
Submitted 5 May 2023
Accepted 1 April 2024
Published 17 May 2024

Corresponding author
Chuan Luo,
chuanluophd@outlook.com

Academic editor
Arun Somani

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2013

Copyright
2024 Luo and Guo

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

HSMVS: heuristic search for minimum
vertex separator on massive graphs
Chuan Luo and Shanyu Guo
School of Software, Beihang University, Beijing, China

ABSTRACT
In graph theory, the problem of finding minimum vertex separator (MVS) is a classic
NP-hard problem, and it plays a key role in a number of important applications in
practice. The real-world massive graphs are of very large size, which calls for effective
approximate methods, especially heuristic search algorithms. In this article, we present
a simple yet effective heuristic search algorithm dubbed HSMVS for solving MVS on
real-world massive graphs. Our HSMVS algorithm is developed on the basis of an
efficient construction procedure and a simple yet effective vertex-selection heuristic.
Experimental results on a large number of real-world massive graphs present that
HSMVS is able to find much smaller vertex separators than three effective heuristic
search algorithms, indicating the effectiveness of HSMVS. Further empirical analyses
confirm the effectiveness of the underlying components in our proposed algorithm.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Heuristic search, Minimum vertex separator (MVS), Vertex-selection heuristic

INTRODUCTION
In graph theory, there exist a variety of well-known combinatorial optimization problems,
which have extensive important real-world applications in practice (Wang et al., 2017;
Li et al., 2017a; Wang et al., 2018a; Li, Li & Yin, 2019; Sun et al., 2023). Many effective
algorithms have been proposed for solving these combinatorial optimization problems,
and they achieve good performance on academic benchmarks (mainly randomly generated
graphs and crafted graphs). Along with the rapid evolution of the Internet, the rapid
growth of real-world networks has resulted in more massive graphs. These real-world
massive graphs bring new challenges for practical solving, as existing algorithms usually
become ineffective when dealing with them (Cai, 2015). The appearance of massive graphs
urgently calls for efficient algorithms, since efficient algorithms for solving combinatorial
optimization problems would bring much benefit in practice.

Given an undirected graph G= (V ,E), where each vertex vi ∈V is associated with a
positive integer ci as its cost, and a positive integer b (1≤ b≤ 2/3|V |), which stands for
the limitation size, a vertex separator C is a subset of V , whose removal partitions the
remaining collection of vertices (i.e., V \C) into two components, such the size of each
component (i.e., the number of vertices in each component) is no greater than b.

The minimum vertex separator (MVS) problem is to find such a vertex separator
with the smallest total cost in the given graph. In theory, the MVS problem, focusing on
finding such a vertex separator of the minimum total cost has been proven to be NP-hard

How to cite this article Luo C, Guo S. 2024. HSMVS: heuristic search for minimum vertex separator on massive graphs. PeerJ Comput.
Sci. 10:e2013 http://doi.org/10.7717/peerj-cs.2013

https://peerj.com/computer-science
mailto:chuanluophd@outlook.com
mailto:chuanluophd@outlook.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2013
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2013

(Bui & Jones, 1992; Fukuyama, 2006). Besides its considerable importance in theory,
the MVS problem is of great significance in practice: MVS has a broad range of useful
applications in real-world practical applications, e.g., VLSI design, computational biology,
parallel processing, and hyper-graph partitioning (Balas & de Souza, 2005; Evrendilek,
2008; Biha & Meurs, 2011; Kayaaslan et al., 2012; Benlic & Hao, 2013; Gomes et al., 2023),
and MVS techniques has been utilized to quantify robustness in complex networks and
detect network bottlenecks in communication networks (Montes-Orozco et al., 2022;
Montes-Orozco et al., 2021; Zhang & Shao, 2015).

Practical algorithms for solving MVS can be mainly categorized into two classes:
exact algorithms and heuristic search algorithms. On one hand, most previous works
on solving MVS focus on designing and improving exact algorithms (Balas & de Souza,
2005; de Souza & Balas, 2005; Biha & Meurs, 2011; de Souza & Cavalcante, 2011; Althoby,
Biha & Sesboüé, 2020). These exact algorithms are able to solve relatively small-sized
graphs efficiently. However, it is well acknowledged that existing exact algorithms become
ineffective on solving large-sized graphs, and may fail to return good-quality solutions
within reasonable time on handling those large-sized ones (Benlic & Hao, 2013) On the
other hand, compared to exact algorithms, heuristic search algorithms, mainly local search
ones (Li et al., 2017b; Wang et al., 2018b; Serna et al., 2021; Zhou, Liu & Gao, 2023), have
exhibited their effectiveness on solving large-sized instances in the context of a variety of
combinatorial problems, including Boolean satisfiability (SAT) (Luo, Hoos & Cai, 2020),
maximum satisfiability (MAX-SAT) (Luo et al., 2015; Cai et al., 2016; Luo et al., 2017),
set covering (Wang et al., 2019; Wang et al., 2021; Luo et al., 2022), combinatorial test
generation (Luo et al., 2021c; Luo et al., 2021a), minimum vertex cover (Luo et al., 2019;
Li et al., 2020), minimum dominating set (Wang et al., 2020c; Hu et al., 2021a; Li et al.,
2022; Chen et al., 2023), maximum clique (Li et al., 2018; Chu et al., 2020; Wang et al.,
2020a; Chu et al., 2023), graph coloring (Wang et al., 2020b), clique partitioning (Hu et al.,
2021b), virtual machine provisioning (Luo et al., 2020; Luo et al., 2021b), and container
reallocation (Qiao et al., 2021).

Also, there exist several heuristic search algorithms for MVS (Benlic & Hao, 2013; Zhang
& Shao, 2015; Benlic, Epitropakis & Burke, 2017). However, on real-world massive graphs,
the performance of such existing heuristic search algorithms for MVS (Benlic & Hao, 2013;
Zhang & Shao, 2015; Benlic, Epitropakis & Burke, 2017) degrades significantly, which can
be witnessed from our experimental results (Table 1–Table 7). Hence, it is very interesting
to design efficient MVS heuristic search algorithms for handling real-world massive graphs.

In this article, we present an efficient MVS heuristic search algorithm named HSMVS,
which concentrates on only one simple yet effective vertex-selection heuristic.HSMVS first
utilizes an efficient construction procedure to initialize the solution, and then applies a
vertex-selection heuristic to modify the solution. The vertex-selection heuristic combines
randomwalk and the approximate best selection strategy in an effective way to strike a good
balance between intensification and diversification. In order to evaluate the effectiveness
of our HSMVS algorithm, we conduct extensive experiments to empirically compare
HSMVS against BLS,BLS-RLE and New_K-OPT on a broad range of real-world massive

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 2/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 1 Results on the graph classes of biological networks and collaboration networks.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Biological Networks
bio-celegans 28 (28.0) 1.7 28 (28.2) 218.3 98 (101.5) 393.5 28 (28.0) 5.6
bio-diseasome 4 (4.0) <0.1 4 (4.0) 0.8 83 (83.6) 391.3 4 (4.0) 6.0
bio-dmela 826 (828.8) 318.1 890 (935.0) 862.9 N/A (N/A) N/A 839 (847.8) 528.8
bio-yeast 38 (38.7) 272.4 40 (41.0) 202.1 258 (266.7) 798.9 39 (40.6) 390.9

Graph Class: Collaboration Networks
ca-AstroPh 1,746 (1,759.9) 431.8 2,726 (2,846.5) 829.0 N/A (N/A) N/A 2,281 (2,287.6) 614.1
ca-CSphd 2 (2.0) 119.3 3 (3.0) 142.5 N/A (N/A) N/A 3 (3.4) 246.3
ca-CondMat 1,134 (1,141.1) 497.1 2,336 (2,424.2) 675.8 N/A (N/A) N/A 1,582 (1,612.2) 685.2
ca-Erdos992 113 (114.9) 365.6 116 (117.9) 330.8 N/A (N/A) N/A 120 (123.0) 348.6
ca-GrQc 152 (154.2) 406.2 162 (211.1) 636.7 N/A (N/A) N/A 160 (164.8) 475.6
ca-HepPh 738 (743.5) 407.0 1,319 (1,365.5) 649.4 N/A (N/A) N/A 982 (1,002.9) 605.2
ca-MathSciNet 10,216 (10,256.0) 957.6 31,474 (32,670.4) 775.1 N/A (N/A) N/A 15,053 (17,356.2) 994.9
ca-citeseer 4,389 (4,585.1) 922.6 14,669 (15,292.1) 903.5 N/A (N/A) N/A 10,715 (10,762.3) 924.083
ca-coauthors-dblp 36,801 (37,532.2) 859.9 76,018 (77,685.1) 908.9 N/A (N/A) N/A 82,385 (253,513.8) 817.3
ca-dblp-2010 6,696 (7,190.5) 962.3 16,868 (17,393.6) 994.6 N/A (N/A) N/A 12,354 (12,794.9) 977.4
ca-dblp-2012 10,817 (11,631.9) 961.4 24,972 (28,280.7) 991.7 N/A (N/A) N/A 21,666 (22,224.3) 984.8
ca-hollywood-2009 157,694 (164,713.1) 992.8 204,984 (222,974.6) 999.2 N/A (N/A) N/A N/A (N/A) N/A
ca-netscience 3 (3.0) 0.1 3 (3.0) 0.3 54 (55.8) 394.6 3 (3.0) 2.9

graphs. The experimental results present that HSMVS is able to find better solutions than
BLS,BLS-RLE, and New_K-OPT on a large number of graphs. Also, we conduct further
empirical evaluations to confirm the effectiveness of the random walk component and the
approximate best selection component underlying the HSMVS algorithm.

The remainder of this article is organized as follows. In ‘Related Work’, we give a brief
review onMVS solving from the perspectives of both theory and practice. In ‘Preliminaries’,
we provide necessary definitions, concepts and notations. In ‘Heuristic Search Framework
for Solving MVS’, we present a simple heuristic search framework for solving MVS. In
‘The HSMVS Algorithm’, we propose a new heuristic search algorithm called HSMVS,
and introduce the construction procedure and the modification heuristic of the algorithm
in detail. In ‘Experiments’, extensive experiments comparing HSMVS against an effective
breakout local search algorithm BLS and it’s optimized version BLS-RLE and an improved
K-OPT local search algorithm New_K-OPT on a wide range of real-world massive graphs
are presented. In ‘Discussions’, we conduct more empirical evaluations to study the
effectiveness of the underlying components in the HSMVS algorithm. In ‘Conclusions and
Future Work’, we give the conclusions of this article and list the future work.

