
Submitted 27 November 2023
Accepted 1 April 2024
Published 23 April 2024

Corresponding author
Yu-Chen Lin, yuchlin@fcu.edu.tw

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2012

Copyright
2024 Lin et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

GAT TransPruning: progressive channel
pruning strategy combining graph
attention network and transformer
Yu-Chen Lin, Chia-Hung Wang and Yu-Cheng Lin
Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan

ABSTRACT
Recently, large-scale artificial intelligence models with billions of parameters have
achieved good results in experiments, but their practical deployment on edge com-
puting platforms is often subject to many constraints because of their resource re-
quirements. These models require powerful computing platforms with a high memory
capacity to store and process the numerous parameters and activations, which makes it
challenging to deploy these large-scale models directly. Therefore, model compression
techniques are crucial role inmaking these models more practical and accessible. In this
article, a progressive channel pruning strategy combining graph attention network and
transformer, namely GAT TransPruning, is proposed, which uses the graph attention
networks (GAT) and the attention of transformermechanism to determine the channel-
to-channel relationship in large networks. This approach ensures that the network
maintains its critical functional connections and optimizes the trade-off betweenmodel
size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and
ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100
datasets for verification and quantitative analysis of the proposed progressive channel
pruning strategy. The experimental results reveal that the accuracy rate only drops by
6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the
lightweight model inference speed is 9.10 times faster than that of the original large
model. In comparison with the traditional channel pruning schemes, the proposed
progressive channel pruning strategy based on the GAT and Transformer cannot only
cut out the insignificant weight channels and effectively reduce the model size, but also
ensure that the performance drop rate of its lightweight model is still the smallest even
under high pruning ratio.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Embedded Computing, Neural Networks
Keywords Edge computing platform, Model compression, Graph attention network,
Transformer, Progressive channel pruning, Self-attention mechanism

INTRODUCTION
Deep learning and machine learning have made marked improvements in computer
vision tasks in recent years. However, as the accuracy of the neural network increases, the
computing performance and hardware required by the model also increase. Therefore,
researchers have to design specific hardware tomeet the computing needs of large networks,
which demands substantial time and financial resources. Hence, deep neural network

How to cite this article Lin Y-C, Wang C-H, Lin Y-C. 2024. GAT TransPruning: progressive channel pruning strategy combining graph
attention network and transformer. PeerJ Comput. Sci. 10:e2012 http://doi.org/10.7717/peerj-cs.2012

https://peerj.com/computer-science
mailto:yuchlin@fcu.edu.tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2012
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2012

compression has become a popular method for scaling the model size of the deep neural
network. Manymodel compressionmethods exist, such as quantization, pruning, low-rank
factorization, knowledge distillation, and reinforcement learning-based methods. Model
compression methods involve downsizing and simplifying deep learning models while
maintaining accuracy. These techniques are becoming increasingly important as the size
and the demand for deep learning models in various fields continues to grow, and as the
size of these models continues to increase.

However, the challenge with using large AI models today is that edge devices are
resource-constrained. As neural network architectures become more complex, the number
of parameters in the model can increase exponentially, which in turn requires more
computational resources to train and deploy the model. This can make deploying these
models in real-time applications difficult, where low latency and high throughput are
important requirements. Edge devices, such as smartphones, Internet of Things (IoT)
devices, and embedded systems, typically have limited memory and processing capabilities
compared to traditional computing devices, such as desktop computers or servers. These
limitations can pose significant challenges for deploying complex AI and machine learning
models on edge devices, as these models often require large amounts of memory and
processing power to execute. For example, running a large natural language processing
model on a smartphone or IoT device may be impractical because of memory and
processing limitations. Moreover, a bigger model means a higher inference time and
energy consumption during inference. There are several reasons for compressing a deep
learning model. For one, large models are computationally expensive and require more
resources to train and run. This can be a significant challenge for applications that require
real-time predictions or mobile or embedded devices with limited resources. Additionally,
smaller models are often easier to deploy and use and can be more resistant to adversarial
attacks.

For example, VGG-16 is a deep convolutional neural network architecture that has
16 layers, and it contains approximately 1.5 million nodes. The memory requirement of
VGG-16 depends on the implementation, but it typically occupies around 528M runtime
memory. The computational cost of VGG-16 is also high, with the classification of each
image requiring up to 15 billion floating-point operations (FLOPs), as VGG-16 uses
numerous convolutional filters and fully-connected layers, which require considerable
computations to execute. Despite its high computational cost and memory requirements,
VGG-16 has been widely used in a variety of computer vision applications, including
image classification, object detection, and segmentation. However, because of its high
computational cost andmemory requirements, deployingVGG-16on resource-constrained
devices, such as smartphones or embedded systems, can be challenging. To overcome the
challenges, researchers are exploring ways to optimize neural network architectures and
reduce their computational requirements while maintaining high accuracy. Techniques
such as model network pruning, quantization, and knowledge distillation can be used
to reduce the size and complexity of neural networks while ensuring their performance.
Additionally, hardware innovations, such as low-power neural network accelerators
and efficient memory architectures are helping to reduce the energy and computational

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 2/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

requirements of these models. These techniques can reduce the size and complexity of
the network, thus making it easier to deploy on resource-constrained devices, while still
maintaining high accuracy.

In this study, a novel model compression method based on graph attention networks
(GAT) and Transformer is proposed to determine the most important relationship in
the channel, and an efficient pruned model. GAT TransPruning has the potential to
significantly reduce the complexity and resource requirements of deep neural networks,
while maintaining or even improving their performance, making them more practical
for real-world applications. In conclusion, channel pruning is a powerful technique for
compressing deep neural networks, making them more efficient, faster, and accessible for
applications. Therefore, the main contributions of this study can be summarized as follows:

(1) Combination of GAT and Transformer : The proposed channel pruning method
integrates the power of the GAT and Transformer to effectively identify and retain
important channel relationships. This combination allows for a better preservation of
model performance during pruning.

(2) Learning-based approach: Unlike traditional rule-based policies or human-engineered
strategies, the proposed method leverages a learning-based approach to automate
compression. This approach improves the effectiveness and innovation of model
compression.

(3) Comprehensive evaluation: The effectiveness of the proposed method is thoroughly
evaluated using popular network models, including VGG-16, VGG-19, ResNet-18,
ResNet-34, and ResNet-50. The evaluation is conducted on the CIFAR-10 and CIFAR-
100 datasets (Krizhevsky & Hinton, 2009), which allow for a comprehensive verification
and quantitative analysis of the progressive channel pruning strategy. The experimental
results demonstrate the efficacy of the proposed method. For example, applying a high
channel pruning rate of 89% to VGG-19/CIFAR-100 decreases the accuracy rate by only
6.58%. Remarkably, the inference speed of the pruned model is 9.10 times faster than
that of the original large model.

(4) Suitable for edge computing : The combination of the GAT and Transformer allows
important channel relationships to be identified and preserved, thus ensuring that the
lightweight pruned model maintains its performance. This makes it highly suitable for
deployment on edge computing platforms with limited resources.

(5) Automation and innovation: The proposed progressive channel pruning strategy offers
an efficient and innovative approach to model compression. It automates the design
space sampling and improves the compression quality, unlike the traditional methods.

RELATED WORKS
Model compression techniques have become increasingly popular in recent years as a
method of accelerating and optimizing neural networks (Dong et al., 2017; Luo, Wu & Lin,
2017). These techniques involve reducing the size and complexity of a neural network
without markedly sacrificing its accuracy or performance. Convolution implementations
(Bagherinezhad, Rastegari & Farhadi, 2017; Kim, Bae & Sunwoo, 2019) and quantization

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 3/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

(Gong et al., 2014) can also accelerate the deep neural networks. Tensor factorization has
also been utilized to decompose weights into lightweight pieces (Masana et al., 2017; Yuan
& Dong, 2021; Zhang & Ng, 2022). As the field of artificial intelligence continues to grow
and develop, the neural network models used for various tasks have become increasingly
larger and more complex. While these models are often highly accurate and effective, they
also pose significant challenges in terms of computational resources, energy consumption,
and deployment. One of the primary drivers of the model size increase has been the pursuit
of improved accuracy. Neural networks are typically trained using large datasets, and as the
size of these datasets has grown, so too have the models needed to effectively learn from
them. Additionally, the development of more complex architectures, such as convolutional
neural networks and deep transformers, has allowed for the creation of more powerful
models that are capable of handling increasingly complex tasks.

