
Submitted 23 January 2024
Accepted 1 April 2024
Published 30 April 2024

Corresponding author
Yu Xiang, xiangyu@ynnu.edu.cn

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.2011

Copyright
2024 Yang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

AMPLIFY: attention-based mixup for
performance improvement and label
smoothing in transformer
Leixin Yang and Yu Xiang
School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan, China

ABSTRACT
Mixup is an effective data augmentationmethod that generates new augmented samples
by aggregating linear combinations of different original samples. However, if there
are noises or aberrant features in the original samples, mixup may propagate them to
the augmented samples, leading to over-sensitivity of the model to these outliers. To
solve this problem, this paper proposes a new mixup method called AMPLIFY. This
method uses the attention mechanism of Transformer itself to reduce the influence of
noises and aberrant values in the original samples on the prediction results, without
increasing additional trainable parameters, and the computational cost is very low,
thereby avoiding the problem of high resource consumption in common mixup
methods such as Sentence Mixup. The experimental results show that, under a smaller
computational resource cost, AMPLIFY outperforms other mixup methods in text
classification tasks on seven benchmark datasets, providing new ideas and new ways
to further improve the performance of pre-trained models based on the attention
mechanism, such as BERT, ALBERT, RoBERTa, and GPT. Our code can be obtained
at https://github.com/kiwi-lilo/AMPLIFY.

Subjects Artificial Intelligence, Natural Language and Speech, Text Mining, Neural Networks
Keywords Mixup, Attention mechanism, Data augmentation, Model robustness,
Label smoothing

INTRODUCTION
Data augmentation techniques arewidely used inmodernmachine learning field to improve
the predictive performance and robustness of computer vision and natural language
processing (NLP) models by adding feature noise to the original samples. Compared
to computer vision tasks, NLP tasks face samples with more complex data structures,
semantic features, and semantic correlations, as natural language is the main channel
of human communication and reflection of human thinking (Li, Hou & Che, 2022).
Therefore, NLP models are more sensitive to the quality of the dataset, and often require
a variety of data augmentation techniques to improve the model’s generalization ability,
adaptability, and robustness to new data in practical engineering applications. Common
text data augmentation techniques include random synonym replacement (Zhang, Zhao
& LeCun, 2015), back-translation (Xie et al., 2020), random word insertion and deletion,
etc. (Wei & Zou, 2019). The core idea of these methods is to generate more training samples
by performing a series of feature transformations on the original samples, allowing the

How to cite this article Yang L, Xiang Y. 2024. AMPLIFY: attention-based mixup for performance improvement and label smoothing in
transformer. PeerJ Comput. Sci. 10:e2011 http://doi.org/10.7717/peerj-cs.2011

https://peerj.com/computer-science
mailto:xiangyu@ynnu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2011
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://github.com/kiwi-lilo/AMPLIFY
http://doi.org/10.7717/peerj-cs.2011


model to learn and adapt to changing feature information, and enabling themodel to better
deal with and process uncertainty in the samples. Additionally, by selectively increasing
the size of the training set, data augmentation techniques can effectively alleviate the
negative impact of limited data and imbalanced data classification on model prediction
performance.

Standard mixup is a simple and effective image augmentation method first proposed
in 2017 (Zhang et al., 2017). It aggregates two images and their corresponding labels by
linear interpolation to generate a new augmented image and its pseudo-label. The main
advantage of the standard mixup technique is that it purposefully generates beneficial
noise by using the weighted average of features in the original samples. After adapting to
this noise, the model becomes less sensitive to other noise in the training samples, thereby
improving the model’s generalization ability and robustness. Additionally, because it can
generate more augmented samples by aggregating different original sample pairs, even
at a high data augmentation magnitude, there is no duplicate aggregation result. This
greatly enhances the diversity of augmented samples, thereby effectively improving the
training efficiency of the model and reducing the risk of overfitting. In the NLP field, the
standard mixup technique can be broadly divided into two categories: Input Mixup (Yun
et al., 2019) and Hidden Mixup (Verma et al., 2019). Input Mixup increases the number of
samples in the training set input to the model. The specific process involves padding all text
sequences in the training dataset to the same length. After completing word embedding
processing, random pairs of sequences are combined. Mixup operations are then applied
to the two vectorized samples in each sequence pair, along with their corresponding
classification labels, generating augmented samples and their pseudo-labels. Finally, the
augmented samples and pseudo-labels are fed into the model for training. Input Mixup
performs mixup operations during the word embedding stage of text preprocessing and
only involves semantic features in the word vector space. Its main objective is to increase
the training set size and reduce overfitting. Hidden Mixup applies mixup operations in
the hidden layers of the model. The specific process involves randomly selecting two
sequences, x and x ′, from the training set. After processing through the model, a random
layer is selected from the model’s hidden layers, and the output features, h and h′, of x and
x ′ at that layer are extracted. Mixup is then performed on h, h′, and their labels, resulting
in linearly interpolated mixed features and corresponding pseudo-labels.