RELATED WORK
Minimum vertex separator is an important NP-hard combinatorial optimization problem
in graph theory, and attracts more attentions from academia. Furthermore, this problem is

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 3/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 2 Results on the graph classes of Facebook networks and infrastructure networks.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Facebook Networks

socfb-A-anon 879,079 (907,015.5) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A

socfb-B-anon 775,418 (804,764.4) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
socfb-Berkeley13 7,050 (7,061.3) 565.6 6,621 (7,025.7) 161.5 N/A (N/A) N/A 6,575 (7,040.8) 559.1
socfb-CMU 1,805 (1,849.1) 451.7 1,701 (1,834.0) 39.7 N/A (N/A) N/A 1,684 (1,837.3) 464.8
socfb-Duke14 2,976 (3,089.0) 308.5 2,784 (2,964.4) 176.0 N/A (N/A) N/A 2,733 (2,867.4) 531.6
socfb-Indiana 10,217 (10,418.6) 552.0 9,584 (10,081.9) 210.3 N/A (N/A) N/A 9,546 (9,747.0) 472.6
socfb-MIT 2,027 (2,066.2) 389.1 1,908 (1,975.7) 269.4 N/A (N/A) N/A 1,864 (1,909.9) 403.2
socfb-OR 9,108 (9,146.5) 549.7 9,410 (10,061.6) 780.3 N/A (N/A) N/A 8,901 (9,145.5) 815.9
socfb-Penn94 12,439 (12,547.7) 423.0 11,927 (13,063.4) 585.6 N/A (N/A) N/A 11,744 (12,125.1) 737.1
socfb-Stanford3 3,475 (3,547.6) 420.1 3,154 (3,262.8) 14.2 N/A (N/A) N/A 3,117 (3,147.1) 628.5
socfb-Texas84 12,884 (13,150.2) 684.1 12,070 (12,712.6) 120.6 N/A (N/A) N/A 12,023 (12,691.8) 657.4
socfb-UCLA 6,339 (6,426.8) 354.8 5,930 (6,252.7) 221.4 N/A (N/A) N/A 5,868 (6,253.5) 614.1
socfb-UCSB37 4,373 (4,380.7) 582.7 4,199 (4,512.5) 249.5 N/A (N/A) N/A 4,185 (4,258.5) 537.6
socfb-UConn 5,515 (5,601.3) 507.2 5,212 (5,681.3) 341.0 N/A (N/A) N/A 5,186 (5,342.1) 560.1
socfb-UF 12,032 (12,226.6) 550.5 11,314 (11,624.3) 429.1 N/A (N/A) N/A 11,279 (11,554.6) 694.3
socfb-UIllinois 10,148 (10,316.1) 516.2 9,531 (10,177.1) 360.3 N/A (N/A) N/A 9,489 (9,707.2) 619.4
socfb-Wisconsin87 7,787 (7,856.0) 499.7 7,320 (7,481.9) 327.4 N/A (N/A) N/A 7,277 (7,599.4) 500.0
socfb-uci-uni 18,002,372 (18,028,784.7) 999.9 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A

Graph Class: Infrastructure Networks
inf-power 10 (13.6) 330.8 257 (312.2) 410.7 N/A (N/A) N/A 8 (9.8) 87.5

inf-road-usa 9,196,531 (9,199,294.7) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A

inf-roadNet-CA 443,008 (477,729.7) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
inf-roadNet-PA 32,481 (32,815.2) 999.7 218,854 (219,358.9) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A

becoming increasingly important because it has shown to have real-world applications in
practice. Thus, there exist a number of works which are devoted to solving MVS in either
theory or practice. In this section, we give a brief review on MVS solving, and discuss MVS
algorithms from the perspectives of both theory and practice.

Theoretical algorithms
Because MVS has proven to be NP-hard (Bui & Jones, 1992; Fukuyama, 2006), it seems
impossible to design exact algorithms with the complexity of polynomial time. Thus, most
theoretical works on MVS focused on designing approximation algorithms, which aims at
improving the approximation ratio for this NP-hard combinatorial optimization problem.
Leighton & Rao (1999) presented an approximation algorithm for MVS, which is based on
linear programming, and the algorithm gives an approximation ratio of O(logn) for MVS.
Then, Feige, Hajiaghayi & Lee (2008) developed an approximation algorithm for MVS,
which is based on novel linear and semidefinite program relaxations, and obtained the
approximation ratio of O(log

√
opt), where opt is the size of an optimal vertex separator.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 4/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 3 Results on the graph classes of interaction networks, recommendation networks, Retweet networks and scientific computing.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Interaction Networks
ia-email-EU 363 (381.3) 393.2 200 (214.4) 574.8 N/A (N/A) N/A 188 (195.3) 531.0
ia-email-univ 150 (154.6) 44.9 151 (156.3) 39.9 417 (420.6) 664.8 149 (149.7) 261.0
ia-enron-large 657 (677.4) 592.1 1,688 (2,018.1) 864.3 N/A (N/A) N/A 792 (820.2) 388.3
ia-enron-only 18 (18.0) <0.1 18 (18.0) 0.1 30 (32.1) 312.1 18 (18.0) 3.7
ia-fb-messages 223 (225.1) 507.0 215 (216.9) 416.3 446 (452.4) 800.5 216 (225.6) 302.3
ia-infect-dublin 26 (26.0) 12.5 26 (26.0) 0.4 120 (125.0) 473.6 26 (26.0) 4.4
ia-infect-hyper 47 (47.0) 0.1 47 (47.0) <0.1 52 (52.0) 62.1 47 (47.0) 13.1
ia-reality 43 (45.2) 432.8 25 (26.1) 377.4 N/A (N/A) N/A 28 (29.1) 519.6
ia-wiki-Talk 4,080 (4,163.9) 723.3 5,931 (6,095.9) 902.1 N/A (N/A) N/A 3,882 (3,926.2) 608.9

Graph Class: Recommendation Networks
rec-amazon 937 (989.8) 992.8 4,532 (4,622.4) 100.7 N/A (N/A) N/A 506 (569.9) 980.9

Graph Class: Retweet Networks
rt-retweet-crawl 27,470 (27,780.4) 993.0 46,949 (48,199.5) 870.5 N/A (N/A) N/A 35,531 (38,339.5) 989.5
rt-retweet 4 (4.0) <0.1 4 (4.0) 0.1 13 (14.2) 459.3 4 (4.0) 2.8
rt-twitter-copen 15 (15.0) 0.3 15 (15.0) 24.3 139 (141.7) 535.0 15 (15.4) 232.4

Graph Class: Scientific Computing
sc-ldoor 12,271 (15,369.9) 997.9 78,416 (82,497.3) 998.1 N/A (N/A) N/A N/A (N/A) N/A
sc-msdoor 2,647 (3,939.7) 956.1 19,715 (21,021.4) 976.4 N/A (N/A) N/A 2,325 (3,906.5) 979.8
sc-nasasrb 314 (618.6) 502.1 270 (433.1) 199.4 N/A (N/A) N/A 270 (405.0) 103.9
sc-pkustk11 1,509 (1,778.0) 513.1 1,380 (2,578.4) 564.6 N/A (N/A) N/A 1,344 (1,355.4) 240.5
sc-pkustk13 1,249 (1,548.6) 601.0 1,254 (4,256.9) 782.5 N/A (N/A) N/A 1,137 (1,195.8) 761.9
sc-pwtk 834 (2,192.2) 666.7 720 (3,885.9) 441.4 N/A (N/A) N/A 720 (1,121.1) 371.8
sc-shipsec1 2,226 (3,821.0) 941.5 12,379 (15,933.3) 955.0 N/A (N/A) N/A 2,313 (3,165.5) 870.6
sc-shipsec5 3,407 (4,172.8) 767.6 13,373 (18,961.9) 946.6 N/A (N/A) N/A 2,602 (3,865.0) 886.7

Practical algorithms
Even though a number of great contributions have been made on the theoretical analysis
of MVS solving, the performance of theoretical algorithms for MVS is still unsatisfactory
in practice. As MVS has important applications in real-world situations, such as VLSI
design, computational biology, etc (Balas & de Souza, 2005; Biha & Meurs, 2011; Benlic &
Hao, 2013; Zhang & Shao, 2015; Dagdeviren, Akram & Farzan, 2019; Furini et al., 2022), a
number of practical algorithms for MVS have been proposed.

As mentioned in the ‘Introduction’, practical algorithms for MVS can be classified into
two categories: exact algorithms and heuristic search algorithms. Exact algorithms are
guaranteed to prove optimal solutions, but they may fail to return good-quality solutions
within reasonable time on solving large-sized instances (Benlic & Hao, 2013). Heuristic
search algorithms could not prove optimality for the solutions they find, but they are able
to seek out good-quality solutions for large-sized instances efficiently.

Most previous works on practical MVS solving focus on designing and improving exact
algorithms. In de Souza & Balas (2005), developed a branch-and-cut algorithm for MVS,

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 5/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 4 Results on the graph classes of social networks and technological networks.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Social Networks
soc-BlogCatalog 7,866 (8,020.8) 769.5 8,792 (10,162.4) 934.2 N/A (N/A) N/A 5,189 (5,549.6) 733.4
soc-FourSquare 7,806 (12,731.9) 986.4 45,709 (46,519.7) 978.3 N/A (N/A) N/A 28,282 (148,884.4) 865.2
soc-LiveMocha 18,332 (18,362.2) 569.5 18,797 (20,718.9) 956.2 N/A (N/A) N/A 16,908 (17,660.2) 708.0
soc-brightkite 3,249 (3,366.2) 745.0 5,299 (5,451.3) 773.1 N/A (N/A) N/A 2,832 (3,098.6) 835.3
soc-buzznet 8,507 (9,670.0) 644.4 11,337 (11,686.9) 952.2 N/A (N/A) N/A 5,012 (5,361.3) 834.2
soc-delicious 11,397 (15,247.0) 991.8 25,308 (28,000.5) 948.4 N/A (N/A) N/A 14,035 (17,291.2) 988.7
soc-digg 30,202 (30,424.3) 981.0 43,319 (45,162.7) 989.4 N/A (N/A) N/A 36,411 (43,237.7) 985.5
soc-dolphins 6 (6.0) <0.1 6 (6.0) <0.1 16 (16.0) 41.8 6 (6.0) 2.2
soc-douban 5,171 (5,178.7) 702.5 6,588 (6,799.8) 696.6 N/A (N/A) N/A 5,110 (5,170.0) 447.5
soc-epinions 1,319 (1,332.4) 550.3 2,114 (2,304.0) 584.4 N/A (N/A) N/A 1,401 (1,442.5) 628.5
soc-flickr 19,308 (19,483.3) 977.3 37,663 (40,705.5) 995.2 N/A (N/A) N/A 33,546 (56,574.6) 968.9

soc-flixster 543,056 (553,120.9) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-gowalla 5,355 (6,569.1) 898.7 11,956 (16,307.1) 926.8 N/A (N/A) N/A 6,881 (8,838.6) 970.0
soc-karate 4 (4.0) <0.1 4 (4.0) <0.1 4 (4.0) 17.0 4 (4.0) 18.2
soc-lastfm 44,117 (44,392.8) 996.9 49,735 (52,096.3) 860.5 N/A (N/A) N/A N/A (N/A) N/A

soc-livejournal 1,617,709 (1,619,315.0) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A

soc-orkut 1,289,460 (1,296,974.2) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A

soc-pokec 357,172 (388,602.4) 1,000.0 641,157 (644,721.7) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A
soc-slashdot 5,962 (5,990.6) 785.5 7,618 (7,660.1) 921.3 N/A (N/A) N/A 5,904 (5,932.8) 793.1
soc-twitter-follows 2,571 (2,673.0) 501.6 1,797 (1,886.3) 903.7 N/A (N/A) N/A 1,131 (1,155.5) 584.3
soc-wiki-Vote 52 (52.0) 8.0 51 (51.2) 179.6 265 (270.0) 526.5 51 (51.4) 11.1
soc-youtube-snap 31,524 (32,040.8) 997.7 61,245 (71,035.8) 907.4 N/A (N/A) N/A N/A (N/A) N/A
soc-youtube 18,342 (19,615.1) 968.1 37,746 (40,604.2) 954.3 N/A (N/A) N/A 28,588 (32,091.3) 994.6

Graph Class: Technological Networks
tech-RL-caida 3,435 (3,773.5) 983.7 14,522 (15,974.7) 770.6 N/A (N/A) N/A 4,349 (5,107.7) 978.8
tech-WHOIS 209 (222.1) 494.7 348 (440.1) 380.8 N/A (N/A) N/A 269 (277.2) 466.7
tech-as-caida2007 149 (157.7) 720.4 615 (714.6) 533.1 N/A (N/A) N/A 269 (276.1) 515.1

tech-as-skitter 335,256 (352,827.6) 1,000.0 650,515 (686,833.9) 11.6 N/A (N/A) N/A N/A (N/A) N/A
tech-internet-as 248 (276.1) 733.3 892 (1,183.4) 753.5 N/A (N/A) N/A 476 (491.3) 649.0
tech-p2p-gnutella 6,226 (6,230.8) 793.7 8,716 (8,883.0) 851.0 N/A (N/A) N/A 6,243 (6,255.3) 716.8
tech-routers-rf 97 (98.2) 284.9 95 (97.1) 462.7 N/A (N/A) N/A 92 (94.9) 504.3

which is based on the mixed integer programming formulation (Balas & de Souza, 2005).
After that, Biha & Meurs (2011) designed an exact algorithm for MVS, on the basis of new
classes of valid inequalities for the associated polyhedron. Further, de Souza & Cavalcante
(2011) proposed a hybrid algorithm, which is built on a Lagrangian relaxation framework.
Recently, Althoby, Biha & Sesboüé (2020) introduced a practical method which combines
branch-and-bound procedure, linear programming technique and greedy algorithm.