However, the larger a neural network model, the more difficult it becomes to train,
optimize, and deploy. The computational power required to train and run these models is
a major challenge. Training a large neural network on high-end hardware can take days or
even weeks, and deploying these models in real-world scenarios can require considerable
computational resources, which are often beyond the capabilities of many devices. To deal
with these challenges, researchers have developed a range of techniques for reducing the size
and complexity of neural network models. One popular approach is model compression,
which involves reducing the size of a neural network model while preserving its accuracy.
This can be achieved through techniques such as quantization, pruning, and knowledge
distillation. Pruning involves removing unnecessary weights and connections from a neural
network model, resulting in a smaller and more efficient model. Quantization involves
reducing the precision of the weights and activations in a neural network, allowing for
more efficient computation and storage. Knowledge distillation involves training a smaller
‘‘student’’ model to mimic the behavior of a larger ‘‘teacher’’ model, resulting in a smaller
but still accurate model.

In addition to model compression, researchers have explored the use of compact
architectures, which are designed to be inherently smaller andmore efficient than traditional
neural network models. These architectures often rely on specialized layers or structures
that allow for more efficient computation and storage, while maintaining accuracy. Finally,
joint optimization techniques have been developed to simultaneously optimize multiple
aspects of a neural network model, such as accuracy, size, and energy consumption. These
techniques often involve balancing trade-offs between these different factors to find the
optimal model for a given application. As the neural network models used for artificial
intelligence continue to grow and become more complex, the challenges associated with
training, optimization, and deployment will only become more pronounced. However,
techniques such as model compression, compact architectures, and joint optimization
are being used by researchers to address these challenges and create more efficient and
effective neural networkmodels for a wide range of applications. Therefore, attention-based
methods are used in this study to create an efficient pruning network.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 4/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Model compression based on adaptive learning
Several studies have explored the use of reinforcement learning and genetic algorithms
for searching efficient models in neural networks (Brock et al., 2018; Miikkulainen et al.,
2019; Szegedy et al., 2015). AutoML (He et al., 2018) is a set of techniques that aim to
automate the process of building, training, and optimizing machine learning models. It
considerably improves the performance of deep neural networks by automating tasks
that were traditionally done manually, such as hyperparameter tuning, model selection,
and architecture design. A key benefits is that it can replace human effort in model
compression and fully automate it. This is particularly useful in scenarios where human
expertise is limited or expensive, or where the search space is too large for humans to
explore manually. AutoML has been shown to achieve better results than humans in some
cases, such as in the ImageNet classification challenge, where the systems have achieved
state-of-the-art performance with markedly fewer parameters and computations than
human-designed models. However, it is not a silver bullet and has its unique limitations.
For example, AutoML may suffer from a high computational cost and may require large
amounts of data and computing resources. DDPG (Lillicrap et al., 2015) receives the
embedding state from a layer, t, which provides information about the current state of
the layer, such as the number of input and output channels, the size of the feature maps,
and other relevant statistics. The agent then outputs a sparsity ratio for the layer, which
determines the percentage of channels that should be pruned. Once the sparsity ratio
is determined, the layer is compressed using the selected ratio, and the network moves
on to the next layer. This process is repeated for all layers in the network until all the
layers are compressed. After the network is pruned, the accuracy of the pruned model is
evaluated on a validation set, and a reward signal is computed based on the accuracy and
the computational cost of the pruned network. Finally, as a function of accuracy and FLOP,
the reward R is returned to the reinforcement learning agent. This reward signal is used to
update the parameters of the reinforcement learning agent to improve its performance in
selecting sparsity ratios that lead to high-performing and efficient networks.

Moreover, neural architecture search (NAS) (Sekanina, 2021) aims to automate the
design of neural network architectures to achieve high accuracy while minimizing
computational costs. One approach used in NAS is to search for transferable network
blocks, which are reusable building blocks that can be combined in different ways to create
a wide range of neural network architectures. The idea is to use an optimization algorithm,
such as a genetic algorithm or a reinforcement learning algorithm, to search for the best
neural network architecture for a given task by exploring a space of possible architectures.
The search space can be defined in different ways, depending on the constraints and
requirements of the problem. Transferable network blocks are advantageous, as they
allow for a more efficient search process by reusing blocks that have been optimized for
specific tasks and datasets. This can lead to faster convergence and better performance
than searching for complete architectures from scratch, and its performance surpasses
many human-designed deep neural network model architectures (Chollet, 2017; He et al.,
2016; Sandler et al., 2018). In addition, N2N (Ashok et al., 2017) compresses a large trained
teacher network into a small student network instead of defining a small network (student)

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

first. The model compression is then handed over to reinforcement learning, which is
divided into two stages. The first stage determines which layers to delete, and the action is a
binary variable to determine whether each layer should be retained or deleted, and a large,
pre-trained ‘‘teacher’’ network is compressed into a smaller ‘‘student’’ network rather than
designing a small network from scratch. Although model compression based on adaptive
learning achieves better performance than that designed by a human, the process is still
very time-consuming and energy-inefficient.

Channel pruning
Pruning approaches can generally be categorized into unstructured and structured pruning.
The main difference between them lies in the granularity of pruning weights. Unstructured
pruning involves removing individual weights or neurons from the network without any
constraints on their location or connectivity. This can be done by setting small weights
to zero or removing entire neurons from the network. Unstructured pruning can be very
effective in reducing the number of parameters and computations in a network; however,
it can also lead to irregular sparsity patterns, which can be challenging to optimize and
implement efficiently on hardware. In contrast, structured pruning involves removing
entire filters, channels, or other structured units from the network while maintaining the
connectivity and regularity of the remaining units. This can be done by setting entire rows
or columns of weights to zero or removing entire filters or channels from the convolutional
layers. Structured pruning can be more efficient in terms of reducing the number of
computations and memory requirements, as the remaining units can be optimized and
implemented more easily. In addition, structured pruning can lead to better generalization
and transferability, as the remaining units are forced to learn more robust and transferable
features. Both pruning methods have their unique advantages and disadvantages, and the
choice of method depends on the specific requirements and constraints of the problem at
hand. Unstructured pruning is generally more flexible and can achieve higher compression
ratios; however, it can also be more challenging to optimize and implement. Structured
pruning is more efficient and can lead to better generalization.

Some studies (Zhang et al., 2018; Moon et al., 2019) have focused on weight pruning,
which is a common type of unstructured pruning and involves removing individual weights
or neurons from the network without any constraints on their location or connectivity.
Weight pruning is very effective in reducing the number of parameters and computations
in a network, as it allows for fine-grained control over the sparsity level and can achieve
very high compression ratios. However, weight pruning lead to irregular sparsity patterns,
which is very challenging to optimize and implement efficiently on hardware. In addition,
weight pruning results in increased sensitivity to the initial conditions and the optimization
algorithm, as small changes in the weights have a large impact on the sparsity pattern and
final performance of the network. The runtime acceleration is difficult to achieve because
of irregular memory access (Wen et al., 2016), unless specialized hardware and libraries
are used. Research has been conducted (He, Zhang & Sun, 2017; Zhang et al., 2022) to
ensure structured pruning overcomes the problems mentioned above. Structured pruning
has been proposed as a method of overcoming some of the challenges associated with

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 6/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

unstructured pruning, such as irregular sparsity patterns and difficulty in optimizing and
implementing the pruned network. Structured pruning removes entire filters, channels, or
other structured units from the network while maintaining the connectivity and regularity
of the remaining units. This can be done by setting entire rows or columns of weights to
zero or removing entire filters or channels from the convolutional layers. By removing
entire filters or channels, structured pruning can produce a non-sparse compressed model,
which can be optimized and implemented efficiently on hardware. Structured pruning is
effective in reducing the size and computational requirements of deep neural networks
while maintaining or even improving their performance. By removing the least important
filters or channels, structured pruning can improve the generalization and transferability
of the pruned network while reducing the risk of overfitting and instability and solving the
problem of excessive time consumption associated with most model compression networks
in training and inference.