h= λh+ (1−λ)h′.
Finally, the mixed features are fed into subsequent hidden layers. Hidden Mixup

performs mixup during the feature extraction stage of text processing and only involves
specific hidden layers in the model. Its main objective is to enhance the model’s
generalization ability without requiring additional input data. In summary, Input Mixup
increases the sample quantity, while Hidden Mixup increases feature diversity. Both
methods focus on improving model performance through mixup operations, albeit with
different emphases. Verma et al. (2019)’s research has shown that performing mixup
operations at the input layer of the model leads to underfitting, while performing mixup
at deeper layers makes the training easier to converge. However, when the original samples
contain noise or outliers, performing mixup may result in generated augmented samples

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 2/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


containing more regular noise or outliers due to the principle of linear interpolation. If the
model learns too much from this noise and outliers, it may cause obvious overfitting and
prediction bias, thereby reducing the model’s generalization performance. The basic idea
of Standard Mixup is to linearly aggregate two samples

(
xi,yi

)
and

(
xj,yj

)
in the training

setDtrain, to generate a new sample
(
xmix,ymix

)
as an augmented input to train the network,

where x represents the sample and y represents its corresponding label. This aggregation
process can be expressed by the following formulae:

xmix= λxi+ (1−λ)xj
ymix= λyi+ (1−λ)yj

where λ is the weight sampled from the Beta distribution.
Multi-head attention (MHA) (Vaswani et al., 2017) is a technique commonly used in

sequence-to-sequence models to calculate feature correlations. Namely, it can calculate
the attention weights for each position in the sequence in parallel using different attention
heads, and then obtain the representation of the entire sequence by summing the weighted
values. Specifically, MHA helps the model establish correspondences between features in
the input and output sequences, thereby improving the expressiveness and accuracy of the
model. It can also attend to different features at different positions in the input sequence
without taking into account their distance, assigning different weights to different parts of
the input to capture information relevant to the output sequence. To address the problem
of noise and out-of-distribution values in original samples, which affect the aggregated
samples in standard mixup, our AMPLIFYmethod uses the HiddenMixup idea to perform
mixup operations on the hidden layers of the Transformer block. Since the output of the
MHA already includes the model’s attention to different parts of the input sequence, it
can guide the model on which features to retain and which to discard when aggregating
different samples, ultimately integrating more critical features into the generated output
sequence. Therefore, AMPLIFY duplicates the MHA output results of the sample sequence
in the same batch, shuffles the order of these copies, and then performs mixup on them
with the original output results. This allows the model to aggregate the correlations and
attention of two sample features multiple times at different levels, thereby obtaining more
reasonable weights for each position in the aggregated sequence and avoiding unnecessary
noise or feature information loss during themixup process. Additionally, since the attention
mechanism itself is a method of weighting the input features, AMPLIFY is more natural
and effective intuitively.The overall structure of the model is depicted in Fig. 1.

Since AMPLIFY aggregates the features of the augmented sample and the corresponding
original sample in the hidden layers of the model, it has lower computational cost and fewer
parameters compared to other data augmentation methods. It also avoids the problem of
increased time and resource consumption caused by standard mixup methods. In addition,
Our result have shown that our method can better learn the key features of the input
sequence, improving the generalization ability and prediction performance of the model.
For example, on the MRPC dataset, AMPLIFY’s average accuracy is 1.83% higher than the
baseline, and 1.04%, 1.72%, and 1.46% higher than EmbedMix, SentenceMix, and TMix,
respectively.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 1 A schematic of AMPLIFY. In each encoder block of the Transformer, the forward-propagated
input data is duplicated and re-ordered according to the label-mixing order after obtaining the results of
the multi-head attention, and then mixup operation is performed. No changes are made to other network
structures. Similarly, each decoder block can also perform the same operation.

