tokens in the prompt template, and the right represents the performance of
removing the virtual tokens on the right. Each line indicates performance for a specific threshold
value t. To measure the accuracy (%), we take four specific threshold values for comparison when m = 10
and m = 15, respectively. To measure the precision (%), we only take three specific thresholds when
m = 10. Compared with the complete KBPT, the performances of the model without virtual tokens are
decreased as a whole. Full-size DOI: 10.7717/peerj-cs.2014/fig-10
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the accuracy value dropped by 2.26% (m ¼ 15), and precision dropped by 2.32% when the
threshold t ¼ �0:912. From Fig. 10B, it is evident that the performance of the proposed
model deteriorated, decreasing to 18.97% when m ¼ 10 in accuracy. It is speculated that
this outcome is related to the position of the relation label, and the longer the sentence, the
richer the relational semantics represented. Overall, the experimental results illustrate the
effectiveness of our designed virtual tokens for knowledge injection in extracting multiple
relation triplets.

Effect of fine-tuning on synthetic samples (FTSS): Under normal circumstances, fine-
tuning was initially conducted on seen relation instances from the training set, followed by
final tuning on generated synthetic samples for the unseen relation. Parameters were only
fine-tuned on seen relation instances from the training set to validate the effectiveness of
fine-tuning. Table 7 reveals a notable drop in F1 score on both datasets, significantly
impacting performance without fine-tuning on unseen relation samples. These results
suggest that final fine-tuning for unseen relations played a supporting role in identifying
the correct relation category in zero-shot setting scenarios. Optimal results were achieved
by separately fine-tuning the seen and unseen relations.

Effect of fine-tuning on SAAN: SAAN was added between the L� 1 layer and L layer
of the PLM to improve the semantic interaction and fusion of the learning representations.
To facilitate verification and comparison of the results, only this module was removed at
the triplet extraction stage. Specifically, the input prompt embedding and text
representations were fed into the L layer of PLM to fuse these representations and then
input them into the decoding layer. The experimental data are reported in Table 7. An
observation can be made that removing the SAAN resulted in a considerable performance
drop, as the syntax-aware attention mechanism could utilize the fused knowledge
representations from input text to aggregate more effective external knowledge.

Visualization of different attention networks with BERT: To further verify the
effectiveness of the SAAN, the attention weight matrices learned in a sentence were
visualized to illustrate the capability of syntactic context representations. In Fig. 11, the
association of the relation in a sentence trained on BERT PLM is visualized. A comparison
was made among the visualized attention weight matrices generated by the ordinary token-
level Attention Network in Fig. 11A, the ordinary token-level SAAN in Fig. 11B, and the
injected ontology knowledge representations SAAN (the proposed model) in Fig. 11C,
respectively. In Fig. 11A, the learned token representations of the ordinary attention
mechanism appear quite scattered and do not clearly represent relational semantics. For
instance, the model directed attention towards more tokens, such as the verb (was, is) or
the preposition of, which are not highly relevant to the relation label Created in.
Additionally, a single token attention representation lacks more semantic information. The
ordinary token-level SAAN in Fig. 11B slightly alleviated this problem because it included
semantic similarity matrices that can focus on more syntactic context. The proposed model
(Fig. 11C) can focus on contextual, semantic, and syntactic information related to the
relation Created in such as Brewing Company. Further, the injection of ontology
knowledge representation in the SAAN also contributes to aggregating relations as
ensemble information.
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Figure 11 Instance attention visualizations for different components of SAAN training with BERT PLM on Wiki-ZSL at relation triplet
extraction phase. (A) Indicates ordinary token-level attention network, (B) indicates ordinary token-level SAAN, and (C) indicates injected
ontology knowledge representations SAAN(our model). The attention distributions are taken from the layer of Triplet decoding and maxed over the
representation matrix. The attention distribution in (A) is quite scattered and cannot focus on enough of the context information related to the token
created. The attention distribution in (B) slightly alleviates the problem in (a), but the attention distribution is uneven to focus on the context
information of tokens Brewing Company. The SAAN that injected ontology knowledge representations (our model) solves this problem well.