In the context of MVS solving by heuristic search, Benlic & Hao (2013) developed
the first local search algorithm called BLS for solving MVS. In order to improve the

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 6/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 5 Results on the graph class of temporal reachability networks.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Temporal Reachability Networks
scc_enron-only 66 (67.3) <0.1 66 (67.8) <0.1 66 (66.0) 24.7 66 (67.5) 39.7
scc_fb-forum 132 (150.6) 529.9 142 (157.8) 271.0 137 (211.2) 497.8 149 (155.3) 523.8
scc_fb-messages 524 (600.1) 472.9 474 (485.1) 101.7 N/A (N/A) N/A 475 (490.7) 575.3
scc_infect-dublin 0 (0.0) 285.1 0 (0.0) 78.7 N/A (N/A) N/A 0 (0) 0.6
scc_infect-hyper 85 (85.0) 0.4 85 (85.0) <0.1 85 (86.7) 242.0 85 (88.4) 49.3
scc_reality 3,009 (3,201.6) 635.2 1,170 (1,223.5) 282.0 N/A (N/A) N/A 1,173 (1,175.6) 544.1
scc_retweet-crawl 4 (5.2) 476.4 0 (0.0) 23.4 N/A (N/A) N/A 0 (0.0) 11.7
scc_retweet 14 (27.6) 572.8 1 (11.8) 118.2 N/A (N/A) N/A 1 (57.0) 79.4
scc_rt_alwefaq 0 (0.1) 120.3 0 (0.0) 0.4 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_assad 0 (0.0) <0.1 0 (0.0) 0.2 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_bahrain 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_barackobama 0 (0.0) 0.2 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_damascus 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_dash 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_gmanews 0 (9.3) 37.3 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_gop 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_http 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_israel 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_justinbieber 0 (1.4) 154.9 0 (0.0) 0.4 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_ksa 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_lebanon 0 (0.0) <0.1 0 (0.0) 0.2 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_libya 0 (0.0) <0.1 0 (0.0) 0.4 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_lolgop 0 (1.3) 559.7 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_mittromney 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_obama 0 (0.0) <0.1 0 (0.0) 0.2 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_occupy 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_occupywallstnyc 0 (4.8) 315.0 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_oman 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_onedirection 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_p2 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_qatif 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_saudi 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_tcot 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_tlot 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_uae 0 (0.0) <0.1 0 (0.0) 0.3 N/A (N/A) N/A 0 (0.0) <0.1
scc_rt_voteonedirection 0 (0.0) <0.1 0 (0.0) 0.1 N/A (N/A) N/A 0 (0.0) <0.1
scc_twitter-copen 486 (579.4) 537.0 400 (417.0) 590.5 N/A (N/A) N/A 390 (420.5) 431.9

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 7/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 6 Results on the graph class of web graphs.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Web Graphs
web-BerkStan 37 (40.3) 538.6 55 (490.0) 331.1 N/A (N/A) N/A 66 (70.9) 521.8
web-arabic-2005 11 (17.4) 641.8 3,508 (3,769.3) 905.0 N/A (N/A) N/A 184 (197.8) 651.9
web-edu 2 (2.0) 116.6 2 (2.0) 0.5 N/A (N/A) N/A 2 (2.0) 8.3
web-google 4 (4.0) 0.6 4 (4.0) 150.9 123 (131.7) 797.6 4 (4.0) 192.0
web-indochina-2004 8 (9.8) 463.0 31 (43.8) 348.9 N/A (N/A) N/A 21 (24.8) 522.9
web-it-2004 6 (7.9) 616.6 10,909 (11,622.3) 867.4 N/A (N/A) N/A 1,474 (2,014.8) 975.3
web-polblogs 24 (24.0) 0.2 24 (24.0) 67.1 131 (137.5) 489.6 24 (24.0) 4.1
web-sk-2005 29 (40.3) 767.9 3,504 (3,859.5) 842.8 N/A (N/A) N/A 85 (89.9) 836.0
web-spam 475 (479.2) 530.9 458 (564.1) 564.4 N/A (N/A) N/A 458 (464.8) 505.4
web-uk-2005 1 (1.0) 281.7 1 (1.0) 33.0 N/A (N/A) N/A 1 (1.0) 218.7
web-webbase-2001 3 (5.6) 541.5 22 (25.7) 443.0 N/A (N/A) N/A 26 (30.5) 483.0

web-wikipedia2009 328,301 (329,736.9) 1,000.0 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A

Table 7 Overall results on all real-world massive graphs.

Graph class #graph HSMVS BLS New_K-OPT BLS-RLE

#best
(#avg.)

time #best
(#avg.)

time #best
(#avg.)

time #best
(#avg.)

time

Biological Networks 4 4 (4) 148.1 2 (1) 321.0 0 (0) 486.2 2 (2) 234.6
Collaboration Networks 13 13 (13) 606.4 1 (1) 679.8 0 (0) 394.6 1 (1) 657.2
Facebook Networks 18 3 (3) 575.3 0 (2) 285.8 0 (0) N/A 15 (13) 533.6
Infrastructure Networks 4 3 (3) 832.6 0 (0) 705.3 0 (0) N/A 1 (1) 258.4
Interaction Networks 9 4 (4) 300.7 5 (5) 352.8 0 (0) 407.9 6 (6) 407.9
Recommendation Networks 1 0 (0) 992.8 0 (0) 100.7 0 (0) N/A 1 (1) 981.0
Retweet Networks 3 3 (3) 331.1 2 (2) 298.3 0 (0) 497.1 2 (1) 407.9
Scientific Computing 8 2 (1) 743.3 2 (0) 733.0 0 (0) N/A 6 (7) 631.7
Social Networks 23 15 (15) 742.4 3 (3) 764.9 1 (1) 195.1 10 (9) 641.3
Technological Networks 7 6 (6) 715.8 0 (0) 625.3 0 (0) N/A 1 (1) 494.4
Temporal Reachability Networks 37 32 (26) 127.0 35 (34) 39.8 2 (1) 237.5 33 (31) 264.4
Web Graphs 12 11 (11) 458.3 5 (4) 414.0 0 (0) 643.6 5 (5) 283.7
Total 139 96 (89) 468.2 55 (52) 392.8 3 (2) 392.3 83 (78) 421.5

performance, BLS incorporates several sophisticated heuristics (including a greedy hill-
climbing component, an adaptive perturbation mechanism, a hashing function and a
jumping-magnitude determining component), which introduce six instance-dependent
parameters. There exists an improved version of BLS, which is called BLS-RLE (Benlic,
Epitropakis & Burke, 2017). BLS-RLE introduces an effective parameter control mechanism
that draws upon ideas from reinforcement learning theory to reach an interdependent
decision. According to the computational results reported in the literature (Benlic &
Hao, 2013; Benlic, Epitropakis & Burke, 2017), BLS is able to handle graphs with up to

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

3,000 vertices and runs much faster than a number of high-performance exact algorithms
and BLS-RLE exhibits its effectiveness in solving the MVS problem. Besides, Zhang et al.
(2015) proposed an improved K-OPT local search algorithm named New_K-OPT. The
experimental results reported in the literature (Zhang et al., 2015) show that New_K-OPT
exhibits relatively better performance compared to variable neighborhood search, simulated
annealing and Relax-and-Cut (de Souza & Cavalcante, 2011) on a number of graphs.

PRELIMINARIES
In this section, we give necessary backgrounds of the minimum vertex separator (MVS)
problem. An undirected graph G= (V ,E) consists of a set of vertices V and a set of
edges E ⊆V ×V , where each edge e is a pair of two different vertices in V . For an edge
e = (u,v), we say that vertices u and v are the endpoints of edge e. Two different vertices
are neighbors if and only if they both appear at the same edge. We use the notation
N (v)={u|(u,v)∈ E and u 6= v} to denote the set of v ’s all neighboring vertices. The degree
of a vertex v is denoted as deg (v)= |N (v)|.

Given an undirected graph, where each vertex is associate with a positive integer as its
cost, and a limitation size, a vertex separator is a subset of vertices, whose removal divides
the remaining vertices into two disjoint components (i.e., there is no edge connected those
two components), subject to the size of each component (i.e., the number of vertices in
each component) smaller than the limitation size. In this article, we address the problem
of finding such a vertex separator as small total cost as possible.

More formally, given an undirected graph G= (V ,E) with a cost ci corresponding to
each vertex vi ∈V and a positive integer b (1≤ b≤ |V |) denoting the limitation size, the
minimum vertex separator (MVS) problem is to find a partition which divides V into
three disjoint subsets A, B and C , such that (i) A and B are non-empty; (ii) there is no edge
(vi,vj)∈ E with vi ∈A and vj ∈ B; (iii) |A| ≤ b and |B| ≤ b, where 0≤ b≤ 2/3|V |; and (iv)∑

vj∈C cj is minimized.
The vertex separator C is feasible when the the first three constraints (i, ii and iii) are

satisfied, and is optimal when all constraints are satisfied. In theory, the MVS problem
with 0≤ b≤ 2/3|V | has been proven to be NP-hard (Feige & Mahdian, 2006; Bui &
Jones, 1992; Fukuyama, 2006). Since the empirical study on solving MVS (Benlic & Hao,
2013) demonstrates that it is computationally difficult to solve the MVS problem with
b= 1.05|V |

2 , in this work we follow this setting, and in our major experiments (as presented
in ‘Experiments’) b is set to 1.05|V |

2 accordingly. Moreover, we would like to note that, in
‘Discussions’ we conduct empirical evaluations with b= 0.6, so as to study the performance
of our proposed algorithm under different values of b.

The concept of solution is very important in heuristic search algorithms.
In the MVS problem (where b denotes the limitation size), a partition s= {A,B,C},

which divides the vertex set V into three disjoint subsets and guarantees that the sizes of
A and B are not greater than b, is called a solution. The cost of a is solution s, denoted as
cost (s), is the sum of the cost cj of each vj ∈C (i.e., cost (s)=

∑
vj∈C cj). Obviously, the less

the value of cost (s) is, the better the quality of solution s is. Hence, the MVS problem aims
to find a solution s of minimum cost.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 9/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Algorithm 1Heuristic Search Framework for MVS
Input: Graph G, limitation size b;
Output: A solution s∗;

1: s← Construct_Solution(G,b), s∗← s;
2: while terminating criterion is not reached do
3: s←Modify_Solution(s,b);
4: if cost (s)< cost (s∗) then s∗← s;
5: end while
6: return s∗;

HEURISTIC SEARCH FRAMEWORK FOR SOLVING MVS
As described in ‘Introduction’, heuristic search, especially local search, is a popular
paradigm and recently has shown effectiveness on a variety of NP-hard combinatorial
problems. The basic idea of local search is that, it firstly constructs a solution as the initial
solution, and then iteratively applies heuristics, which modify the resulting solution, to
improve the solution quality (which is the cost of the solution, as defined in ‘Preliminaries’).
Obviously, because combinatorial problems are rather different from each other in nature,
it is difficult to solve a specific problem by directly applying heuristics designed for other
problems. Therefore, it is a challenge to design an effective heuristic search algorithm for
solving a combinatorial problem.