Full-size DOI: 10.7717/peerjcs.2011/fig-1

Motivation
AMPLIFY is an attention-based data augmentation method that generates new training
samples by reordering the output of attention. The purpose of reordering the multi-head
attention (MHA) is to introduce different semantic focuses in the generated samples
and enhance the model’s learning ability for diverse semantic information. By rearranging
attention, themodel’s focus on different positions in the input sequence can be altered. This
change makes the generated samples slightly different from the original samples in terms of
semantics, while still preserving the essential semantic information of the original samples.
The aim of this data augmentation method is to increase the diversity of training data,
thereby improving the model’s generalization capability. Randomly shuffling attention
weights allows the model to exhibit varying degrees of focus on different positions in the
input sequence within the generated samples, thus enhancing the diversity of training data
and improving the model’s generalization ability.

Contribution
• We propose the AMPLIFY method, which utilizes the attention mechanism of the
Transformer block itself to reduce the impact of noise and outliers in the original
samples on prediction results. AMPLIFY applies mixup operations on the output of
the attention mechanism in the hidden layers of the model, allowing the aggregation of
feature correlations and attention from different samples.
• AMPLIFY can avoid the high resource consumption issue caused by common mixup
methods such as Sentence Mixup, without increasing additional trainable parameters
and with low computational cost.
• Experiments on seven benchmark datasets demonstrate that the AMPLIFY method
outperforms other mixup methods in text classification tasks, providing a new approach
for improving the performance of attention-based pre-trained models such as BERT,
ALBERT, and others.
• AMPLIFY only involves different representations of sample features in the model’s
hidden layers and does not require additional input data, saving computational resources
and time.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 4/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-1
http://dx.doi.org/10.7717/peerj-cs.2011


• AMPLIFY exhibits higher computational efficiency compared to other mixup methods,
avoiding certain resource overheads, reducing the overall algorithmic costs, and
demonstrating stronger engineering significance.

RELATED WORK
Data augmentation
Data augmentation refers to a class of methods that generate new data with certain semantic
relevance based on the features of existing data. By addingmore augmented data, the overall
prediction performance of the model can be improved and the robustness of the model can
be enhanced. In the case of a limited size of the training set, data augmentation techniques
are more effective because they can significantly reduce the risk of overfitting and improve
the generalization ability of the model. However, the inherent difficulty of NLP tasks makes
it difficult to construct data augmentation methods similar to those in the computer vision
field (such as cropping and flipping), which may significantly alter the semantics of the
text and make it difficult to balance the quality of the data with the diversity of the features.
Currently, data augmentation methods in the NLP field can be roughly divided into three
categories: paraphrasing (Wang & Yang, 2015), noising (Wei & Zou, 2019), and sampling
(Min et al., 2020). Among them, paraphrasing methods involve certain transformations of
the characters, words, phrases, and sentence structures in the text while trying to retain the
semantics of the original text. However, such methods may lead to differences in textual
semantics in different contexts, for example, substituting ‘‘I eat an iPhone every day’’ for ‘‘I
eat an apple every day’’ obviously does not make sense. Noising methods aim to add some
continuous or discrete noise to the sentence while keeping the label unchanged. Although
this method has little impact on the semantics of the text, it may have a significant impact
on the basic structure and grammar of the sentence, and there are also certain limitations
in improving the diversity of features. For example, adding noise to the sentence ‘‘i like
watching sunrise’’ to turn it into ‘‘i like, watching jogging sunrise’’ would impair the
grammatical integrity of the original sentence. The goal of sampling methods is to select
samples based on the feature distribution of the existing data and use these samples to
augment new data. This method needs to define different selection strategies manually
according to the features of different datasets, so its application range is limited and the
diversity of the features obtained by augmentation is relatively poor.