Pruning is a general approach that can be applied to various deep learning tasks, such
as image classification, object detection, and natural language processing. However, the
search space of possible pruning configurations is very large, which makes it challenging
to find an optimal configuration without relying on human expertise. Traditionally,
pruning has been done manually, where experts would analyze the structure of the
neural network and determine which neurons or connections to prune based on their
knowledge and intuition. However, this process is time-consuming and often requires
extensive trial and error. Automating pruning using these techniques can lead to marked
improvements in performance and efficiency as compared to manual pruning, as the
automated methods can explore a considerably larger search space and discover more
optimal configurations. It can also save time and reduce the reliance on human expertise,
making it more accessible to a wider range of researchers and practitioners. Recently, Lin et
al. (2017) demonstrated a nascent approach for using reinforcement learning to perform
pruning. The study used reinforcement learning to perform a sub-network selection
during inference. However, the researchers did not really prune the network but selected a
sub-network to draw the inference.Yang et al. (2018) andHooker et al. (2021) pioneered the
application of reinforcement learning in the context of pruning. However, their approach
only provides rewards to the agent after an episode, resulting in sparse rewards and a lack
of reinforcement at individual steps within each episode. This hinders the learning progress
in the reinforcement agent, leading to a slowdown in its overall learning process. A review
of the papers mentioned above revealed that the current model compression methods
are not only very time-consuming to train but also energy-inefficient. Additionally,
the most prominent obstacle towards structural pruning lies in the structural coupling,
which not only forces different layers to be pruned simultaneously, but also expects all
removed parameters to be consistently unimportant, thereby avoiding structural issues and
significant performance degradation after pruning. To address this problem, Fang et al.
(2023) proposed a general and fully automatic method, Dependency Graph (DepGraph),
to explicitly model the dependency between layers and comprehensively group coupled
parameters for pruning. In addition, existing works seldom extend the channel pruning
methods to 3D point-based neural networks (PNNs). Huang et al. (2023) proposed CP3,

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 7/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

which is a channel pruning plugin for point-based network. CP3 is designed to leverage the
characteristics of point clouds and PNNs in order to enable 2D channel pruning methods
for PNNs. Specifically, it presents a coordinate-enhanced channel importance metric to
reflect the correlation between dimensional information and individual channel features,
and it recycles the discarded points in PNN’s sampling process and reconsiders their
potentially-exclusive information to enhance the robustness of channel pruning.

Moreover, vision transformer models have become prominent models for a range
of tasks recently. These models usually suffer from intensive computational costs and
heavy memory requirements. To alleviate this problem, Yu & Xiang (2023) proposed a
novel explainable pruning framework dubbed X-Pruner, which is designed by considering
the explainability of the pruning criterion. Specifically, to measure each prunable unit’s
contribution to predicting each target class, a novel explainability-aware mask is proposed
and learned in an end-to-end manner. Then, to preserve the most informative units and
learn the layer-wise pruning rate, X-Pruner adaptively search the layer-wise threshold that
differentiates between unpruned and pruned units based on their explainabilityaware mask
values. Basha et al. (2024) proposed a history based filter pruning method that utilizes
network training history for filter pruning. Specifically, they prune the redundant filters
by observing similar patterns in the filter’s L1-norms over the training epochs. Zheng et
al. (2024) identified how to evaluate the importance of filters as the key issue for the filter
level pruning criteria to improve performance and proposed a new weight-based filter
pruning method. The proposed method comprehensively considers the direct and indirect
effects of filters, which can better reflect the filter importance, allowing the safe removal of
unimportant filters.

In addition,most of the above-mentionedmethods compress themodel in a specific layer
and rarely consider the relationship between layers. Determining the sparsity ratio for each
layer in channel pruning can be a problem, as there is no one-size-fits-all solution that works
well for all network architectures and datasets. One common approach is to use a validation
set to evaluate the performance of the network under different sparsity ratios and choose
the sparsity ratio that achieves the best trade-off between model size and performance.
This approach can be time-consuming and computationally expensive, particularly for
large networks and datasets. Therefore, channel pruning (Chiliang et al., 2019; Chen et al.,
2021; Liu et al., 2022) reduces redundant channels from feature maps in convolutional
neural networks, but how to determine the importance of each layer is the challenge. This
study aims to design a novel channel attention mechanism that can determine and retain
the important channel. ‘Methods’ describes how the pruning network works. This study
adopted an attention mechanism to determine the interactive relationship between layers
(Tan & Le, 2019), as the output of the previous layer would affect the output of the next
layer. Therefore, this article proposes a high-efficiency structured channel pruning method
and successfully identifies the interaction relationship between the channel weight, which
targets import channels using the graph attention networks (Veličković et al., 2017) and
Transformer (Vaswani et al., 2017) to retain the important channels and then remove
a certain number of channels and the relevant filters to compress deep neural network
models. This study uses the attention mechanism to find the elite channels in the model

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 8/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

and deletes the channels that are not important to the model to achieve the purpose of
model compression, and finally, output the heat map as proof that the elite weights are
retained.

Dropout and federated learning
Two methods of model compression in deep learning are very similar to that in this
thesis, which are dropout and federated learning. Dropout (Srivastava et al., 2014) is a
regularization technique used in machine learning, particularly in deep learning models,
to prevent overfitting and improve generalization performance. Overfitting occurs when
a model performs well on the training data but fails to generalize to unseen data, leading
to poor performance on new examples. In dropout, during training, a random subset of
neurons or units is temporarily dropped out or set to zero with a certain probability. This
means that these neurons do not contribute to the forward pass (output computation)
or backward pass (gradient computation) during that particular training iteration. The
process of dropping out neurons is done independently for each training example. The
key idea behind dropout is to prevent the neural network from relying too much on any
specific set of neurons. By randomly disabling neurons, dropout helps create a more robust
and generalizable model that can handle variations and noise in the data. It can be thought
of as an ensemble technique where different subsets of neurons work together to form
multiple, diverse neural networks. During the inference or testing phase, dropout is usually
turned off, and the entire network is used to make predictions. However, the final weights
of the neurons are scaled down by the dropout probability to compensate for the increased
number of active neurons during training. This scaling ensures that the expected output
of neurons remains consistent between training and inference. Dropout has been widely
adopted in various deep learning architectures, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), and it has proven effective in reducing
overfitting and improving the generalization capability of models.

Federated learning (McMahan et al., 2017) is a machine learning paradigm that enables
the training ofmodels acrossmultiple devices or serverswhile keeping the data decentralized
and distributed. It is designed to address privacy, security, and bandwidth constraints that
arise in traditional centralized machine learning systems. In the traditional machine
learning approach, data from various sources is collected and centralized on a single server
or data center, where the model is trained. In certain applications, such as edge computing
or IoT devices, real-time learning is required, and it may not be efficient to send data to a
central server for model updates. Federated learning addresses these challenges by allowing
the model to be trained directly on the devices or servers where the data is generated or
stored, without centrally sharing the raw data. Each device performs local model training
using its own data. During this phase, the device computes gradients based on its data and
updates the global model. Instead of sending raw data to a central server, the devices only
send the model updates (gradients) to a central coordinating server. Federated learning
allows for distributed learning across multiple devices, making it feasible for edge devices
and environments with limited connectivity. The above two methods are similar to that
employed in this thesis. The method proposed in this thesis focuses on reducing the size

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 9/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 1 The general model pruning process.
Full-size DOI: 10.7717/peerjcs.2012/fig-1

of the model, whereas dropout focuses on the overfitting problem. Moreover, federated
learning mainly updates the model by integrating model updates from different devices.
In this way, the model can continuously learn new data and knowledge from each device.
Although bothmethods are suitable for running on embedded systems, themethod utilized
in this thesis aims to directly make the model lightweight rather than split the model into
several small clients and then aggregate them, which occurs in federated laearning.

METHODS
This article mainly proposes a novel model compression strategy with a channel attention
module that we designed. The overall architecture of the proposed GAT TransPruning
model is shown in Fig. 1. First, a large network needs to be trained, then pruned, and finally
fine-tuned to restore the accuracy until a suitable small network is generated.
The proposed model compression strategy, which combines the GAT and Transformer,

offers an effective solution to reduce the size and computational complexity of neural
network models while preserving their accuracy. The key concept behind this strategy is
to leverage the attention mechanism algorithm to identify and retain the most important
channels for the neural network. During training, the network learns to assign importance
scores to different channels based on their contribution to the overall model performance.
These importance scores serve as the basis for selecting which channels to keep and which
can be safely pruned. By removing unnecessary channels, the model achieves considerable
reductions in size and computation without significantly compromising its performance.
In the proposed channel pruning approach, the weights of the input convolutional layer
are fed into the channel attention module designed for this purpose. The channel attention
module consists of two main components: GAT and a Transformer network. The GAT
is responsible for calculating the correlations between the weights as well as capturing
the relationships and dependencies among them. The Transformer network then takes
the correlation characteristics of the channel weights and computes the correlations
between the channels in a different layer. To extract deeper features and enhance the
representation power of the model, the output of the multi-head attention network is
further processed through a feed-forward network. This additional transformation helps
to capture more intricate patterns and relationships in the data. To prevent the network
from becoming too deep and suffering from performance degradation, a residual module

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 10/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-1
http://dx.doi.org/10.7717/peerj-cs.2012

is employed before inputting the features into the Transformer network and the feed-
forward network. The multi-head attention network, feed-forward network, and residual
module collectively contribute to extracting richer and more expressive features from the
input data. This enhanced feature representation facilitates a better understanding and
utilization of the channel relationships, enabling effective channel pruning. In summary,
the proposed model compression strategy employs the attention mechanism, the GAT,
and the Transformer to identify and retain the important channels in the neural network.
Through the channel attention module, the correlations between the weights and channels
are analyzed, and deeper features are extracted to enhance the representation power of the
model. The combination of these components leads to significant model size reduction and
computational efficiency improvementswhilemaintaining satisfactorymodel performance.
Further details are provided below.