Full-size DOI: 10.7717/peerj-cs.2014/fig-11
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Visualization of different attention networks with GPT-2: Due to the focus of the
present study being related to the PLM and prompt tuning, the SAAN was extended to
other autoregressive language models (LMs) such as GPT-2. Specifically, external
ontological knowledge and relation label embedding were injected into the input sequence
for GPT-2, and the relation label in PLMs was further utilized to generate the virtual
tokens. A series of experiments were performed on the Wiki-ZSL dataset, and the
visualized renderings of weight matrixes in different sentences are shown in Fig. 12. For the
convenience of comparison, the ordinary token-level SAAN is presented in Fig. 12A and
the injected ontology knowledge representations SAAN (the proposed model) are shown
in Fig. 12B. In Fig. 12A, it can be observed that the model can focus well on entities related
to the relation characters, such as Mr.Zukofsk and television program due to the semantic
similarity matrix in SAAN. Additionally, it incorporates the most relevant relation
semantic crucial for multiple relation triplet extraction. Injecting ontology knowledge with
the SAAN in Fig. 12B effectively aggregated semantic information related to relations and
entities. Notably, the effectiveness is comparable to training with BERT on the Wiki-ZSL
dataset. These results also indicate that the proposed methods are model-agnostic and can
be applied across different kinds of PLMs.

Case study
To further verify the effectiveness of generated synthetic data in the zero-shot setting, the
investigation involved varying numbers of generated synthetic training samples. The
variable parameters were evaluated on the Wiki-ZSL validation set, which includes 10
unseen relations. Conclusions were drawn based on the results obtained. First, the model
performance was affected by the quality of the synthetic samples, and with the increase in
the synthetic samples’ amount, the model performance was improved. However, the
performance no longer improved when the number of synthetic samples increased to a
certain extent. In addition, the experimental results show that when the number of synthetic
samples corresponding to each relation label increased from 150 to 300, the model’s
performance (F1 score) continued to grow. Instead of increasing, the performance decreased
when the number of synthetic samples increased from 300 to 3,000. Consequently, we
decided to set the final number of synthetic samples to 300. These results suggest that while
having more synthetic samples can benefit the extraction of multiple relation triplets, an
excessive number of training samples can also introduce data noise, leading to a decline in
performance. Second, the diversity of synthetic training samples was also investigated. This
involved assessing the number of unique entities and words present in synthetic and real
instances on the Wiki-ZSL validation set as the evaluation metric. Specifically, 10 relation
labels were selected to generate an equal number of synthetic samples, and then a
comparison was made. The experimental results reveal that the generated synthetic samples
exhibited lower diversity in unique words but richer diversity in unique entities compared to
real instances. This can be attributed to the uniqueness of entity names, which the model
pays attention to extensively during pre-training. Additionally, the use of relation prompts
aids the model in generating training instances for unseen relation labels, thereby
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constraining the diversity of contextual information in the synthetic samples. The real
instances and generated synthetic samples on theWiki-ZSL dataset are presented in Table 9.

In addition to the described case study of generated synthetic instances, a series of
experiments were conducted and the process of multiple triplet extraction when m = 10
was reported. The experimental results are shown in Table 10 to illustrate the significant
role of different components in the proposed model. From Table 10, several findings can

Figure 12 Instance attention visualizations of attention weight matrices for different components of the SAAN with GPT-2 PLM are training
on Wiki-ZSL. (A) Indicates ordinary token-level SAAN, (B) indicates the injection ontology knowledge representations SAAN (our model). The
attention distributions are also taken from the layer of triplet decoding and maxed over the representation matrix. The attention distribution in (A) is
scattered and cannot focus enough on the entity representations of syntactic contexts, such as the character entities (e.g., Mr.Chao). The SAAN that
injected ontology knowledge representations (our model) in (B) solves this problem well. Full-size DOI: 10.7717/peerj-cs.2014/fig-12
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Table 10 Case study results onWiki-ZSL dataset. The Input Instances include input original and prompt text. Relation labels and virtual words are
bracketed in underlined and italics, respectively. The symbol w/o indicates removing the corresponding component in the model. The head and tail
entities are shown in bold. The relation label is shown in italics in the Relation Triplets column.

Model Input instances Relation triplets F1 score(%)

KBPT (w/o Ontology
Knowledge Prompt)

[CLS] She played her collegiate golf at Furman University,
and was on the 1976 national championship team that
included future LPGA players Betsy King, Sherri Turner
and Cindy Ferro.[SEP] [member of] [member of sport
team] [sport team] [SEP]

Head Entity: Cindy Ferro/Sherri Turner/She
Tail Entity: Furman University/1976/LPGA
Relation: country of citizenship/date of birth/
attendance

27.17

KBPT (w/o Relation
Label Prompt)