Mixup
Mixup is a noise-based data augmentation technique introduced by Zhang et al. (2017). It
was first introduced in the field of computer vision and is nowwidely used in the entire field
of deep learning. Its purpose is to improve the predictive performance of neural network
models by generating regularly noised samples. The standard mixup method generates
a new augmented image by linearly interpolating two existing images and their labels,
encouraging the model to learn more generalized decision boundaries. To bring the idea of
standard mixup data augmentation to the NLP field, Guo, Mao & Zhang (2019) modified
the underlying operations of standard mixup and proposed two methods for applying
mixup in NLP tasks: EmbedMix, which performs mixup in the word embedding space, and

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 5/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Sentence Mixup, which performs mixup after information aggregation in the final hidden
layer. Sun et al. (2020) first proposed a strategy for doing mixup on transformer-based
pre-trained text models and concluded that the smaller the data volume, the greater the
improvement in model performance due to mixup. Chen, Yang & Yang (2020) proposed a
mixup method for semi-supervised text classification called TMix, which uses two different
sets of data to randomly select a layer in all hidden layers of the model and perform
mixup on its features. SeqMix, proposed by Zhang, Yu & Zhang (2020), is a technique for
improving feature diversity during active learning by mixing sequences in the feature space
of hidden layers. It provides an effective solution for mixup at the subsequence level and a
method for augmenting the labels of active sequences.

Attention
Attention is a commonly used technique in machine learning that allows models to
focus on important information in sequence data and learn the underlying features of that
information. In theNLP field, attention assigns aweight to each hidden state and determines
which feature state the output should focus on based on the varying weights. This helps the
model better understand key features in a sentence, ultimately improving the performance
of sequence models. Recently, some computer vision models have attempted to combine
mixup with saliency-based attention mechanisms, such as attentive-CutMix (Walawalkar
et al., 2020), puzzle-Mix (Kim, Choo & Song, 2020), and saliency-CutMix (Uddin et al.,
2020). One successful case of introducing mixup to the mainstream pre-trained model,
Vision Transformer (ViT), is TransMix (Chen et al., 2022), which dynamically reassigns
label weights based on the response of each data point in the attention map. Inputs that
are better focused in the attention map are assigned higher values in the mixed labels.

Hidden mixup
Recent research in data augmentation has explored the use of mixup in the hidden layers of
deep learning models. For example, Verma et al. (2019) proposed a mixup augmentation
algorithm called Manifold Mixup, which trains neural networks on interpolated hidden
representations and encourages the network to maintain uncertainty about the size of
the unobserved feature representation space during training. This causes the feature
representations of real training samples to be concentrated in a low-dimensional subspace,
resulting in more discriminative aggregated features. Yoon, Kim & Park (2021) proposed a
data augmentation algorithm called SsMix, which performs span-based mixing on input
text sequences. This method selects the least salient span in text A and replaces it with the
most salient span of the same length in text B, while preserving most of the important
tokens in both sequences. However, current research has not yet explored the combination
of mixup and MHA in the hidden layer of Transformer architecture.

METHOD
Portions of this text were previously published as part of a preprint (https://arxiv.org/abs/
2309.12689)

Assuming that our AMPLIFY method requires the following inputs, outputs, function
definitions, and data structures:

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 6/27

https://peerj.com
https://arxiv.org/abs/2309.12689
https://arxiv.org/abs/2309.12689
http://dx.doi.org/10.7717/peerj-cs.2011


• Tpre is a pre-trained text classification model based on Transformer architecture.
• Dtrain=

{〈
xi,yi

〉}m
i=1 is the training set of a downstream text classification task with m

samples, where xi is a sample sequence and yi is its corresponding label.
• Mo

B =
{〈
xo1 ,y

o
1
〉
,
〈
xo2 ,y

o
2
〉
,...,

〈
xol ,y

o
l
〉}

is the mini-batch of Tpre during each training
iteration, with a sample size of l .
• S

(
Mo

B
)
is a random shuffling function that is responsible for changing the order of

samples in the mini-batch.
• I

(
Mo

B
)
is an index function that is responsible for retrieving a collection of text sequences

Mo
B with l elements and returning the corresponding index according to the order of

these elements.
• R

(
Mo

B,indexR
)
is a reordering function that is responsible for reordering the elements

in the collection of text sequences Mo
B with l elements according to the index indexR,

and returning the sorted sequence collection.
• AMHA

pre (x) represents the corresponding feature sequence output after the input sample
sequence x is fed forward to the Muti-Head Attention layer in the Transformer block of
Tpre.
• Beta(α,α) represents the U-shaped Beta probability distribution function with shape
parameter α.
• WS(Beta(α,α)) represents a weight value obtained by sampling according to the
U-shaped beta probability distribution.
• LABEL

(
Mo

B,indexR
)
is a label generation function that selects the corresponding labels

from a collection of sequences Mo
B in the order provided by the index indexR and puts

them together into a label set.
• FN

(
Mo

B
)
is the prediction function of the text classification model, which generates a

set of probabilities for each sequence corresponding to N categories based on the input
sequence setMo

B.