Network architecture
This study focuses on identifying and preserving important channels within a neural
network by combining the GAT and Transformer models. The overall architecture of
the proposed GAT TransPruning model is depicted in Fig. 2, and it consists of two
main components: the large model and the channel attention module. The large model
serves as the base network, and for the purpose of experimentation, popular CNN-based
architectures, such as VGG and ResNet, are utilized. These large models usually contain
a large number of channel weights; however, not all channels are meaningful, so large
networks often suffer from an excessive memory capacity. The goal of this study is to
prune unnecessary channels while maintaining network performance. To accomplish
this, a progressive channel pruning strategy is devised. The channel attention module,
represented by the light-yellow dashed box in Fig. 2, plays a crucial role in identifying
the importance of channels across the entire network. This module is composed of two
main components: the GAT network (blue block) and the Transformer network (pink
block), both of which incorporate attention mechanisms. The GAT network operates on
the channel weights of the large model by transforming them into channel weight nodes
with ID information through the flatten operation. These channel weight nodes are then
fed into the GAT network, which assigns attention scores to capture the relationships
between the nodes. Higher scores indicate channels that are more significant and have
to be retained by the network. However, the output of the GAT network only considers
the channel relationships within a single CNN layer. To maximize the pruning ratio and
account for inter-layer relationships, the output of the GAT network is further passed
to the Transformer network in the pink block. The Transformer network employs a
multi-attention mechanism to enable the cross-layer channel attention effects. This allows
the model to capture deeper dependencies and relationships between channels across
different layers. Finally, the results from the Transformer network are passed through a
linear algorithm to calculate the loss. The loss function used in this study is typically the
mean squared error (MSE) loss, which quantifies the discrepancy between the predicted
and the target outputs. With the use of two attention mechanisms at different scales, the
channel attention module can effectively identify channels that are truly important to the

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 11/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 2 The overall architecture of the proposed GAT TransPruning model.
Full-size DOI: 10.7717/peerjcs.2012/fig-2

network. The approach presented in this study combines the GAT and Transformermodels
to create a channel attentionmodule within a larger neural network. By leveraging attention
mechanisms at different scales, the module can identify and retain important channels
while pruning unnecessary ones. This progressive channel pruning strategy allows for

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 12/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-2
http://dx.doi.org/10.7717/peerj-cs.2012

more efficient and optimized models, reducing the model complexity without significant
performance degradation.

Previously, the traditional pruning methods were mostly developed through manual
design or pruning only for a single layer. Compared with the traditional pruning method,
the pruning process utilized in this study is to first analyze the weight nodes of individual
layers through GAT and then pay attention to the relationship of the channel weight
nodes in different layers of the global network through the Transformer network. Thus,
all of the layers are gradually pruned until they reach our preset standards. We called this
layer-by-layer analysis and layer-by-layer pruning progressive pruning.

Channel weight ID information
In the proposed progressive channel pruning strategy, it is crucial to accurately identify and
prune unnecessary channels. Accordingly, a process is implemented to assign individual
ID information to each channel before pruning. This process is illustrated in Fig. 3. The
upper block in Fig. 3 represents the large model that is targeted for pruning. To establish
unique identities for each channel weight, the channel weights are flattened. This flattening
operation ensures that the pruning network can easily recognize and distinguish each
channel weight as an individual channel weight node. Upon converting the channel
weights of each layer in the large network into separate channel weight nodes, each channel
weight is assigned a specific ID. Assigning individual IDs to the channel weights serves
several purposes. First, it enables an efficient identification of channels that need to be
pruned. With unique IDs associated with each channel, the pruning algorithm can quickly
locate and target specific channels for removal. This accelerates the pruning process and
streamlines the calculation of attention scores. Additionally, the assigned IDs are crucial
in marking the attention scores for each channel. As the pruning network evaluates the
importance of each channel, the attention scores can be associated with the corresponding
channel weight nodes based on their unique IDs. This enables the attention scores to be
accurately tracked and facilitates subsequent channel pruning decisions. By introducing
individual ID information to the channel weights before pruning, this strategy enhances the
precision and efficiency of channel pruning. The unique identities assigned to each channel
enable faster identification of the channels to be pruned and streamline the calculation
of attention scores. These ID-marked channel weight nodes are also crucial in accurately
determining the importance of channels and facilitating the subsequent stages of the
progressive channel pruning strategy.

As shown in Fig. 3, the subscript number of the symbol represents the layer in which
the operation is performed. The formula for converting channel weights to channel weight
nodes is as follows:

N = Flatten(X) (1)

whereX represents the channel weight of the layer andN is the result after channel weightX
be flattened. In the progressive channel pruning strategy, the channel weights of each layer
in the large model are first flattened, resulting in a tensor N . This tensor N represents the
channel weights after flattening, which are further processed to facilitate the subsequent

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 13/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 3 The ID information of channel weight nodes via flatten.
Full-size DOI: 10.7717/peerjcs.2012/fig-3

attention calculation. To enable the attention calculation using the GAT, the flattened
channel weights are converted into channel weight nodes with individual ID information.
This ID-assigned representation allows for the accurate tracking and correlation analysis
of the channel weight nodes. As depicted in Fig. 3, the correlations between the channel
weight nodes are computed using the GAT module, which calculates the dependencies
between the channel weight nodes based on their attention weights. The attention result
G, which represents the attention weights computed by the GAT module, is determined
using the following formula:

G=GAT (N). (2)

Subsequently, the correlation features of the channel weights are inputted into the
multi-head attention network. This network calculates the layerwise correlations among
the channels. The multi-head attention network is followed by a linear transformation
through the feed-forward network, which extracts deeper features from the output of the
multi-head attention network. Finally, the pruning network generates a smaller model

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 14/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-3
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 4 The relationship between the channel weight nodes.
Full-size DOI: 10.7717/peerjcs.2012/fig-4

based on the output obtained from the Transformer. The transformation from the output
of the Transformer to the small model can be expressed using the following formula:

MHA= FFN (Multihead(G)) (3)

Y = Linear(MHA) (4)

where FFN is the feed forward network, MHA is the multi-head attention process of
calculating the layer correlation of the channel weight nodes, and Linear is linearly
transformed. In these two formulas, the output of the Transformer, representing the result
of the attention mechanism and the linear transformation, is used to generate the smaller
model through the Transformer module. Through the aforementioned steps and formulas,
the progressive channel pruning strategy leverages the GAT and Transformer modules
to identify important channels and generate a smaller, pruned model while maintaining
overall model performance. The attention mechanisms and correlation calculations enable
accurate determination of channel importance, leading to effective channel pruning and
model compression.