[CLS] She played her collegiate golf at Furman University,
and was on the 1976 national championship team that
included future LPGA players Betsy King, Sherri Turner
and Cindy Ferro.[SEP] [member of] [sport team] [SEP]
sports teams or clubs that the subject currently represents
or formerly represented…….[SEP]

Head Entity: She/Betsy King
Tail Entity: national championship team/
Furman University
Relation: member of sports team/educated at

28.34

KBPT (w/o Virtual
Words Prompt)

[CLS] She played her collegiate golf at Furman University,
and was on the 1976 national championship team that
included future LPGA players Betsy King, Sherri Turner
and Cindy Ferro.[SEP] [member of sport team] [SEP]
sports teams or clubs that the subject currently represents
or formerly represented…..[SEP]

Head Entity: She/Betsy King
Tail Entity: national championship team/
Furman University/LPGA
Relation: member of sports team/member of
sports team

28.09

KBPT (w/o Ontology
Knowledge and
Virtual Words
Prompt)

[CLS] She played her collegiate golf at Furman University,
and was on the 1976 national championship team that
included future LPGA players Betsy King, Sherri Turner
and Cindy Ferro.[SEP] [member of sport team] [SEP]

Head Entity: She/Sherri Turner
Tail Entity: Furman/LPGA
Relation: country of citizenship/attendance

26.67

Table 9 Case study of relation labels between real instances and generated synthetic instances onWiki-ZSL dataset. The head and tail entries are
shown in bold. The // is used to split the two generated synthetic samples.

Relation
labels

Real instances Generated synthetic samples

Founded by Kamuzu Academy is a private boarding school
in Malawi that was founded by, and named
after, the late Hastings Kamuzu Banda, the
former President of Malawi.

MicroProse was an American video game publisher and developer founded by
Wild Bill Stealey and Sid Meier in 1982 as MicroProse Software Inc. //
Samuel de Champlain founded Quebec (1608) and explored the Great Lakes.

Location of
birth

Lurleen Brigham BurnsWallace (September 19,
1926 May 7, 1968), born in Tuscaloosa,
Alabama, was the 46th governor of Alabama
from 1967 until her death in 1968.

Nova Scotia was also the birthplace and home of Samuel Cunard, a British
shipping magnate, born at Halifax.//
Later his family moved to Sheikhupura (now in Pakistan), close to Nankana
Sahib, the birthplace of the founder of Sikhism (Guru Nanak).

Country of
citizenship

He is from a Greek shipping family, grew up in
London and has British citizenship, and has
lived in New York City since 2004.

Joseph Francis Busch (April 18, 1866 & mdash; May 31, 1953) was an American
prelate of the Catholic Church.//
His work displayed his support for the Conservative Party of Canada and
criticized Liberals such as Wilfrid Laurier, as well as French Canadians,
Catholics, and Americans.

Member of
sports team

Hu00e5kon Skogseid (born 14 January 1988 in
Bu00e6rum) is a Norwegian football defender
are playing for Lillestr u00f8m.

Hu00e5kon While in Spain, Billy idolised England national team star Wayne
Rooney and Spanish forward Fernando Torres to whom he compared himself
to.//
Owen played five seasons with the Bruins, pairing on defense with players
including Lionel Hitchman and Eddie Shore, and won the Stanley Cup with the
team in 1929.
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be observed. First, removing external knowledge prompts hurt the performance heavily.
Specifically, the model could not identify the relation member of the sports team and the
extracted entities, and the recognized relations did not correspond. Further, this
observation may be attributed to the quality of the generated synthetic instances. Without
the prompt of external ontology knowledge, the synthetic samples experience a decline in
quality due to noise. Given the abundance of generated synthetic samples, they are not
listed in Table 10. This finding also highlights the benefit of injecting external ontology
knowledge for enhancing relation representation. Second, the injection of virtual tokens
plays a more significant role compared to the relation label prompt as the F1 score differed
by 10% between them. This also indicates that there was an amount of relation semantic
information contained in virtual tokens. Finally, removing both the ontology knowledge
and virtual tokens caused a severe performance decrease (−6.50%). Further, the model did
not identify the main relation triplet {relation: member of sports team, Head entity: She,
Tail entity: national championship team}, and extracted the wrong relation type {relation:
attendance, Head entity: Sherri Turner, Tail entity: LPG}. These results reveal virtual
tokens play a positive role in prompting the relation semantic representation.