BLS has introduced the first local search framework for MVS (Benlic & Hao, 2013). This
framework is composed of several heuristics and thus is relatively complex. In this section,
we introduce a simple heuristic search framework for MVS, in order to demonstrate the
most essential parts in heuristic search algorithms for solving MVS.

The basic heuristic search framework for MVS is outlined in Algorithm 1 as described as
follows. In the beginning, heuristic search calls the function Construct_Solution to generate
a solution s as the initial solution, and the best solution s∗ is initialized as s (line 1). After
the initialization, heuristic search conducts the search stage iteratively until the terminating
criterion is reached (lines 2–5). In each search step, heuristic search modifies solution s by
employing the functionModify_Solution (line 3); whenever a better solution with a smaller
cost is found, the best solution s∗ is updated accordingly (line 4). After the search stage, the
resulting solution s∗ is reported as the final solution (line 6).

THE HSMVS ALGORITHM
On the basis of the simple heuristic search framework in the preceding section, we develop
a new heuristic search algorithm calledHSMVS for solvingMVS. In this section, we present
the whole HSMVS algorithm in detail.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 10/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Algorithm 2 The Function Construct_Solution
Input: Graph G= (V ,E), limitation size b;
Output: A solution s={A,B,C};

1: Initialized three vertex set A,B,C to φ;
2: foreach vertex v ∈V do
3: if with probability p then
4: if |A|< b then put v into set A;
5: else if |B|< b then put v into set B;
6: else then put v into set C ;
7: else
8: if |B|< b then put v into set B;
9: else if |A|< b then put v into set A;
10: else then put v into set C ;
11: end if
12: end foreach
13: foreach vertex v ∈B do
14: if N (v)∩A 6=φ thenmove v from B to C ;
15: end foreach
16: return s={A,B,C};

According to the pseudo-code in Algorithm 1, it is clear that the functions
Construct_Solution and Modify_Solution are the most crucial parts in this framework.
Thus, we specify these two functions in our HSMVS algorithm.

In order to build an effective heuristic search algorithm, our HSMVS algorithm utilizes
an efficient heuristic function named Construct_Solution to construct the initial solution.
We outline the pseudo-code of the function Construct_Solution in Algorithm 2. We note
that the construction procedure consists of an extending stage and a fixing stage, which are
described as below.

The construction procedure
The extending stage: In the beginning, three vertex sets A, B and C are initialized as∅ (line
1). Then, for each vertex v ∈V , the function puts v into one of these three sets according
to the following rules.

• With probability p, if |A|< b, the function puts v into A; if |A| ≥ b and |B|< b, the
function puts v into B; if |A| ≥ b and |B| ≥ b, the function puts v into C (lines 3–6).
• Otherwise (with probability 1−p), if |B|< b, the function puts v into B; if |B| ≥ b and
|A|< b, the function puts v into A; if |B| ≥ b and |A| ≥ b, the function puts v into C
(lines 7–11).

The fixing stage: According to the rules in the extending stage, there might be a number
of edges that connect some vertices in set A and their neighboring vertices in set B, which
makes the resulting solution {A,B,C} infeasible. To construct a feasible solution, the
function tries to move some vertices from set B to set C . For each vertex v ∈B, the function

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 11/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Algorithm 3 The FunctionModify_Solution
Input: A source solution s={A,B,C}, limitation size b;
Output: A modified solution s′={A′,B′,C ′};

1: if with a probability wp then
2: v← a random vertex in set C ;
3: X← a random set from {A,B};
4: if X ==A thenmove(v,A,B);
5: if X ==B thenmove(v,B,A);
6: else
7: vA← a random vertex from set C ;
8: for i← 1 to t−1 do
9: rA← a random vertex from set C ;
10: if scoreA(rA)> scoreA(vA) then vA← rA;
11: end for
12: vB← a random vertex from set C ;
13: for i← 1 to t−1 do
14: rB← a random vertex from set C ;
15: if scoreB(rB)> scoreB(vB) then vB← rB;
16: end for
17: if |A| == b thenmove(vB,B,A);
18: else thenmove(vA,A,B);
19: if scoreA(vA)> scoreB(vB) thenmove(vA,A,B);
20: else thenmove(vB,B,A);
21: end if
22: A′←A, B′←B, C ′←C ;
23: return s′={A′,B′,C ′};

checks whether there are neighboring vertices of v in set A; if this is the case, the function
moves vertex v into set C in order to resolve the contradiction (lines 13–15). Finally, the
function returns s={A,B,C} as the solution.
Example 1 To make readers better understand our proposed algorithm, we present an
example here to demonstrate how our construction procedure constructs an initial solution
in a high-level sense. Figure 1 illustrates an example graph, which has eight vertices and nine
edges, and we assume that the cost of each vertex is 1, indicating that the costs of all vertices
are the same. For the example graph in Fig. 1 , given the limitation size b of 4 (i.e., b= 4),
once the extending stage is completed, an infeasible solution could be generated. For instance,
assuming the constructed infeasible solution is comprised of A= {4,6,7}, B= {0,1,2,3,5}
and C =∅, since some vertices in set B (i.e., vertices 1, 2 and 5) have neighboring vertices in
A, during the fixing stage, those vertices of 1, 2 and 5 would be moved from set B to set C,
resulting in a feasible solution of A={4,6,7}, B={0,3} and C ={1,2,5}.

As stated in the literature (Cai, 2015), it is important to design low time-complexity
function to generate the initial solution for massive graphs, because high time-complexity

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 12/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Algorithm 2 The Function Construct Solution
Input: Graph G = (V,E), limitation size b;
Output: A solution s = {A,B,C};

1: Initialized three vertex set A,B,C to ∅;
2: foreach vertex v ∈V do
3: if with probability p then
4: if |A|< b then put v into set A;
5: else if |B|< b then put v into set B;
6: else then put v into set C;
7: else
8: if |B|< b then put v into set B;
9: else if |A|< b then put v into set A;

10: else then put v into set C;
11: end if
12: end foreach
13: foreach vertex v ∈ B do
14: if N(v)∩A ̸=∅ then move v from B to C;
15: end foreach
16: return s = {A,B,C};

In order to build an effective heuristic search algorithm, our HSMVS algorithm utilizes an efficient192

heuristic function named Construct Solution to construct the initial solution. We outline the pseudo-code193

of the function Construct Solution in Algorithm 2. We note that the construction procedure consists of an194

extending stage and a fixing stage, which are described as below.195

0 1 2

3

5 6 7

4

Figure 1. An example graph.

5.1 The Construction Procedure196

The extending stage: In the beginning, three vertex sets A, B and C are initialized as ∅ (line 1). Then,197

for each vertex v ∈V , the function puts v into one of these three sets according to the following rules.198

• With probability p, if |A|< b, the function puts v into A; if |A| g b and |B|< b, the function puts v199

into B; if |A| g b and |B| g b, the function puts v into C (lines 3–6).200

• Otherwise (with probability 1− p), if |B|< b, the function puts v into B; if |B| g b and |A|< b, the201

function puts v into A; if |B| g b and |A| g b, the function puts v into C (lines 7–11).202

The fixing stage: According to the rules in the extending stage, there might be a number of edges that203

connect some vertices in set A and their neighboring vertices in set B, which makes the resulting solution204

{A,B,C} infeasible. To construct a feasible solution, the function tries to move some vertices from set B205

to set C. For each vertex v ∈ B, the function checks whether there are neighboring vertices of v in set A; if206

this is the case, the function moves vertex v into set C in order to resolve the contradiction (lines 13–15).207

Finally, the function returns s = {A,B,C} as the solution.208

Example 1. To make readers better understand our proposed algorithm, we present an example here to209

demonstrate how our construction procedure constructs an initial solution in a high-level sense. Figure210

1 illustrates an example graph, which has 8 vertices and 9 edges, and we assume that the cost of each211

vertex is 1, indicating that the costs of all vertices are the same. For the example graph in Figure 1, given212

5/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:85359:1:1:NEW 21 Feb 2024)

Manuscript to be reviewedComputer Science

Figure 1 An example graph.
Full-size DOI: 10.7717/peerjcs.2013/fig-1

construction procedure would make the algorithms inefficient. According to the pseudo-
code in Algorithm 2, we could easily derive the following lemma (Lemma 1).
Lemma 1 The time-complexity of the function Construct_Solution in Algorithm 2 is
O(max{|V |,|E|}).

Proof The function Construct_Solution can be divided into two main stages: the
extending stage (lines 2–12) and the fixing stage (lines 13–15). Each part consists
of a loop.For the extending stage, it is clear that the time-complexity is O(|V |),
as each vertex v ∈ V is visited.For the fixing stage, the time-complexity could be
calculated as

∑
v∈B|N (v)| =

∑
v∈Bdeg (v). Because set B is a subset of set V , we have∑

v∈Bdeg (v)≤
∑

v∈V deg (v)= 2×|E|. Thus, the time-complexity of the second loop
is O(|E|). Therefore, according to above analysis, we are able to derive that the time-
complexity of the whole function Construct_Solution is O(max{|V |,|E|}).

In fact, most real-world massive graphs are sparse ones (Barabási & Albert, 1999;
Eubank et al., 2004; Cai, 2015). Thus, in most cases, the complexity of our function
Construct_Solution is usually lower than O(|V |2), which indicates that our construction
procedure is practical for a large number of real-world massive graphs.

The modification heuristic
The modification heuristic also plays a critical role in theHSMVS algorithm. An important
issue of designing an effective modification heuristic is to strike a good balance between
intensification and diversification (Li & Huang, 2005). Inspired by the success of two-
mode heuristic search algorithms in Boolean satisfiability solving (Balint & Fröhlich, 2010;
Li & Li, 2012; Cai & Su, 2013; Luo, Su & Cai, 2014), we propose an effective two-mode
modification heuristic namedModify_Solution in the context of MVS solving.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 13/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2013/fig-1
http://dx.doi.org/10.7717/peerj-cs.2013

Essentially, the heuristic Modify_Solution modifies the current solution by moving a
vertex v from set C to the target set X ∈ {A,B} and resolving the contradictions by moving
to set C those vertices, which are v ’s neighbors and are currently in the opposite set Y
(Y ={A,B}\X). Clearly, the most important issue of the heuristic is to decide the moving
vertex v and the target set X .

Before describing the details ofModify_Solution, we introduce the basic operation in the
heuristic. The operation move(v,X ,Y), where v ∈C , X ∈ {A,B}, Y = {A,B}\X , works as
follows. It first moves vertex v from set C to set X . Then, for each vertex w ∈ Y , it checks
whether w ∈N (v); if this is the case, it moves w from set Y to set C to keep the solution
legal. We also introduce two evaluating properties scoreA and scoreB, which are important
metrics for evaluating the priority of vertices in set C . The formal definitions of scoreA and
scoreB are given as follows (Definitions 1 and 2).
Definition 1 Given a solution s= {A,B,C}, for each vertex v ∈C, the property scoreA(v)
is defined as the decrement in the cost (s) after executing the operation move(v,A,B).

Definition 2 Given a solution s= {A,B,C}, for each vertex v ∈C, the property scoreB(v)
is defined as the decrement in the cost (s) after executing the operation move(v,B,A).