GAT channel attention mechanism
To find meaningful channels for the network, this study uses the GAT to calculate the
attention scores between nodes and eliminate unnecessary channels. GAT is a type of neural

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 15/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-4
http://dx.doi.org/10.7717/peerj-cs.2012

network designed for learning representations of graph-structured data. For example, a
social network can be represented as a graph, where nodes correspond to users, and edges
represent friendships. The GAT is designed to learn representations of channel weight
nodes in a large model that consider the structure of the network, as well as the features
of the nodes and their neighbors. In GAT, each channel weight node is represented by a
feature vector, which encodes information about the node itself. The attention score in
GAT is computed using a learnable weight matrix, which is used to compute a similarity
score between the features of each node and its neighbors. This similarity score is then used
to compute an attention coefficient, which determines how much weight to assign to each
neighbor when computing the representation of the node. Once the attention weights have
been computed, the GAT computes a weighted sumof the features of the neighboring nodes
using the attention coefficients as the weights. This weighted sum is then combined with the
node’s own feature vector, to produce a final representation of the node. This study uses the
attention mechanism algorithm to find channels with better performance in large models
and reserves them for channel pruning and explores the relationship between different
channel weight nodes between layers. Therefore, the attention mechanism algorithm is
mainly used to complete the progressive pruning task. As this study prunes the entire
network and not just a single layer, channel pruning is performed from the first layer to
the last layer, which is a progressive pruning method. As shown in the blue block in Fig. 2,
after receiving the channel weight nodes with the ID information, the GAT calculates
the attention weight between nodes for the channels in the network. Figure 4 shows a
schematic representation of the GAT calculating the attention weight between nodesc. The
GAT used in channel pruning improved the selection of important channels in a neural
network. In particular, the GAT can compute importance scores for each channel weight
node, which prune the least important channels. In the GAT, the network loads the channel
weights of each convolution layers then flattens them into the input of the GAT module.
The GAT input is a set of channel weight node features, N =

⇀
n 1,

⇀
n 2,...,

⇀
n i,

⇀
n i ∈RF ,

where i is the number of channel weight nodes, and F is the number of features in
each channel weight nodes. The GAT output produces a new set of channel features,

N ′=
⇀
n
′

1,
⇀
n
′

2,...,
⇀
n
′

i,
⇀
n
′

i ∈RF ′ . At least one learnable linear transformation is required to
obtain sufficient expressive power to transform the channel weight node features into
higher-level features. In the first step, a shared linear transformation, parameterized by a
channel weight matrix, W ∈RF ′×F , is applied to the weight nodes of every channel. Then
self-attention is performed on the channel weight nodes, which is a channel weight nodes
shared mechanism, a :RF

×RF ′
→R computes attention coefficients eij . The formula for

importance of channel weight nodes is as follows:

eij = a(W
⇀
n i,W

⇀
n j) (5)

where i and j is indicate that the importance of channel weight node j ′s features to node
i. Then, making the attention coefficients easily to compare across to different channel
weight nodes, normalizing them across all choices of j using the softmax function. The

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 16/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

formula is as follows:

αij = softmax(eij)=
exp(eij)∑

k∈Ni
exp(eik)

(6)

where Ni is neighborhood of channel weight nodes of i. The normalized attention
coefficients are used to compute a linear combination of the features corresponding
to them to serve as the final output features for every node. In this article, GAT is a
single-layer feedforward pruning network, so the coefficients computed by the channel
weight nodes attention mechanism can be expanded as follows:

αij =
exp(LeakyReLU(

⇀
a
T
[W

⇀

h i||W
⇀

h j]))∑
k∈Ni

exp(LeakyReLU(
⇀
a
T
[W

⇀

h i||W
⇀

h j]))
(7)

where
⇀
a represents a weight vector, applying the LeakyReLU nonlinearity, T represents

transposition and || is the concatenation operation. The schematic diagram of the
relationship between the channel weight nodes is shown in Fig. 4.

⇀
α ij is the attention

score between the channel weights and the channel weights in the rest of the networks, and
represents the influence between the channel weight nodes.

Therefore, GAT attention mechanism is used to determine the relationship between
channel weights. Each channel is regarded as a node, and the network focuses on the
most relevant channel neighbors of each node instead of treating all channel neighbors
equally. In other words, this method can consider the degree to which channels influence
each other, and even the relationship between channels among different layers. This is
important because in a network, not all channels are useful, channel nodes have a large
number of channel neighbors, and not all channel neighbors are equally important for the
channel node representation. This mechanism is similar to the development of the human
brain. The attention weights in GAT are computed using a learnable weight matrix, and
this study uses this matrix for calculating the importance score between the weights of each
node and its channel neighbors.

Multi-head channel attention mechanism in layer level
This study determines the limitations of using attention weights solely from GAT as the
criterion for channel pruning and acknowledges the need for a more comprehensive
approach. While the GAT focuses on the attention weights within each individual layer, it
fails to establish connections between layers. However, it is widely recognized that the CNN
layer in a previous layer significantly affects the outcomes of the subsequent CNN layer. To
address this issue, the article proposes a combination of the GAT and Transformer model
to strengthen the interlayer connections and improve the effectiveness of channel pruning.
The multi-head attention mechanism, a pivotal component of the Transformer model,
plays a crucial role in achieving this objective. Originally designed for natural language
processing tasks, the multi-head attention mechanism has demonstrated its versatility
and found applications in various domains. In this study, the input sequence of channel
weight nodes undergoes linear projections, resulting in multiple representations. Each
representation is then fed into a separate attention head. Remarkably, each attention head

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 17/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

independently attends to different segments of the input sequence, enabling the model to
learn distinct aspects of the relationships between channel weight nodes across different
layers. This approach empowers the model to capture a diverse range of relationships and
dependencies. The attention mechanism computes the attention weights for each channel
weight node in the input sequence based on its relationships with the channel weight nodes
from other layers. These attention weights determine the significance and relevance of
each channel weight node with respect to the other layers. Leveraging multiple attention
heads, the multi-head attention mechanism allows the model to simultaneously capture
different types of relationships and focus on various aspects of the input sequence. With the
incorporation of the multi-head attention mechanism, the Transformer model becomes
proficient in effectively capturing dependencies and long-range relationships within the
input sequence. It facilitates the parallel processing of different parts of the sequence,
thereby enabling superior information aggregation and enhanced modeling of complex
patterns. The integration of the multi-head attention mechanism within the channel
pruning framework strengthens the inter-layer connections and enhances the model’s
expressive power. By enabling the Transformer model to capture diverse relationships
and dependencies, this approach contributes to more accurate and efficient channel
pruning. The findings of this study elucidate the importance of considering inter-layer
connections and leveraging attention mechanisms to improve the performance of channel
pruning techniques. This study goes beyond the conventional approach by considering the
social interaction behavior between channel weight nodes in different layers. To achieve
this, the attention mechanism of multi-head attention is employed to obtain importance
predictions. The detailed process architecture is illustrated in Fig. 5. The input to the
Transformer model is the output information of the channel weight nodes obtained from
GAT. The Transformer model then processes the GAT outputs from different layers to
compute the multi-head attention weights.

As depicted in Fig. 5, the input of the multi-head attention mechanism consists of the
GAT results from three distinct layers. The Transformer model continuously selects and
incorporates the GAT results from different layers to calculate the multi-head attention
weights until the pruning network identifies the channels that need to be pruned. By thus
leveraging the multi-head attention mechanism, this study aims to capture the intricate
relationships and dependencies among the channel weight nodes across various layers. This
approach allows for a more comprehensive analysis of the network dynamics and enables
the identification of channels that may be pruned without compromising the model’s
performance. In summary, the proposed methodology utilizes the attention mechanism
of multi-head attention to consider the social interaction behavior between channel
weight nodes in different layers. By incorporating information from multiple layers, the
model can effectively capture the intricate relationships and make informed decisions
regarding channel pruning. The architectural design, as illustrated in Fig. 5, showcases the
sequential process of obtaining multi-head attention weights from different layers until the
target channels for pruning are identified. Multi-head attention is composed of multiple
self-attention mechanisms, which are mainly used to extract the key information required

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 18/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 5 The process of the channel multi-head attention.
Full-size DOI: 10.7717/peerjcs.2012/fig-5

in feature encoding. The formula is as follows:

Attention(Q,K ,V)= softmax(
QKT
√
dk

)V (8)

whereQ,K andV refer to the channel weight vector fromdifferent layer, representing query
vector (Q), key vector (K) and value vector (V) , which is used to score the importance
of each channel. dk is the dimension of the hidden layer of K . By dividing by

√
dk , the

magnitude of the inner product can be prevented from increasing, which is conducive to
model convergence. The multi-headed attention mechanism is defined as follows:

MultiHead(Q,K ,V)=Concat(head1,...,headh) (9)

headi=Attention(Qi,Ki,Vi) (10)

where head is one of the heads of the multi-head attention mechanism, which mainly
divides the dimension of the input vector into equal parts according to the number of
multi-heads The outputs of the multi-head attention vectors are then combined into a
single vector through concatenation. Finally, the fully connected layer is used to map
the combined multi-head attention vector to the output result. The multi-head attention

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 19/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-5
http://dx.doi.org/10.7717/peerj-cs.2012

mechanism enables the model to learn and pay attention to the feature of its own channels
and others channels through different angles of multiple heads and generate the channel
feature required for pruning model predictions to enter independent self-attention layers
for learning. The multi-head attention mechanism mainly utilizes different random
initialization mapping matrices, that is, the fully connected layer. Finally, these heads are
output and concatenated to perform a linear calculation. Each head focuses on different
information, which is advantageous; some focus on local information while the others
focus on global information. This ensures that the important channels are preserved.
Through the aforementioned method, the pruning model can understand the input
channel information from different layers and then obtain the attention score through the
Softmax layer to retain the important channels and prune the less important channels to
achieve model compression. Therefore, through the multi-head attention mechanism, the
important channel feature codes of different layers are determined, and then, the network
step is pruned by step to the highest compression ratio. This layer-by-layer pruning process
is the progressive pruning strategy proposed in this article.