Discussion and analysis
Qualitative analysis of the generated synthetic samples: Table 9 lists several instances of
real samples and generated synthetic samples to evaluate how to generalize entity instances
in the ground from the relation labels. The relation labels and the real instances were taken
from the factual materials in the Wiki-ZSL dataset. For simplicity, only four relation labels
are presented, and each of them corresponds to two randomly generated synthetic samples
that were segmented with //. In most instances, the model was able to understand the
correct semantics of relation labels and generate synthetic samples similar to real instances.
The analysis of the four relation labels founded by, location of birth, country of citizenship,
and member of sports team in Table 9 reveals notable findings. For the first three relation
labels, the entity pairs in the generated training samples accurately corresponded to the
relation labels, and the sentences’ meaning aligned with semantic logic. However, for the
last relation label, member of sports team, the generated entity pairs failed to form the
correct relation triplet with the given relation label, despite being related to sports text. In
other words, the generated text represented a relation label related to being a member of
sports team. This study’s outcome highlights that there is ample room for improvement in
the quality of generated synthetic samples. Future research should focus on generating
appropriate head and tail entities to achieve more precise matching.

Can KBPT apply to other LMs?: Since the primary research goal of the present study
was prompt-tuning for PLMs, the proposed method was extended to autoregressive
language models such as RoBERTa and GPT-2. To achieve this, the prompt template and
external ontology knowledge were directly appended to the input text. Subsequently, this
combined input was fed into the PLMs for encoding to generate the required synthetic
samples through the softmax layer during the generation stage. Subsequently, the same
PLM for fine-tuning was utilized to generate relation triplets during the extraction phase.
Notably, the new parameters were introduced in the model’s head during the generation
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and extraction stage. Therefore, RoBERT and GPT-2 were able to generate relatively high-
quality synthetic samples with the assistance of external knowledge and prompt templates.
However, fine-tuning tends to result in poor performance in the low data regime of triplet
extraction. In contrast, KBPT based on RoBERTa and GPT-2 can overcome this challenge
and achieve significant improvement. As shown in Fig. 12, the visualization of the SAAN
with GPT-2 can focus on more relational semantic information from the context. This
suggests that the proposed method is not only model-agnostic but also can fully exploit the
text representation ability in the PLM.

Interpreting representation space of virtual tokens: Further research is needed to
explore the optimized representation space of virtual tokens because these virtual tokens
are initialized with semantic information in the relation labels. The specific approach
involves firstly initializing the virtual tokens with the average value of entity pairs (feh; etg)
embedding in the candidate set and then projecting them into the vocabulary space of the
PLM, which can fully utilize the semantic knowledge contained in the relation labels to
assist the model in generating high-quality synthetic samples. To this end, a series of
experiments were conducted to analyze the specific semantic representations of selected
virtual tokens. Additionally, the relationship between virtual tokens and entity categories
was verified to clarify how these tokens can adaptively correspond to the entity categories
sourced from the context, as shown in Table 8. Concretely, the head of the Transformer in
PLMs was utilized to generate virtual tokens and select the top-3 tokens according to the L2
distance embedding based on vocabulary space. From these experiments, due to synergistic
optimization with knowledge representation limitations, these learned virtual words could
be dynamically adjusted with the context and play a supervised role in the relation triplet
extraction. This phenomenon also provided inspiration to further expand the
representation learning of prototype relations into the prompt template in future studies.
The designed prompt can be applied to other NLP tasks such as event extraction and
knowledge graph completion.

CONCLUSION AND FUTURE WORK
In the present study, a novel method called Knowledge-Based Prompt Tuning (KBPT) was
proposed for zero-shot relation triplet extraction, which breaks through the bottleneck of
previous task settings and encourages further investigation in low-resource regimes. The
proposed model effectively addresses the zero-shot setting problem in multiple relation
triplet extraction. First, to address the incompleteness of prior knowledge, ontology
knowledge and relation labels were incorporated into the prompt template to enrich
relation semantics for generating synthetic samples. Secondly, the embedding
representations were synergistically optimized through collective training to alleviate the
knowledge heterogeneity issue. Thirdly, multiple triplets decoding (MTD) was proposed as
a solution to the challenge of extracting multiple relation triplets in a sentence. Finally,
experimental results indicate that KBPT significantly outperformed prior zero-shot
relation triplet extraction methods on four publicly available datasets, setting the baseline
for future work.
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As mentioned in Discussion and analysis, there is ample room for further research in
improving the quality of generated synthetic data. Future endeavors could focus on
enhancing the precision of matching between the generated entity pairs and relation labels.
This refinement could significantly enhance the applicability of the generated data for
various zero-shot information extraction tasks.
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