Given a vertex v ∈C , the evaluation properties scoreA and scoreB represent the benefit
through performing the operations move (v,A,B) and move (v,B,A), respectively. Also,
performing an operation with larger value of scoreA or scoreB would reduce the value of
cost to the largest extent. Therefore, it is advisable to select and conduct an operation with
large value of scoreA or scoreB.
Example 2 For the example graph in Fig. 1, we assume that each vertex has the same cost of
1, and the current solution is s= {A,B,C}, where A= {4,6,7}, B= {0,3}, C = {1,2,5}.
For vertex 2(2 ∈ C), if we move vertex 2 from set C to set A, because vertex 2 has no
neighboring vertex in set B, the decrement in the cost (s) after executing the operation move
(2,A,B) is 1, so the scoreA(2) is 1. If we move vertex 2 from set C to set B, since vertex 4 is the
neighboring vertex of 2, and vertex 4(4 ∈ A) should be moved from set A to set C, then the
decrement in the cost (s) after executing the operation move (2,B,A) is 0 (i.e., scoreB(2) is
0). After comparing scoreA(2) and scoreB(2), we can decide the suitable set to which vertex 2
should be moved.

These properties play important roles in the reconstruction of solutions and reduction
of the cost.

We present the pseudo-code of the whole heuristic Modify_Solution in Algorithm 3,
and describe it in detail. Our heuristic Modify_Solution switches between two modes,
i.e., the random mode and the greedy mode, in order to strike a good balance between
intensification and diversification. The function Modify_Solution activates which mode
depending on a probability wp. With the probability wp, Modify_Solution works in the
random mode (lines 1–5); otherwise (with the probability 1−wp),Modify_Solution works
in the greedy mode (lines 6–19). The procedures of the randommode and the greedy mode
are described as follows.

The randommode: In this mode, the heuristic employs the random walk component
to strengthen diversification. The random walk component first randomly selects a vertex

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 14/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

v from set C , and then randomly picks a target set X from {A,B}. If set X is set A, then
the heuristic performs the operation move(v,A,B); otherwise (set X is set B), the heuristic
executes the operation move(v,B,A).

The greedy mode: In this mode, the heuristic applies the approximate best selection
component to contribute to intensification, inspired by the success of Best from Multiple
Selections (BMS) in the context of minimum vertex cover (Cai, 2015). The approximate
best selection component first chooses t vertices from set C , and among these t vertices
selects the vertex with the greatest scoreA, denoted as vA (lines 7–11). Then, the heuristic
also chooses t vertices from set C , and among these t vertices selects the vertex with the
greatest scoreB, denoted as vB (lines 12–16). Finally, the heuristic checkswhether scoreA(vA) is
greater than scoreB(vB); if this is the case, it executes the operationmove(vA,A,B); otherwise
(scoreA(vA) is not greater than scoreB(vB)), it executes the operation move(vB,B,A).

Finally, our heuristicModify_Solution denotes the resulting sets A, B, C as sets A′, B′ and
C ′, respectively, and then returns s′={A′,B′,C ′} as the resulting solution.
Example 3 In the greedy mode, we firstly calculate the values of scoreA and scoreB for each
vertex in set C. Figure 2 shows the comparison of a solution before and after the movement.
From Fig. 2, we can obtain scoreA(1)= 0, scoreB(1)= 0, scoreA(2)= 1, scoreB(2)= 0,
scoreA(5)= 0, and scoreB(5)= 0. Since the vertex 2 is with the greatest scoreA, and also the
greatest among all the value of scoreA and scoreB, our heuristic chooses vertex 2 and the set
A, and then performs the operation move(2,C,A).

Remark: We note that the solution s′ returned by the heuristic Modify_Solution might
be infeasible. If this is the case, the algorithm would first rollback the resulting solution
s′={A′,B′,C ′} to s={A,B,C}, and then randomly moves a vertex from set A to set C (or
moves a vertex from set B to set C).

EXPERIMENTS
In order to show the effectiveness of our HSMVS algorithm, we compare HSMVS against
an effective breakout local search algorithm BLS and its optimized version BLS-RLE and
an improved K-OPT local search algorithm New_K-OPT on a broad range of real-world
massive graphs. In this section, we first introduce the benchmarks, the competitors and
the experimental setup of our experiments. Then we report the comparative results.

The benchmarks
We evaluate HSMVS on all 139 graphs collected in a public and standard graph I
benchmark (https://lcs.ios.ac.cn/~caisw/graphs.html), which is originally collected from
Network Repository (Rossi & Ahmed, 2015a; Rossi & Ahmed, 2015b) and consists of a
broad range of real-world massive simple undirected graphs. Most of these graphs are
encoded from real-world applications. In practice, these real-world massive graphs have
been utilized in testing practical algorithms for well-known NP-hard combinatorial
optimization problems in graph theory, including minimum vertex cover (Luo et al., 2019;
Li et al., 2020), minimum dominating set (Chen et al., 2023), maximum clique (Rossi et al.,
2014) and graph coloring (Rossi & Ahmed, 2014).

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 15/28

https://peerj.com
https://lcs.ios.ac.cn/~caisw/graphs.html
http://dx.doi.org/10.7717/peerj-cs.2013

Figure 2 Example figures to demonstrate movement.We note that the vertices in red color, yellow color
and blue color are the vertices in subsets A, B and C , respectively.

Full-size DOI: 10.7717/peerjcs.2013/fig-2

The graphs tested in our experiments contain a variety of real-world networks, and can
be classified into 12 categories, including biological networks, collaboration networks,
Facebook networks, infrastructure network, interaction networks, recommendation
networks, Retweet networks, scientific computing, social networks, technological networks,
temporal reachability networks and web graphs. For these graphs evaluated in our
experiments, all the vertices are given unit weights, and b= b 1.05|V |2 c recalling that b
can be regarded as the limitation size and firstly introduced in Section ‘Preliminaries’.
These benchmarking settings are suggested by the literature (Benlic & Hao, 2013).

The competitors
Our HSMVS algorithm is compared against an effective breakout local search solver
BLS (Benlic & Hao, 2013), an improved K-OPT local search solver New_K-OPT (Zhang
& Shao, 2015), and an optimized version of BLS, called BLS-RLE (Benlic, Epitropakis &
Burke, 2017).

• The BLS solver (Benlic & Hao, 2013) is the first local search solver for solving the
MVS problem, and it achieves effectiveness in solving MVS instances. According to the
experiments in the literature (Benlic & Hao, 2013), BLS performs significantly better
than a number of high-performance exact solvers (de Souza & Balas, 2005; Biha &
Meurs, 2011). As reported in the literature (Hager & Hungerford, 2015), BLS exhibits its
effectiveness in solving MVS on random graphs.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 16/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2013/fig-2
http://dx.doi.org/10.7717/peerj-cs.2013

1For each solver run, the corresponding
solver would report a final solution. For
a solver on a graph, since each solver
performs 10 runs, then there would be
10 reported solutions in total, and the best
solution is the solution with the smallest
cost among all 10 solutions. The best
solution quality among all 10 runs is the
cost of the best solution.

• TheNew_K-OPT solver (Zhang & Shao, 2015) is a high-performance, improved K-OPT
local search solver for solving the MVS problem. The experimental results reported in
the literature (Zhang & Shao, 2015) show that New_K-OPT exhibits relatively better
performance compared to several methods, such as variable neighborhood search,
simulated annealing and Relax-and-Cut (de Souza & Cavalcante, 2011), on a number of
graphs.
• The BLS-RLE solver (Benlic, Epitropakis & Burke, 2017) is an enhancement of BLS. The
BLS-RLE solver introduces a new parameter control mechanism, which is designed
on the basis of the reinforcement learning theory. As claimed by its authors, this new
parameter control mechanism could help the BLS-RLE solver better escape from the
local optimum situation. According to the experimental results demonstrated in the
literature (Benlic, Epitropakis & Burke, 2017), BLS-RLE performs much better than BLS
on various types of graphs.

Experimental setup
Our HSMVS algorithm is implemented in the programming language C++. In our
experiments, for HSMVS, the parameter p is set to 0.5, as the initialization should be
uniformly random; the parameter wp is set to 0.05 and the parameter t is set to 20
according to preliminary experiments. The local search competitor BLS is an open-source
solver and can be downloaded online (http://www.info.univ-angers.fr/pub/hao/BLSVSP/
Code/BLS_VSP.cpp). The BLS solver is implemented in the programming language C++.
For BLS, we adopt the parameter settings which are reported in the literature (Benlic & Hao,
2013). The BLS solver is implemented in the programming language C++. For BLS-RLE,
its implementation is publicly available online. (http://www.epitropakis.co.uk/BLS-RLE/)
The BLS-RLE is implemented in the programming language C++, and it is evaluated using
the configuration settings that are utilized in the literature (Benlic, Epitropakis & Burke,
2017). The source codes of the improved K-OPT local search competitor New_K-OPT is
kindly provided by its author. TheNew_K-OPT solver is implemented in the programming
language C++. For New_K-OPT, we adopt the algorithmic settings which are reported in
the literature (Zhang & Shao, 2015). In order to make the empirical comparison fair, all
these three algorithms HSMVS, BLS, BLS-RLE and New_K-OPT are statically complied by
the compiler g++ with the option ‘-O3’.

All the experiments are carried out on a number of workstations equipped with Intel
Xeon E7-8830 2.13 GHz CPU, 24MB L3 cache and 1.0TB RAM under the operating system
CentOS 7.0.1406. In our experiments, each solver performs 10 runs on each graph. The
cutoff time of each run performed by each solver is set to 1,000 s.

For each graph, we report the best solution quality found by each solver among all 10
runs, denoted by ‘best’1, the average solution quality over all 10 runs, denoted by ‘avg.’,
and the average run time of reporting the best solution in each run, denoted by ‘time’. If
a solver fails to report solutions on a graph within the cutoff time among all 10 runs, we
mark ‘N/A’ for ‘best’, ‘avg.’ and ‘time’ for the related solver on the related graph.

Furthermore, for each solver on each graph class, we report the number of graphs
where the solver finds the best solution quality among all competing solvers in the related

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 17/28

https://peerj.com
http://www.info.univ-angers.fr/pub/hao/BLSVSP/Code/BLS_VSP.cpp
http://www.info.univ-angers.fr/pub/hao/BLSVSP/Code/BLS_VSP.cpp
http://www.epitropakis.co.uk/BLS-RLE/
http://dx.doi.org/10.7717/peerj-cs.2013

experiment, denoted by ‘#best’, the number of graphs where the solver finds the best
average solution quality among all competing solvers in the related experiment, denoted by
‘#avg.’, and the average time of reporting the best solution in each run, denoted by ‘time’.
If a solver fails to report solutions on all graphs in a graph class, we mark ‘N/A’ for ‘time’
for the related solver on the related graph class. The number of graphs in each graph class
is indicated in the column ‘#graph’.

This form of demonstrating experimental results is inspired by the rules of well-
known SAT competitions (http://www.satcompetition.org/) and MAX-SAT evaluations
(http://www.maxsat.udl.cat/).

Experimental results
In this subsection, we first present the experimental results, and then conduct some
discussions about the results.

The comparative results of HSMVS and its competitors BLS, BLS-RLE, New_K-OPT
on all real-world massive graphs are reported in Tables 1–7, where Table 1 presents the
comparative results on the graph classes of biological networks and collaboration networks,
Table 2 presents the comparative results on the graph classes of Facebook networks and
infrastructure networks, Table 3 presents the comparative results on the graph classes
of interaction networks, recommendation networks, Retweet networks and scientific
computing, Table 4 presents the comparative results on the graph classes of social networks
and technological networks, Table 5 presents the comparative results on the graph class of
temporal reachability networks, Table 6 presents the comparative results on the graph class
of web graphs, and Table 7 summarizes the comparative results on all massive real-world
graphs.