EXPERIMENT RESULTS AND DISCUSSION
Experimental settings and datasets
The experimental environment of this study comprised the National High Speed Network
and Computing Center (TWCC). The graphics card GPU device used Nvidia Tesla V100
80GB and A100 from the laboratory; the operating system was Ubuntu 20.04; the CUDA
version was 11.5; the cuDNN version was 8.3.0; and in the version of the deep learning
kit Pytorch was 1.11.0. The number of training prunings in ResNet and VGG was 100
epochs, and its large model and pruning model were all operated in parallel. CIFAR-10
and CIFAR-100 dataset were used for the experimental process. CIFAR-10 comprises
10 distinct categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. With a division of 50,000 training images and 10,000 testing images, it serves as
a fundamental resource for assessing the capabilities of diverse deep learning models in
image classification tasks. This dataset is important for its role as a standardized benchmark
for evaluating the efficacy of different approaches within the realm of image classification.
CIFAR-100, similar to CIFAR-10, is a dataset featuring a broader scope with 100 categories
as opposed to 10. It comprises a collection of 60,000 32× 32 color images across these 100
classes, with each category containing 600 images. These classes are further organized into
20 superclasses, offering a structured hierarchy. Each image bears dual labeling: the specific
fine-grained class it belongs to and the corresponding superclass. The dataset was divided
into two subsets: 50,000 images for training and 10,000 for testing. CIFAR-100 serves as
a formidable assessment tool for gauging the efficacy of deep learning models, especially
when tackling intricate, fine-grained classification tasks. Its diversity and scale make it an
ideal benchmark for testing the ability of models to distinguish between a multitude of
subtle variations and intricate categories, thus contributing to the advancement of image
classification techniques. The inclusion of superclasses introduces an additional layer of
complexity, allowing researchers to delve into hierarchical classification strategies.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 20/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Table 1 Comparison of pruning VGG-16 on CIFAR-10. Comparison of pruning VGG-16 on CIFAR-10
for different pruning methods.

Method Accuarcy(%) FLOPs Parameters Pruned(%)

VGG-16 93.96% 313.73M 14.98M 0%
L1-norm
(Vaswani et al., 2017)

93.40% 206M 5.4M 64%

GM
(Li et al., 2017)

93.58% 201.1M – –

VFP
(He et al., 2019)

93.18% 190M 3.92M 73.3%

SSS
(Zhao et al., 2019)

93.02% 183.13M 3.93M 73.8%

FPEI
(Wang et al., 2021)

92.49% 177.27M 3.3M 77.6%

GAL
(Lin et al., 2019)

90.73% 171.89M – –

Ours-1 92.40% 166.12M 6.05M 59.61%
HRank
(Lin et al., 2020)

91.23% 73.7M 1.78M 88.1%

Ours-2 91.31% 70.2M 2.51M 83.2%
Ours-3 90.21% 45.82M 1.61M 89.3%

Model training
This study developed a strategy of channel pruning, which can achieve acceleration
without the additional design of AI chips. It is inspired by the growth process of the human
brain, which the human brain is known to prune and rewire its synaptic connections in
response to changes in the environment. This process resembles the pruning process in a
neural network. It learns through different inputs and finally deletes unnecessary neurons,
multiplying into a high-performance small network. The neural network pruning method
proposed in this article is a technique for reducing the model size and complexity of
artificial neural networks without sacrificing network performance. This study conducted
experiments on different CNNs models, such as ResNet18, ResNet34, ResNet50, VGG-16
and VGG-19. The experimental results revealed good performance from these different
models.

Experimental results and quantitative analysis
This article verified the proposed pruning strategy on VGG-16/CIFAR-10, and compared
the results with those from other papers, as listed in Table 1. Ours-1, Ours-2, and Ours-3
represent our models under different pruning rates. Table 1 reveals that our method
achieved exceptional results. It pruned most of the redundant channels and only decreased
the model’s accuracy marginally. As listed in Table 1, our smallest pruned model(Ours-3)
removes 89.3% of the parameters while reducing accuracy by only 3.75%, and in our
second pruned model(Ours-2), both the pruning rate and model accuracy are better than
the results reported in other papers.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 21/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Table 2 Comparison of pruning VGG-19 on CIFAR-100. Comparison of pruning VGG-19 on CIFAR-
100 for different pruning methods.

Method Baseline
(%)

Accuracy
After
Pruned (%)

1

Accuracy (%)
Speedup

OBD
(Wang et al., 2019)

73.74% 60.70% −12.64% 5.73×

OBS
(Wang et al., 2019)

73.34% 60.66% −12.68% 6.09×

EigenD
(Wang et al., 2019)

73.34% 65.18% −8.16% 8.80×

Greg
(Wang et al., 2020)

74.02% 67.55% −6.67% 8.84×

Ours-1 73.26% 68.43% −4.83% 5.88×
Ours-2 73.26% 66.68% −6.58% 9.1×

Table 3 Comparison of different pruning strategies on CIFAR-10 dataset.

Model Accuracy
(%)

Pruning
ratio (%)

ResNet34 (Baseline) 94.55% 88%
L1-norm 90.97% 88%
L2-norm 90.66% 88%
Random 90.37% 88%
Ours 91.29% 88%

This article also verified the proposed pruning strategy on VGG-19/CIFAR-100, and
compared the results with other papers, as listed in Table 2. Ours-1 and Ours-2 represent
our pruned models under different pruning rates. Table 2 reveals that the method had
great result, which pruned most of the redundant channels and only decreased a few of the
model’s accuracy. As shown in Table 2, our second pruned model(Ours-2) accuracy only
drops −6.58% and also gets the highest speedup ratio. The results of our pruned model
are better than other papers.

In addition, this study also conducted experiments to further validate the effectiveness of
the proposed method. Taking ResNet34/CIFAR-10 as an example, the article compared the
performance of L1-norm, L2-norm, randompruning, and the proposedGATTransPruning
method. The results, as shown in Table 3, clearly demonstrated that the method proposed
in this article achieved the highest accuracy under the same pruning conditions.

Channels of interest analysis with heatmaps
To know exactly whether each pruning process pays attention to the same channels
and keeps them in the next pruning epoch, this article pulled out the attention score of
multi-head attention and made a heat map for deeper analysis. The heatmap shown in
Fig. 6 is pruned on ResNet18. The Figs. 6A and 6B show the channel attention area that the
pruning model focuses on for different pruning ratios. The areas and contours of attention
are almost the same on the heatmaps of different pruning rates for the proposed method,

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 22/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 6 Channel attention heatmap under different pruning ratios. (A) Layer 0 at 48% pruning rate.
(B) Layer 0 at 72% pruning rate.

Full-size DOI: 10.7717/peerjcs.2012/fig-6

as shown in the figure, which means that the model does repeatedly focuses on important
channels. This proves that the pruning model does retain important channels rather than
randomly removing unnecessary channel weights.

The channel attention heatmap has the same effect on ResNet34, ResNet50, VGG-16
and VGG-19 when visualizing the removed channel weights. The details of the channel
attention heatmap are shown in Fig. 7. Figures 7A to 7H show the channel attention area
that the pruning model focuses on for different pruning ratios for ResNet34, ResNet50,
VGG-16, and VGG-19. The visualized result graph clearly shows that the important
channel weights are determined at the beginning, and the important channel weights are
indeed represented in subsequent pruning. The color depth represents the importance
of the channel weights. The attention distribution in heatmap can be used to accurately
determine whether each pruning process considers the same channels. Figures 7E and 7F
display the channel attention regions of the pruned model at different pruning ratios. It is
evident from the figures that the attention distribution in the heatmaps remains vertical
across different pruning rates, effectively demonstrating that the pruned model indeed
preserves important channels.