Based on the above initial conditions, our AMPLIFY algorithm includes the following
specific steps:

• Step 1: When model Tpre is trained for downstream text classification tasks, a
corresponding mini-batch, referred to as Mo

B, is obtained from training set Dtrain

through the following formula in each iteration:

Mo
B :Dtrain→

{〈
xoi ,y

o
i
〉}l

i=1=
{〈
xo1 ,y

o
1
〉
,
〈
xo2 ,y

o
2
〉
,...,

〈
xol ,y

o
l
〉}

(1)

• Step 2: A copy ofMo
B is made and namedMs

B. The sample sequences inMs
B are shuffled

randomly, and then the index of the shuffled elements is obtained through the indexing
function I

(
Ms

B
)
, which is denoted as indexR (it is used to calculate the loss value, as

detailed in Eq. (8)). This process can be expressed as the following formulae:

Mo
B→Ms

B=
{〈
x si ,y

s
i
〉}l

i=1 =
{〈
x s1,y

s
1
〉
,
〈
x s2,y

s
2
〉
,...,

〈
x sl ,y

s
l
〉}

indexR = I
(
S
(
Ms

B
))

(2)

• Step 3: Calculate the value of AMHA
pre

(
xoi
)
for each sample sequence xoi inMo

B, and obtain
the corresponding feature sequence set for Mo

B, denoted as FoB. This process can be

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


expressed as the following formula:

FoB=
{〈
AMHA
pre

(
xo1
)
,yo1
〉
,
〈
AMHA
pre

(
xo2
)
,yo2
〉
,...,

〈
AMHA
pre

(
xol
)
,yol
〉}

(3)

• Step 4:Make a copy of FoB called FsB, and reorder the sequence label pairs in FsB based on
indexR using funciton R

(
FoB,indexR

)
. The process can be represented by the following

equations:

FoB→ FsB=R
({〈

AMHA
pre

(
xoi
)
,yoi
〉}l

i=1
,indexR

)
=

{〈
AMHA
pre

(
x s1
)
,y s1
〉
,
〈
AMHA
pre

(
x s2
)
,y s2
〉
,...,

〈
AMHA
pre

(
x sl
)
,y sl
〉}
. (4)

• Step 5: Perform element-wise mixup operation on FoB and FsB to obtain the aggregated
feature sequence setMmix

B , which is then fed into the subsequent hidden neural network
layer. Considering that AMPLIFY requires mixup operation to be performed in each
Transformer block, if the weight coefficients λ for mixup in different blocks are
not the same, it will lead to frequent and intense disturbance to the features in the
sequence, and some abnormal features or noise will also be constantly accumulated and
strengthened, resulting in significant fluctuations in the model’s loss value during the
actual experimental process. Moreover, when there is a large difference in the λ values
between each block, this instability will be further amplified. Therefore, the λmax we
use is different from the definition in the standard mixup. To improve the stability
of linear interpolation and the consistency of feature representation, in the AMPLIFY
algorithm, we adopt a method of first performing multiple samplings based on the Beta
probability distribution (BPD), and then selecting themaximum value from the resulting
λ values. Specifically, we call function Beta(α,α) multiple times to obtain a weight set
with n elements, denoted as 3, and then select the maximum weight value λmax in this
set as the weight coefficient for all mixup operations in the model. This method can
significantly reduce the adverse impact of randomness in the feature sequence on linear
interpolation, making one feature sequence the explanatory term and the other the
random perturbation term, which is also the reason why we tend to choose smaller α
values. In addition, according to Zhang et al. (2017)’s research, when α→∞, the value
of the BPD will approach 0.5 infinitely, and the training error of the model on the real
dataset will also increase significantly. If the standard mixup calculation method is used
for mixing operation, it is likely to produce a large number of abnormal features due
to significant disturbance caused by linear interpolation, which, in turn, will make the
model prediction to deviate and greatly reduce its generalization performance. On the
other hand, as shown in Fig. 2, since the weight value obtained by randomly sampling
only once from the U-shaped BPDmay fall into the low probability area, or even be very
close to Therefore, sampling a total of n weights from the BPD and taking the maximum
value can effectively avoid this issue. According to experimental results, we also found
that if the value of n is large, the weight values sampled from the U-shaped BPD will
appear in the high probability area in large quantities, and the maximum value selected
from them will also be closer to 1. This results in a significant reduction in the weight
of the feature sequence FoB or FsB that serves as the random perturbation term, and even