First we focus on the comparison between HSMVS and BLS. According to the results
reported in Tables 1–7, among all 12 graph classes, it is apparent that ourHSMVS algorithm
performs better than BLS on 9 graph classes (i.e., biological networks, collaboration
networks, facebook networks, infrastructure networks, retweet networks, scientific
computing, social networks, technological networks and web graphs). On the overall
performance, according to Table 7, among all 139 real-world massive graphs, our HSMVS
algorithm finds the best solution quality for 96 of them, while BLS does that for only 55 of
them; HSMVS finds the best average solution quality for 89 of them, while this figure for
BLS is only 52.

Then we concentrate on the evaluation between HSMVS and New_K-OPT. According
to the results reported in Tables 1–7, it is clear that HSMVS significantly outperforms
New_K-OPT on all 12 graph classes. On the overall performance, seen from Table 7,
HSMVS gives the best solution quality for 96 of them, while this figure for New_K-OPT is
only 3; HSMVS finds the best average solution quality for 89 of them, while this figure for
New_K-OPT is only 2.

Finally, we analyze the comparison between HSMVS and BLS-RLE. According to the
results reported in Tables 1–7, our HSMVS algorithm performs better than BLS-RLE on
7 graph classes (i.e., biological networks, collaboration networks, infrastructure networks,
retweet networks, social networks, technological networks, and web graphs). On the overall

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 18/28

https://peerj.com
http://www.satcompetition.org/
http://www.maxsat.udl.cat/
http://dx.doi.org/10.7717/peerj-cs.2013

performance, according to Table 7, among all 139 real-world massive graphs, our HSMVS
algorithm finds the best solution quality for 96 of them, while BLS-RLE does that for only
83 of them; HSMVS finds the best average solution quality for 89 of them, while this figure
for BLS is only 78.

Remark: The experimental results on a broad range of real-world massive graphs in
Tables 1–7 present thatHSMVS generally performs much better than the effective breakout
local search competitor BLS, the improved K-OPT local search competitor New_K-OPT,
and the enhanced version of BLS named BLS-RLE, on a large number of real-world massive
graphs, indicating thatHSMVS shows its superiority on solving real-world massive graphs.

DISCUSSIONS
In this section, we conduct empirical evaluations to further discuss the effectiveness of
HSMVS. In particular, we first perform ablation studies to demonstrate the effectiveness of
algorithmic components (i.e., the approximate best selection component and the random
walk component) underlying HSMVS. Then, we analyze the performance of HSMVS on
different limitation size. Finally, we discuss the advantage of HSMVS when compared to
its competitors.

Effectiveness of algorithmic components underlying HSMVS
According to the description of the HSMVS algorithm, it is obvious that the approximate
best selection component in the greedy mode and the random walk component in the
randommode are the key parts. In order to show the effectiveness of these two components,
we develop three alternative versions of HSMVS, which are all modified from HSMVS and
are described as follows.

• HSMVS_alt1: This version uses the strict best selection component instead of the
approximate best selection component. HSMVS_alt1 differs from HSMVS in lines 7–16
in Algorithm 3: in lines 7–11, HSMVS_alt1 greedily selects the variable with the greatest
scoreA from set C , denoted vA; in lines 12–16, HSMVS_alt2 greedily selects the variable
with the greatest scoreB from set C , denoted as vB.
• HSMVS_alt2: This version uses the random selection component instead of the
approximate best selection component. HSMVS_alt2 also differs from HSMVS in
lines 7–16 in Algorithm 3: in lines 7–11, HSMVS_alt2 randomly selects a variable from
set C , denoted as vA; in lines 12–16,HSMVS_alt2 randomly selects a variable from set C ,
denoted as vB. In another word, HSMVS_alt2 could be considered as a specific version
of HSMVS with parameter t = 1.
• HSMVS_alt3: This version does not utilize the random walk component, i.e., working
without the random mode (deleting lines 1–5 in Algorithm 3). In another word,
HSMVS_alt3 could be considered as a specific version of HSMVS with parameter
wp= 0.

Then, we conduct extensive empirical evaluations to compare HSMVS with its three
alternative versions on the all 139 real-world massive graphs. The experimental setup used
in this comparison is the same one used in ‘Experiments’. To make the evaluation fair, all

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 19/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 8 Overall results ofHSMVS and its three alternative versions on all real-world massive graphs.

Graph Class #graph HSMVS HSMVS_alt1 HSMVS_alt1 HSMVS_alt3

#best (#avg.) time #best (#avg.) time #best (#avg.) time #best (#avg.) time

Total 139 85 (83) 468.2 64 (56) 530.3 42 (35) 364.7 71 (67) 478.0

these alternative versions are also implemented in C++, and are statically compiled by g++
with the option ‘-O3’. Furthermore, the parameters settings used in these three alternative
versions are the same as in HSMVS.

Table 8 reports the related empirical results of comparing the HSMVS algorithm with
all its alternative versions (i.e., HSMVS_alt1, HSMVS_alt2 and HSMVS_alt3) on all 139
real-world massive graphs. As can be seen from Table 8, it is clear thatHSMVS stands out as
the general best solver in this comparison. Particularly,HSMVS performs much better than
all its alternative versions in terms of both the best solution quality and the average solution
quality. Among 139 total real-world massive graphs,HSMVS finds the best solution quality
for 85 of them, while this figure is only 64, 42 and 71 for HSMVS_alt1, HSMVS_alt2 and
HSMVS_alt3, respectively; HSMVS finds the best average solution quality for 83 of them,
while this figure is only 56, 35 and 67 for HSMVS_alt1, HSMVS_alt2 and HSMVS_alt3,
respectively.

Remark: The empirical results presented in Table 8 show that HSMVS generally
performs better than all its alternative versions and thus is the general best algorithm on
the real-world massive graphs, which confirms the effectiveness of the approximate best
component and the random walk component.

Experiment results on different limitation size
In this subsection, we conduct empirical evaluations to assess the performance of HSMVS
on different limitation size. In particular, compared to the setting of limitation size
(b=b 1.05|V |2 c) that is adopted in Section ‘Experiments’, here we set the limitation size to
b= b0.6|V |c. Also, in this subsection we conduct empirical evaluations on 12 selected
graphs, where we randomly select a graph from each graph class. Table 9 reports the
comparative results ofHSMVS and its competitors on 12 selected graphs with b=b0.6|V |c,
and Table 10 summarizes the overall results on those 12 selected graphs with b=b0.6|V |c.
As can be observed from Tables 9 and 10, our HSMVS algorithms still performs generally
better than its competitors (i.e., BLS, BLS-RLE and New_K-OPT). According to Table 10,
HSMVS gives the best solution quality for 9 of the overall selected graphs, while this figure
for BLS, New_K-OPT and BLS-RLE is 0, 0 and 3, respectively. Also, HSMVS finds the best
average solution quality for 8 of them, while this figure for BLS,New_K-OPT and BLS-RLE
is 0, 0 and 4, respectively. In summary,HSMVS achieves generally better performance than
its competitors on a different limitation size (i.e., b=b0.6|V |c).

Discussion on the advantage of HSMVS
As presented in Tables 1–7, there is no single best algorithm across all classes of graphs.
Hence, in this subsection, we aim to discuss the advantage of HSMVS when compared to
its competitors. Particularly, we analyze the experimental results and the features of graphs,

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 20/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 9 Results on 12 selected graphs with b= b0.6|V |c.

Graph HSMVS BLS New_K-OPT BLS-RLE

best (avg.) time best (avg.) time best (avg.) time best (avg.) time

Graph Class: Biological Networks
bio-dmela 715 (719.8) 549.5 794 (822.4) 881.1 N/A (N/A) N/A 728 (737.9) 410.2

Graph Class: Collaboration Networks
ca-CondMat 1,017 (1,019.9) 271.6 2,090 (2,151.7) 780.8 N/A (N/A) N/A 1,491 (1,539.5) 476.9

Graph Class: Facebook Networks
socfb-OR 8,396 (8,420.7) 507.9 7,995 (8,621.1) 625.6 N/A (N/A) N/A 7,340 (7,981.0) 857.2

Graph Class: Infrastructure Networks
inf-power 9 (12.1) 396.9 80 (239.3) 597.3 N/A (N/A) N/A 10 (10.0) 108.2

Graph Class: Interaction Networks
ia-enron-large 493 (497.2) 582.2 1,531 (1,670.1) 597.6 N/A (N/A) N/A 586 (600.2) 628.6

Graph Class: Recommendation Networks
rec-amazon 820 (859.8) 988.5 4,708 (4,891.1) 244.1 N/A (N/A) N/A 436 (437.7) 884.0

Graph Class: Retweet Networks
rt-retweet-crawl 22,100 (22,169.8) 956.1 47,005 (49,623.6) 192.2 N/A (N/A) N/A N/A (N/A) N/A

Graph Class: Scientific Computing
sc-ldoor 8,401 (10,831.2) 995.6 66,452 (73,480.6) 999.2 N/A (N/A) N/A 80,861 (194,289.5) 910.5

Graph Class: Social Networks
soc-brightkite 2,402 (2,648.1) 766.0 3,964 (4,773.8) 369.1 N/A (N/A) N/A 2,381 (2,484.7) 787.5

Graph Class: Technological Networks
tech-as-caida2007 129 (156.2) 432.8 190 (282.5) 769.5 N/A (N/A) N/A 193 (198) 551.2

Graph Class: Temporal Reachability Networks
scc_enron-only 54 (55.5) <0.1 55 (56.6) <0.1 N/A (N/A) N/A 54 (55.6) 38.3

Graph Class: Web Graphs
web-BerkStan 36 (38.2) 323.0 55 (302.9) 316.3 N/A (N/A) N/A 66 (71.7) 613.9

Table 10 Overall results on 12 selected graphs with b= b0.6|V |c.

Graph Class #graph HSMVS BLS New_K-OPT BLS-RLE

#best (#avg.) time #best (#avg.) time #best (#avg.) time #best (#avg.) time

Total 12 9 (8) 468.5 0 (0) 531.1 0 (0) N/A 3 (4) 522.2

for identifying the characteristics of graphs whichHSMVS exhibits better effectiveness than
its competitors. Figure 3 illustrates the relationship between the practical performance
of competing algorithms (including HSMVS and its competitors) and the size of graphs
(i.e., the number of graphs’ vertices). In Fig. 3, the X-axis depicts ln(|V |), where |V |
represents the number of vertices, while the Y -axis presents ln(|avg |+1), where |avg |
denotes the corresponding algorithm’s obtained average solution quality over all 10 runs.
It can be observed that our HSMVS algorithm shows competitive performance on graphs
with relatively large number of vertices. As discussed in ‘The HSMVS Algorithm’, our
HSMVS algorithm strikes a good balance between intensification and diversification. In
this way, when handling graphs with relatively large numbers of vertices, compared to its

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 21/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013

Table 10. Overall results on 12 selected graphs with b = +0.6|V |,.

Graph Class #graph
HSMVS BLS New K-OPT BLS-RLE

#best
(#avg.) time

#best
(#avg.) time

#best
(#avg.) time

#best
(#avg.) time

Total 12 9 (7) 446.2 0 (0) 531.1 0 (0) N/A 3 (5) 522.2

Figure 3. Practical performance of competing algorithms (including HSMVS and its competitors) on
graphs with different sizes.