Ablation experiments
In addition to the main experiments, this thesis also conducted ablation experiments to
further validate the effectiveness of the proposed method. This article splits the pruned
modules into different combinations to verify that the pruning strategy designed in this
article is the best method. First, as listed in Table 4, the inter-module is disassembled
to only use GAT, Transformer, and our designed method GAT TransPruning pruning
strategy. Table 4 reveals that under the same pruning rate, the pruning strategy designed
in this article obtains the best results, and the same pruning rate has the lowest accuracy
drop. In addition, the accuracy of the three models, using only GAT and only Transformer

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 23/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-6
http://dx.doi.org/10.7717/peerj-cs.2012

Figure 7 Channel attention heatmap under different pruning ratios. (A) ResNet34 layer 0 at 48%
pruning rate. (B) ResNet34 layer 0 at 72% pruning rate. (C) ResNet50 layer 0 at 54% pruning rate. (D)
ResNet50 layer 0 at 75% pruning rate. (E) VGG-16 layer 0 at 35.37% pruning rate. (F) VGG-16 layer 0 at
58.50% pruning rate. (G) VGG-19 layer 0 at 35.50% pruning rate. (H) VGG-19 layer 0 at 59% pruning
rate.

Full-size DOI: 10.7717/peerjcs.2012/fig-7

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 24/30

https://peerj.com
https://doi.org/10.7717/peerjcs.2012/fig-7
http://dx.doi.org/10.7717/peerj-cs.2012

Table 4 Ablation experiment of GAT TransPruning strategy on CIFAR-100 dataset.

Model Accuracy
(%)

Pruning
ratio (%)

ResNet18 (Baseline) 92.3% 99%
GAT Only 90.40% 99%
Transformer Only 90.46% 99%
Ours 90.60% 99%

models decreased by 0.2% and 0.14% compared to the complete GATTransPruningmodel,
respectively, at the same pruning rate.

CONCLUSIONS
Channel pruning is a popularmodel compression technique that aims to reduce the number
of channels in a deep neural network, thereby reducing its computational complexity and
memory requirements while maintaining or improving its accuracy. This technique has
attracted significant attention in recent years because of its ability to significantly compress
deep neural networks, making them faster and more efficient, which is essential for
real-world applications, such as mobile devices and embedded systems. In this study,
the powerful GAT attention mechanism was used for model pruning. GAT is a powerful
technique used for channel pruning. It is a neural network that leverages the graph
structure of data to perform feature aggregation and learning. It is highly effective in
channel pruning with the use of channel attention mechanisms that improve the network’s
overall performance while reducing the number of channels. The contributions of this
study are as follows: (1) When the users provided different pruning rate goals, the GAT
TransPruning model found the best small model. (2) Improved computational efficiency:
GAT TransPruning significantly reduced the number of parameters and computation costs
of deep neural networks, making them more computationally efficient, particularly for
deployment on edge devices with limited computational resources. (3) Improved memory
efficiency: Prunedmodels had a smaller memory footprint, making them easier to store and
transfer. (4) Better generalization performance: Pruning could improve the generalization
performance of deep neural networks by reducing overfitting, particularly when the pruned
models were fine-tuned. (5) Automated model compression: The use of neural architecture
search techniques and deep reinforcement learning could automate the process of channel
pruning, reducing the need for manual intervention andmaking the process more efficient.
(6) Transferability: Pruned models could also be used as transferable network blocks for
othermodels or tasks,making themuseful for transfer learning.Overall, GATTransPruning
has the potential to significantly reduce the complexity and resource requirements of deep
neural networks, while maintaining or even improving their performance, making them
more practical for real-world applications. Channel pruning is a powerful technique for
compressing deep neural networks, making themmore efficient, faster, andmore accessible
for real-world applications. Future research should focus on developing more efficient and
accurate pruning algorithms and investigating the use of channel pruning in larger and

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 25/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2012

more complex networks. Channel pruning is a promising area of research, and it is likely
to play a significant role in the development of more efficient and powerful deep neural
networks in the future.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Science and Technology Council, Taiwan, R.O.C.
(No. 112-2218-E-035-001). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Science and Technology Council, Taiwan, R.O.C.: 112-2218-E-035-001.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yu-Chen Lin conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.
• Chia-Hung Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Yu-ChengLin performed the experiments, analyzed the data, performed the computation
work, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at the CIFAR-10,CIFAR-100 from the Canadian Institute for
Advanced Research (CIFAR), Canadian: https://www.cs.toronto.edu/~kriz/cifar.html.

Our code is available at GitHub and Zenodo:
– https://github.com/fcuace428/GAT-TransPruning.
– Fang, G. (2024). Torch-Pruning (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.

10720027

REFERENCES
Ashok A, Rhinehart N, Beainy F, Kitani KM. 2017. N2N learning: network to network

compression via policy gradient reinforcement learning. In: International conference
on learning representations, 1–21.

Bagherinezhad H, Rastegari M, Farhadi A. 2017. LCNN: Lookup-based convolutional
neural network. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 860–869 DOI 10.1109/CVPR.2017.98.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 26/30

https://peerj.com
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/fcuace428/GAT-TransPruning
https://doi.org/10.5281/zenodo.10720027
https://doi.org/10.5281/zenodo.10720027
http://dx.doi.org/10.1109/CVPR.2017.98
http://dx.doi.org/10.7717/peerj-cs.2012

Basha S, FarazuddinM, Pulabaigari V, Dubey SR, Mukherjee S. 2024. A novel and effi-
cient model pruning method for deep convolutional neural networks by evaluating
the direct and indirect effects of filters. Neurocomputing 573(7):1-10.

Brock A, Lim T, Ritchie JM,Weston N. 2018. Smash: one-shot model architecture search
through hypernetworks. In: International conference on learning representations, 1–22.

Chen Z, Xu T-B, Du C, Liu C-L, He H. 2021. Dynamical channel pruning by conditional
accuracy change for deep neural networks. IEEE Transactions on Neural Networks
and Learning Systems 32(2):799–813 DOI 10.1109/TNNLS.2020.2979517.

Chiliang Z, Tao H, Yingda G, Zuochang Y. 2019. Accelerating convolutional neural
networks with dynamic channel pruning. In: Data compression conference, 563
DOI 10.1109/DCC.2019.00075.

Chollet F. 2017. Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
1251–1258 DOI 10.1109/CVPR.2017.195.

Dong X, Huang J, Yang Y, Yan S. 2017.More is Less: a more complicated network with
less inference complexity. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 1895–1903 DOI 10.1109/CVPR.2017.205.

Fang G, Ma X, SongM,MiMB,Wang X. 2023. Depgraph: towards any structural prun-
ing. In: Proceedings of the 2023 IEEE/CVF conference on computer vision and pattern
recognition, Piscataway: IEEE, 16091–16101 DOI 10.1109/CVPR52729.2023.01544.

Gong Y, Liu L, YangM, Bourdev L. 2014. Compressing deep convolutional networks
using vector quantization. ArXiv arXiv:1412.6115.

He Y, Lin J, Liu Z,Wang H, Li LJ, Han S. 2018. AMC: AutoML for model compression
and acceleration on mobile devices. In: Proceedings of the European conference on
computer vision, 784–800 DOI 10.1007/978-3-030-01234-2_48.

He Y, Liu P,Wang Z, Hu Z, Yang Y. 2019. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 4335–4344
DOI 10.1109/CVPR.2019.00447.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
770–778 DOI 10.1109/CVPR.2016.90.

He Y, Zhang X, Sun J. 2017. Channel pruning for accelerating very deep neural net-
works. In: Proceedings of the IEEE/CVF international conference on computer vision,
1398–1406 DOI 10.1109/ICCV.2017.155.

Hooker S, Courville A, Clark G, Dauphin Y, Frome A. 2021.What do compressed deep
neural networks forget? ArXiv arXiv:1911.05248.