Table 8 reports the related empirical results of comparing the HSMVS algorithm with all its alternative438

versions (i.e., HSMVS alt1, HSMVS alt2 and HSMVS alt3) on all 139 real-world massive graphs. As439

can be seen from Table 8, it is clear that HSMVS stands out as the general best solver in this comparison.440

Particularly, HSMVS performs much better than all its alternative versions in terms of both the best441

solution quality and the average solution quality. Among 139 total real-world massive graphs, HSMVS442

finds the best solution quality for 85 of them, while this figure is only 64, 42 and 71 for HSMVS alt1,443

HSMVS alt2 and HSMVS alt3, respectively; HSMVS finds the best average solution quality for 83 of them,444

while this figure is only 55, 35 and 67 for HSMVS alt1, HSMVS alt2 and HSMVS alt3, respectively.445

Remark: The empirical results presented in Table 8 show that HSMVS generally performs better than446

all its alternative versions and thus is the general best algorithm on the real-world massive graphs, which447

confirms the effectiveness of the approximate best component and the random walk component.448

7.2 Experiment Results on Different Limitation Size449

In this subsection, we conduct empirical evaluations to assess the performance of HSMVS on different450

limitation size. In particular, compared to the setting of limitation size (b = + 1.05|V |
2 ,) that is adopted in451

Section 6, here we set the limitation size to b = +0.6|V |,. Also, in this subsection we conduct empirical452

evaluations on 12 selected graphs, where we randomly select a graph from each graph class. Table 9453

reports the comparative results of HSMVS and its competitors on 12 selected graphs with b = +0.6|V |,,454

and Table 10 summarizes the overall results on those 12 selected graphs with b = +0.6|V |,. As can be455

observed from Tables 9 and 10, our HSMVS algorithms still performs generally better than its competitors456

(i.e., BLS, BLS-RLE and New K-OPT). According to Table 10, HSMVS gives the best solution quality457

for 9 of the overall selected graphs, while this figure for BLS, New K-OPT and BLS-RLE is 0, 0 and 3,458

respectively. Also, HSMVS finds the best average solution quality for 7 of them, while this figure for BLS,459

New K-OPT and BLS-RLE is 0, 0 and 5, respectively. In summary, HSMVS achieves generally better460

performance than its competitors on a different limitation size (i.e., b = +0.6|V |,).461

15/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:85359:1:1:NEW 21 Feb 2024)

Manuscript to be reviewedComputer Science

Figure 3 Practical performance of competing algorithms (includingHSMVS and its competitors) on
graphs with different sizes.

Full-size DOI: 10.7717/peerjcs.2013/fig-3

competitors, our HSMVS algorithm is able to explore a broader solution space in a shorter
time, resulting in an advantage on larger-scale graphs.

CONCLUSIONS AND FUTURE WORK
In this work, we present an effective MVS heuristic search algorithm called HSMVS,
which introduces an efficient construction procedure and an effective vertex-selection
heuristic. To demonstrate the effectiveness of ourHSMVS algorithm, we conduct extensive
experiments to compare HSMVS against BLS, New_K-OPT and BLS-RLE on a broad
range of real-world massive graphs, which can be categorized into 12 graph classes. The
experimental results demonstrate that our HSMVS algorithm significantly outperforms
BLS, New_K-OPT and BLS-RLE on a large number of real-world massive graphs with
regards to both the best solution quality and the average solution quality, indicating that
the superiority of HSMVS on solving real-world massive graphs. Furthermore, we conduct
more empirical evaluations to confirm the effectiveness of the approximate best selection
component and the random walk component. The related empirical results show that
HSMVS generally performs much better than its all alternative versions on most real-world
massive graphs, and thus indicates that the approximate best selection component and the
random walk component make contributions to HSMVS.

We note that HSMVS is simple yet efficient. In this sense, HSMVS is able to serve as
a good algorithmic framework, and more improved algorithms could be proposed and
implemented on the top of it. For future work, to further improve the computational
performance of MVS heuristic search algorithms, we would like to combine HSMVS with
other algorithmic strategies proposed to handle other combinatorial problems, such as
configuration checking (Cai & Su, 2013), weighting techniques (Cai, Lin & Su, 2015) and
probability distribution (Balint & Fröhlich, 2010). We would also like to utilize powerful

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 22/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2013/fig-3
http://dx.doi.org/10.7717/peerj-cs.2013

automatic configuration tools (Hutter et al., 2009; Hutter, Hoos & Leyton-Brown, 2011) to
improve the performance of HSMVS.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Key Research and Development Program of
China under Grant 2023YFB3307503, by the National Natural Science Foundation of
China under Grant 62202025, by CCF-Huawei Populus Grove Fund under Grant CCF-
HuaweiSY202311, and by the Frontier Cross Fund Project of Beihang University. There
was no additional external funding received for this study. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Key Research and Development Program of China: 2023YFB3307503.
The National Natural Science Foundation of China: 62202025.
CCF-Huawei Populus Grove Fund: CCF-HuaweiSY202311.
The Frontier Cross Fund Project of Beihang University.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Chuan Luo conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Shanyu Guo performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code of HSMVS is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2013#supplemental-information.

REFERENCES
Althoby HY, BihaMD, Sesboüé A. 2020. Exact and heuristic methods for the

vertex separator problem. Computers & Industrial Engineering 139:106135
DOI 10.1016/j.cie.2019.106135.

Balas E, de Souza CC. 2005. The vertex separator problem: a polyhedral investigation.
Mathematical Programming 103(3):583–608 DOI 10.1007/s10107-005-0574-7.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 23/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2013#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2013#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2013#supplemental-information
http://dx.doi.org/10.1016/j.cie.2019.106135
http://dx.doi.org/10.1007/s10107-005-0574-7
http://dx.doi.org/10.7717/peerj-cs.2013

Balint A, Fröhlich A. 2010. Improving stochastic local search for SAT with a new
probability distribution. In: Proceedings of SAT 2010. Cham: Springer-Verlag, Berlin,
Germany, 10–15.

Barabási A-L, Albert R. 1999. Emergence of scaling in random networks. Science
286(5439):509–512 DOI 10.1126/science.286.5439.509.

Benlic U, Epitropakis MG, Burke EK. 2017. A hybrid breakout local search and rein-
forcement learning approach to the vertex separator problem. European Journal of
Operational Research 261(3):803–818 DOI 10.1016/j.ejor.2017.01.023.

Benlic U, Hao J. 2013. Breakout local search for the vertex separator problem. In:
Proceedings of IJCAI 2013. Beijing, China: The AAAI Press/International joint
conferences on artificial intelligence, 461–467.

BihaMD,Meurs M. 2011. An exact algorithm for solving the vertex separator problem.
Journal of Global Optimization 49(3):425–434 DOI 10.1007/s10898-010-9568-y.

Bui TN, Jones C. 1992. Finding good approximate vertex and edge partitions is NP-Hard.
Information Processing Letters 42(3):153–159 DOI 10.1016/0020-0190(92)90140-Q.

Cai S. 2015. Balance between complexity and quality: local search for minimum vertex
cover in massive graphs. In: Proceedings of IJCAI 2015. Buenos Aires, Argentina, The
AAAI Press/International joint conferences on artificial intelligence, 747–753.

Cai S, Lin J, Su K. 2015. Two weighting local search for minimum vertex cover. In:
Proceedings of AAAI 2015. Austin, Texas, USA: The AAAI Press, 1107–1113.

Cai S, Luo C, Lin J, Su K. 2016. New local search methods for partial MaxSAT. Artificial
Intelligence 240:1–18 DOI 10.1016/j.artint.2016.07.006.

Cai S, Su K. 2013. Local search for Boolean Satisfiability with configuration checking and
subscore. Artificial Intelligence 204:75–98 DOI 10.1016/j.artint.2013.09.001.

Chen J, Cai S, Wang Y, XuW, Ji J, YinM. 2023. Improved local search for the minimum
weight dominating set problem in massive graphs by using a deep optimization
mechanism. Artificial Intelligence 314:103819 DOI 10.1016/j.artint.2022.103819.

Chu Y, Liu B, Cai S, Luo C, You H. 2020. An efficient local search algorithm for solving
maximum edge weight clique problem in large graphs. Journal of Combinatorial
Optimization 39(4):933–954 DOI 10.1007/s10878-020-00529-9.

Chu Y, Luo C, Hoos HH, You H. 2023. Improving the performance of stochastic local
search for maximum vertex weight clique problem using programming by optimiza-
tion. Expert Systems with Applications 213:118913 DOI 10.1016/j.eswa.2022.118913.

Dagdeviren O, Akram VK, Farzan A. 2019. A distributed evolutionary algorithm for
detecting minimum vertex cuts for wireless ad hoc and sensor networks. Journal of
Network and Computer Applications 127:70–81 DOI 10.1016/j.jnca.2018.10.009.

de Souza CC, Balas E. 2005. The vertex separator problem: algorithms and computa-
tions.Mathematical Programming 103(3):609–631 DOI 10.1007/s10107-005-0573-8.

de Souza CC, Cavalcante VF. 2011. Exact algorithms for the vertex separator problem in
graphs. Networks 57(3):212–230 DOI 10.1002/net.20420.

Eubank S, Kumar VSA, MaratheMV, Srinivasan A,Wang N. 2004. Structural and
algorithmic aspects of massive social networks. In: Proceedings of SODA 2004. Society
for Industrial and Applied Mathematics, 718–727.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 24/28

https://peerj.com
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/j.ejor.2017.01.023
http://dx.doi.org/10.1007/s10898-010-9568-y
http://dx.doi.org/10.1016/0020-0190(92)90140-Q
http://dx.doi.org/10.1016/j.artint.2016.07.006
http://dx.doi.org/10.1016/j.artint.2013.09.001
http://dx.doi.org/10.1016/j.artint.2022.103819
http://dx.doi.org/10.1007/s10878-020-00529-9
http://dx.doi.org/10.1016/j.eswa.2022.118913
http://dx.doi.org/10.1016/j.jnca.2018.10.009
http://dx.doi.org/10.1007/s10107-005-0573-8
http://dx.doi.org/10.1002/net.20420
http://dx.doi.org/10.7717/peerj-cs.2013

Evrendilek C. 2008. Vertex separators for partitioning a graph. Sensors 8(2):635–657
DOI 10.3390/s8020635.

Feige U, Hajiaghayi M, Lee JR. 2008. Improved approximation algorithms for min-
imum weight vertex separators. SIAM Journal on Computing 38(2):629–657
DOI 10.1137/05064299X.

Feige U, MahdianM. 2006. Finding small balanced separators. In: Proceedings of STOC
2006. 375–384.

Fukuyama J. 2006. NP-completeness of the planar separator problems. Journal of Graph
Algorithms and Applications 10(2):317–328 DOI 10.7155/jgaa.00130.

Furini F, Ljubic I, Malaguti E, Paronuzzi P. 2022. Casting light on the hidden bilevel
combinatorial structure of the capacitated vertex separator problem. Operations
Research 70(4):2399–2420 DOI 10.1287/opre.2021.2110.

Gomes G, Legrand-Duchesne C, Mahmoud R, Mouawad AE, Okamoto Y, Santos
VFd, van der Zanden TC. 2023.Minimum separator reconfiguration. ArXiv
arXiv:2307.07782.

HagerWW, Hungerford JT. 2015. Continuous quadratic programming formulations
of optimization problems on graphs. European Journal of Operational Research
240(2):328–337 DOI 10.1016/j.ejor.2014.05.042.

Hu S, Liu H,Wang Y, Li R, YinM, Yang N. 2021a. Towards efficient local search for
the minimum total dominating set problem. Applied Intelligence 51(12):8753–8767
DOI 10.1007/s10489-021-02305-6.

Hu S,Wu X, Liu H, Li R, YinM. 2021b. A novel two-model local search algorithm with
a self-adaptive parameter for clique partitioning problem. Neural Computing and
Applications 33(10):4929–4944 DOI 10.1007/s00521-020-05289-5.

Hutter F, Hoos HH, Leyton-Brown K. 2011. Sequential model-based optimization for
general algorithm configuration. In: Proceedings of LION 2011. 507–523.

Hutter F, Hoos HH, Leyton-Brown K, Stützle T. 2009. ParamILS: an automatic algo-
rithm configuration framework. Journal of Artificial Intelligence Research 36:267–306
DOI 10.1613/jair.2861.

Kayaaslan E, Pinar A, Çatalyürek Ü, Aykanat C. 2012. Partitioning hypergraphs in
scientific computing applications through vertex separators on graphs. SIAM Journal
on Scientific Computing 34(2):A970–A992 DOI 10.1137/100810022.

Leighton FT, Rao S. 1999.Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM 46(6):787–832
DOI 10.1145/331524.331526.

Li CM, HuangW. 2005. Diversification and determinism in local search for satisfiability.
In: Proceedings of SAT 2005. Cham: Springer-Verlag, 158–172.

Li R, Hu S, Cai S, Gao J, Wang Y, YinM. 2020. NuMWVC: a novel local search for
minimum weighted vertex cover problem. Journal of the Operational Research Society
71(9):1498–1509 DOI 10.1080/01605682.2019.1621218.

Li R, Hu S, Gao J, Zhou Y,Wang Y, YinM. 2017a. GRASP for connected domi-
nating set problems. Neural Computing and Applications 28(S-1):1059–1067
DOI 10.1007/s00521-016-2429-y.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 25/28

https://peerj.com
http://dx.doi.org/10.3390/s8020635
http://dx.doi.org/10.1137/05064299X
http://dx.doi.org/10.7155/jgaa.00130
http://dx.doi.org/10.1287/opre.2021.2110
http://arXiv.org/abs/2307.07782
http://dx.doi.org/10.1016/j.ejor.2014.05.042
http://dx.doi.org/10.1007/s10489-021-02305-6
http://dx.doi.org/10.1007/s00521-020-05289-5
http://dx.doi.org/10.1613/jair.2861
http://dx.doi.org/10.1137/100810022
http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1080/01605682.2019.1621218
http://dx.doi.org/10.1007/s00521-016-2429-y
http://dx.doi.org/10.7717/peerj-cs.2013

Li R, Hu S,Wang Y, YinM. 2017b. A local search algorithm with tabu strategy and
perturbation mechanism for generalized vertex cover problem. Neural Computing
and Applications 28(7):1775–1785 DOI 10.1007/s00521-015-2172-9.

Li CM, Li Y. 2012. Satisfying versus falsifying in local search for satisfiability. In: Proceed-
ings of SAT 2012. Cham: Springer-Verlag, 477–478.

Li H, Li R, YinM. 2019. Saving constraint checks in maintaining coarse-grained
generalized arc consistency. Neural Computing and Applications 31(S-1):499–508
DOI 10.1007/s00521-017-3015-7.

Li R,Wang Y, Liu H, Li R, Hu S, YinM. 2022. A restart local search algorithm with Tabu
method for the minimum weighted connected dominating set problem. Journal of
the Operational Research Society 73(9):2090–2103
DOI 10.1080/01605682.2021.1952117.

Li R,Wu X, Liu H,Wu J, YinM. 2018. An efficient local search for the maximum edge
weighted clique problem. IEEE Access 6:10743–10753
DOI 10.1109/ACCESS.2018.2799953.

Luo C, Cai S, Su K, HuangW. 2017. CCEHC: an efficient local search algorithm
for weighted partial maximum satisfiability. Artificial Intelligence 243:26–44
DOI 10.1016/j.artint.2016.11.001.

Luo C, Cai S, WuW, Jie Z, Su K. 2015. CCLS: an efficient local search algorithm for
weighted maximum satisfiability. IEEE Transactions on Computers 64(7):1830–1843
DOI 10.1109/TC.2014.2346196.

Luo C, Hoos HH, Cai S. 2020. PbO-CCSAT: boosting local search for satisfiability using
programming by optimisation. In: Proceedings of PPSN 2020. 373–389.

Luo C, Hoos HH, Cai S, Lin Q, Zhang H, Zhang D. 2019. Local search with efficient
automatic configuration for minimum vertex cover. In: Proceedings of IJCAI 2019.
1297–1304.

Luo C, Lin J, Cai S, Chen X, He B, Qiao B, Zhao P, Lin Q, Zhang H,WuW, Rajmohan S,
Zhang D. 2021a. AutoCCAG: an automated approach to constrained covering array
generation. In: Proceedings of ICSE 2021. 201–212.

Luo C, Qiao B, Chen X, Zhao P, Yao R, Zhang H,WuW, Zhou A, Lin Q. 2020. Intelli-
gent virtual machine provisioning in cloud computing. In: Proceedings of IJCAI 2020.
1495–1502.

Luo C, Qiao B, XingW, Chen X, Zhao P, Du C, Yao R, Zhang H,WuW, Cai S, He B,
Rajmohan S, Lin Q. 2021b. Correlation-aware heuristic search for intelligent virtual
machine provisioning in cloud systems. In: Proceedings of AAAI 2021. 12363–12372.

Luo C, Su K, Cai S. 2014.More efficient two-mode stochastic local search for random
3-satisfiability. Applied Intelligence 41(3):665–680 DOI 10.1007/s10489-014-0556-7.

Luo C, Sun B, Qiao B, Chen J, Zhang H, Lin J, Lin Q, Zhang D. 2021c. LS-sampling: an
effective local search based sampling approach for achieving high t-wise coverage. In:
Proceedings of ESEC/FSE 2021. 1081–1092.

Luo C, XingW, Cai S, Hu C. 2022. NuSC: an effective local search algorithm for solving
the set covering problem. In: IEEE transactions on cybernetics. Piscataway: IEEE.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 26/28

https://peerj.com
http://dx.doi.org/10.1007/s00521-015-2172-9
http://dx.doi.org/10.1007/s00521-017-3015-7
http://dx.doi.org/10.1080/01605682.2021.1952117
http://dx.doi.org/10.1109/ACCESS.2018.2799953
http://dx.doi.org/10.1016/j.artint.2016.11.001
http://dx.doi.org/10.1109/TC.2014.2346196
http://dx.doi.org/10.1007/s10489-014-0556-7
http://dx.doi.org/10.7717/peerj-cs.2013

Montes-Orozco E, Mora-Gutiérrez R-A, de-los Cobos-Silva S-G, Rincón-García EA,
Gutiérrez-AndradeMA, Lara-Velázquez P. 2022. Analysis and characterization of
the spread of COVID-19 in Mexico through complex networks and optimization
approaches. Complexity 2022:1–12.

Montes-Orozco E, Mora-Gutiérrez RA, Obregón-Quintana B, de-los Cobos-Silva SG,
Rincón-García EA, Lara-Velázquez P, Gutiérrez-AndradeMÁ. 2021.Methodology
to quantify robustness in networks: case study—Higher Education System in Mexico.
Computing 103:869–893 DOI 10.1007/s00607-021-00909-x.

Qiao B, Yang F, Luo C,Wang Y, Li J, Lin Q, Zhang H, Datta M, Zhou A, Moscibroda T,
Rajmohan S, Zhang D. 2021. Intelligent container reallocation at Microsoft 365. In:
Proceedings of ESEC/FSE 2021. 1438–1443.

Rossi R, Ahmed N. 2015a. The network data repository with interactive graph analytics
and visualization. In: Proceedings of AAAI 2015. Austin, Texas, USA: The AAAI Press,
4292–4293.

Rossi RA, Ahmed NK. 2014. Coloring large complex networks. Social Network Analysis
and Mining 4(1):228 DOI 10.1007/s13278-014-0228-y.

Rossi RA, Ahmed NK. 2015b. An interactive data repository with visual analytics.
SIGKDD Explorations 17(2):37–41.

Rossi RA, Gleich DF, Gebremedhin AH, PatwaryMMA. 2014. Fast maximum clique
algorithms for large graphs. In: Proceedings of WWW 2014 (Companion Volume).
New York: ACM, 365–366.

Serna NJE, Seck TuohMora JC, Marín JM, Hernandez-Romero N, Barragán-Vite I,
Corona-Armenta JR. 2021. A global-local neighborhood search algorithm and tabu
search for flexible job shop scheduling problem. PeerJ Computer Science 7:e574
DOI 10.7717/peerj-cs.574.

SunW, Hao J, Wu Z, LiW,WuQ. 2023. Dynamic thresholding search for the feedback
vertex set problem. PeerJ Computer Science 9:e1245 DOI 10.7717/peerj-cs.1245.

Wang Y, Cai S, Chen J, YinM. 2020a. SCCWalk: an efficient local search algorithm
and its improvements for maximum weight clique problem. Artificial Intelligence
280:103230 DOI 10.1016/j.artint.2019.103230.

Wang Y, Cai S, Pan S, Li X, YinM. 2020b. Reduction and local search for weighted graph
coloring problem. In: Proceedings of AAAI 2020. 2433–2441.

Wang Y, Chen J, Sun H, YinM. 2018a. A memetic algorithm for minimum independent
dominating set problem. Neural Computing and Applications 30(8):2519–2529
DOI 10.1007/s00521-016-2813-7.

Wang Y, Li C, Sun H, Chen J, YinM. 2019.MLQCC: an improved local search algorithm
for the set k-covering problem. International Transactions in Operational Research
26(3):856–887 DOI 10.1111/itor.12614.

Wang Y, Li R, Zhou Y, YinM. 2017. A path cost-based GRASP for minimum indepen-
dent dominating set problem. Neural Computing and Applications 28(S-1):143–151
DOI 10.1007/s00521-016-2324-6.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 27/28

https://peerj.com
http://dx.doi.org/10.1007/s00607-021-00909-x
http://dx.doi.org/10.1007/s13278-014-0228-y
http://dx.doi.org/10.7717/peerj-cs.574
http://dx.doi.org/10.7717/peerj-cs.1245
http://dx.doi.org/10.1016/j.artint.2019.103230
http://dx.doi.org/10.1007/s00521-016-2813-7
http://dx.doi.org/10.1111/itor.12614
http://dx.doi.org/10.1007/s00521-016-2324-6
http://dx.doi.org/10.7717/peerj-cs.2013

Wang Y, Ouyang D, YinM, Zhang L, Zhang Y. 2018b. A restart local search algorithm
for solving maximum set k-covering problem. Neural Computing and Applications
29(10):755–765 DOI 10.1007/s00521-016-2599-7.

Wang Y, Pan S, Al-Shihabi S, Zhou J, Yang N, YinM. 2021. An improved configuration
checking-based algorithm for the unicost set covering problem. European Journal of
Operational Research 294(2):476–491 DOI 10.1016/j.ejor.2021.02.015.

Wang Y, Pan S, Li C, YinM. 2020c. A local search algorithm with reinforcement
learning based repair procedure for minimum weight independent dominating set.
Information Sciences 512:533–548 DOI 10.1016/j.ins.2019.09.059.

Zhang Z, He H, Luo Z, Qin H, Guo S. 2015. An efficient forest-based tabu search
algorithm for the split-delivery vehicle routing problem. In: Proceedings of AAAI
2015. Austin, Texas, USA: The AAAI Press, 3432–3438.

Zhang Z, Shao Z. 2015. An improved K-OPT local search algorithm for the vertex sepa-
rator problem. Journal of Computational and Theoretical Nanoscience 12:4942–4958
DOI 10.1166/jctn.2015.4464.

Zhou J, Liu B, Gao J. 2023. A task scheduling algorithm with deadline constraints for
distributed clouds in smart cities. PeerJ Computer Science 9:e1346
DOI 10.7717/peerj-cs.1346.

Luo and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2013 28/28

https://peerj.com
http://dx.doi.org/10.1007/s00521-016-2599-7
http://dx.doi.org/10.1016/j.ejor.2021.02.015
http://dx.doi.org/10.1016/j.ins.2019.09.059
http://dx.doi.org/10.1166/jctn.2015.4464
http://dx.doi.org/10.7717/peerj-cs.1346
http://dx.doi.org/10.7717/peerj-cs.2013