Huang Y, Liu N, Che Z, Xu Z, Shen C, Peng Y, Zhang G, Liu X, Feng F, Tang J. 2023.
CP3: Channel pruning plug-in for point-based networks. In: Proceedings of the 2023
IEEE/CVF conference on computer vision and pattern recognition, Piscataway: IEEE,
5302–5312 DOI 10.1109/CVPR52729.2023.00513.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 27/30

https://peerj.com
http://dx.doi.org/10.1109/TNNLS.2020.2979517
http://dx.doi.org/10.1109/DCC.2019.00075
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/CVPR.2017.205
http://dx.doi.org/10.1109/CVPR52729.2023.01544
http://arXiv.org/abs/1412.6115
http://dx.doi.org/10.1007/978-3-030-01234-2_48
http://dx.doi.org/10.1109/CVPR.2019.00447
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICCV.2017.155
http://arXiv.org/abs/1911.05248
http://dx.doi.org/10.1109/CVPR52729.2023.00513
http://dx.doi.org/10.7717/peerj-cs.2012

Kim TS, Bae J, SunwooMH. 2019. Fast convolution algorithm for convolutional neural
networks. In: Proceedings of the IEEE international conference on artificial intelligence
circuits and systems, 258–261 DOI 10.1109/AICAS.2019.8771531.

Krizhevsky A, Hinton G. 2009. Learning multiple layers of features from tiny images.
Li H, Kadav A, Durdanovic I, Samet H, Graf H. 2017. Pruning filters for efficient

convNets. In: International conference on learning representations, 1–13.
Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D,Wierstra D. 2015.

Continuous control with deep reinforcement learning. In: International conference on
learning representations, 1–14 ArXiv arXiv:1509.02971.

LinM, Ji R, Wang Y, Zhang Y, Zhang B, Tian Y, Shao L. 2020.HRank: filter pruning
using high-rank feature map. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 1526–1535 DOI 10.1109/CVPR42600.2020.00160.

Lin S, Ji R, Yan C, Zhang B, Cao L, Ye Q, Huang F, Doermann D. 2019. Towards optimal
structured CNN pruning via generative adversarial learning. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2790–2799
DOI 10.1109/CVPR.2019.00290.

Lin J, Rao Y, Lu J, Zhou J. 2017. Runtime neural pruning. Neural Information Processing
Systems 30:2181–2191.

Liu J, Zhuang B, Zhuang Z, Guo Y, Huang J, Zhu J, TanM. 2022. Discrimination-aware
network pruning for deep model compression. IEEE Transactions on Pattern Analysis
and Machine Intelligence 44(8):4035–4051 DOI 10.1109/TPAMI.2021.3066410.

Luo JH,Wu J, LinW. 2017. ThiNet: a filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE/CVF international conference on
computer vision, 5068–5076 DOI 10.1109/ICCV.2017.541.

MasanaM,Weijer J, Herranz L, Bagdanov AD, Álvarez JM. 2017. Domain-adaptive
deep network compression. In: Proceedings of the IEEE/CVF international conference
on computer vision, 4299–4307 DOI 10.1109/ICCV.2017.460.

McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA. 2017. Dropout: a simple
way to prevent neural networks from overfitting. In: Proceedings of the international
conference on artificial intelligence and statistics, 1273–1282.

Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B, Shahrzad
H, Navruzyan A, Duffy N, Hodjat B. 2019. Evolving deep neural networks. In:
Artificial intelligence in the age of neural networks and brain computing, 293–312
DOI 10.1016/B978-0-12-815480-9.00015-3.

Moon S, Byun Y, Park J, Lee S, Lee Y. 2019.Memory-reduced network stacking
for edge-level CNN architecture with structured weight pruning. IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems 9(4):735–746
DOI 10.1109/JETCAS.2019.2952137.

Sandler M, Howard A, ZhuM, Zhmoginov A, Chen L-C. 2018.MobileNetV2: inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 4510–4520 DOI 10.1109/CVPR.2018.00474.

Sekanina L. 2021. Neural architecture search and hardware accelerator co-search: a
survey. IEEE Access 9:151337–151362 DOI 10.1109/ACCESS.2021.3126685.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 28/30

https://peerj.com
http://dx.doi.org/10.1109/AICAS.2019.8771531
http://arXiv.org/abs/1509.02971
http://dx.doi.org/10.1109/CVPR42600.2020.00160
http://dx.doi.org/10.1109/CVPR.2019.00290
http://dx.doi.org/10.1109/TPAMI.2021.3066410
http://dx.doi.org/10.1109/ICCV.2017.541
http://dx.doi.org/10.1109/ICCV.2017.460
http://dx.doi.org/10.1016/B978-0-12-815480-9.00015-3
http://dx.doi.org/10.1109/JETCAS.2019.2952137
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/ACCESS.2021.3126685
http://dx.doi.org/10.7717/peerj-cs.2012

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a
simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research 1:1929–1958.

Szegedy C, LiuW, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke
V, Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, 1–9
DOI 10.1109/CVPR.2015.7298594.

TanM, Le Q. 2019. Efficientnet: rethinking model scaling for convolutional neural
networks. In: Proceedings of the international conference on machine learning,
6105–6114.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser L, Polo-
sukhin I. 2017. Attention is all you need. Neural Information Processing Systems
30:6000–6010.

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. 2017. Generalized
focal loss: learning qualified and distributed bounding boxes for dense object
detection. In: International conference on learning representations, 1–12.

Wang C, Grosse R, Fidler S, Zhang G. 2019. Structured pruning in the kroneckerfactored
eigenbasis. In: Proceedings of the international conference on machine learning,
6566–6575.

Wang J, Jiang T, Cui Z, Cao Z. 2021. Filter pruning with a feature map entropy im-
portance criterion for convolution neural networks compressing. Neurocomputing
461:41–54 DOI 10.1016/j.neucom.2021.07.034.

Wang H, Qin C, Zhang Y, Fu Y. 2020. Neural pruning via growing regularization. In:
International conference on learning representations, 1–16 ArXiv arXiv:2012.09243.

WenW,Wu C,Wang Y, Chen Y, Li H. 2016. Learning structured sparsity in deep neural
networks. Neural Information Processing Systems 29:2074–2082.

Yang TJ, Howard A, Chen B, Zhang X, Go A, Sandler M, Sze V, AdamH. 2018.
Netadapt: platform-aware neural network adaptation for mobile applica-
tions. In: Proceedings of the European conference on computer vision, 289–304
DOI 10.1007/978-3-030-01249-6_18.

Yu L, XiangW. 2023. X-pruner: explainable pruning for vision transformers. In: Pro-
ceedings of the 2023 IEEE/CVF conference on computer vision and pattern recognition,
Piscataway: IEEE, 24355–24363 DOI 10.1109/CVPR52729.2023.02333.

Yuan Y, Dong L. 2021.Weighted sparsity constraint tensor factorization for hyperspec-
tral unmixing. In: Proceedings of the IEEE international symposium on geoscience and
remote sensing, 3333–3336 DOI 10.1109/IGARSS47720.2021.9553154.

Zhang X, NgMK. 2022. Sparse nonnegative tensor factorization and completion with
noisy observations. IEEE Transactions on Information Theory 88(2):2551–2572
DOI 10.1109/TIT.2022.3142846.

Zhang T, Ye S, Feng X, Ma X, Zang K, Li Z, Tang J, Liu S, Lin X, Liu Y, Fardad
M,Wang Y. 2022. StructADMM: achieving ultrahigh efficiency in structured
pruning for DNNs. IEEE Transactions on Neural Networks and Learning Systems
33(5):2259–2273 DOI 10.1109/TNNLS.2020.3045153.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 29/30

https://peerj.com
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1016/j.neucom.2021.07.034
http://arXiv.org/abs/2012.09243
http://dx.doi.org/10.1007/978-3-030-01249-6_18
http://dx.doi.org/10.1109/CVPR52729.2023.02333
http://dx.doi.org/10.1109/IGARSS47720.2021.9553154
http://dx.doi.org/10.1109/TIT.2022.3142846
http://dx.doi.org/10.1109/TNNLS.2020.3045153
http://dx.doi.org/10.7717/peerj-cs.2012

Zhang T, Ye S, Zhang K, Tang J, WenW, FardadM,Wang Y. 2018. A systematic
DNN weight pruning framework using alternating direction method of multi-
pliers. In: Proceedings of the European conference on computer vision, 184–199
DOI 10.1007/978-3-030-01237-3_12.

Zhao C, Ni B, Zhang J, Zhao Q, ZhangW, Tian Q. 2019. Variational convolutional
neural network pruning. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2780–2789 DOI 10.1109/CVPR.2019.00289.

Zheng Y, Sun P, Ren Q, XuW, Zhu D. 2024. Deep model compression based on the
training history. Neurocomputing 569(7):1-10.

Lin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2012 30/30

https://peerj.com
http://dx.doi.org/10.1007/978-3-030-01237-3_12
http://dx.doi.org/10.1109/CVPR.2019.00289
http://dx.doi.org/10.7717/peerj-cs.2012