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 8/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


renders it ineffective as a perturbation, thus making mixup meaningless. Eventually,
based on the experimental results Table 1 (we compared the classification performance
of AMPLIFY with different weight sampling numbers on five datasets. The mean in the
table is the average performance on the five datasets, and it reaches its optimal when
sampled five times), we choose a= 0.1 and n= 5 to avoid obtaining risky weight values
as much as possible and effectively leverage the role of random perturbation term. The
above process can be described by the following equations:

3={λi=WS(Beta(α,α))}ni=1={λ1,λ2,...,λn},λmax=max(3). (5)

xmix
i = λmax ·xoi +(1−λmax) ·x si
ymix
i = λmax ·yoi +(1−λmax) ·y si (6)

Mmix
B =

{〈
xmix
i ,ymix

i
〉}l

i=1=
{〈
xmix
1 ,ymix

1
〉
,
〈
xmix
2 ,ymix

2
〉
,...,

〈
xmix
l ,ymix

l
〉}
.

• Step 6: Calculate the loss value Lmix based on the predicted results of the model.
Standard Mixup uses two common methods to calculate the loss value. One method
calculates the cross-entropy loss value by taking the logits output by the text classification
head and computing it with the ground truth in both the original order and the shuffled
order, and then weighting the two loss values and adding them together as the total
loss. The other method calculates the cross-entropy loss value between the logits and
the mixed pseudo-labels. Essentially, the main difference between these two methods
is the order in which the weighting and cross-entropy loss calculations are performed.
The first method calculates the cross-entropy loss value of the results first, and then
performs weighting and summation, while the second method first performs weighting
and summation of the results before calculating the corresponding cross-entropy loss
value. In the AMPLIFY algorithm, according to the experimental results of Yoon, Kim
& Park (2021), we adopt the more effective first method to calculate the loss value Lmix.
The specific process can be represented by the following equations:

logits=FN
(
Mmix

B
)
,indexo= I

(
Mo

B
)
. (7)

gto= LABEL
(
Mo

B,indexo
)
,gts= LABEL

(
Mo

B,indexR
)

Lmix⇐ λmax ·CrossEntropy
(
logits,gto

)
+ (8)

(1−λmax) ·CrossEntropy
(
logits,gts

)
.

From the perspective of reflecting the correlation between labels, the method of mixing
labels in the AMPLIFY algorithm can be considered as an enhanced version of label
smoothing. Through the weight coefficient λmax, we can determine how much proportion
of the cross-entropy loss value comes from the interpretive term and howmuch proportion
comes from the random perturbation term. This is equivalent to adding moderate noise
to the original labels, so that the modelś prediction results do not overly concentrate on
the categories with high probabilities, leaving some possibilities to the categories with low

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 9/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 2 The PDF of the U-shaped beta probability distribution Beta(α,α) corresponding to different
shape parameters α.

Full-size DOI: 10.7717/peerjcs.2011/fig-2

probabilities, while effectively reducing the risk of overfitting. In summary, the pseudocode
of the AMPLIFY algorithm is shown as follows:

Algorithm 1: Algorithm of AMPLIFY.
Input:
The pre-trained text classification model based on Transformer architecture Tpre

The training dataset of downstream text classification task withm samples Dtrain=
{〈
xi,yi

〉}m
i=1

The mini-batch during each training iterationMo
B=

{〈
xo1 ,y

o
1

〉
,
〈
xo2 ,y

o
2

〉
,...,

〈
xol ,y

o
l

〉}
The weight coefficient for all Mixup operations in the model λmax

The random shuffling function S
(
Mo

B

)
The U-shaped Beta probability distribution function Beta(α,α)
The feature sequence output by the Muti-Head Attention layer AMHA

pre (x)
Output:
The Logits output by the text classification head logits
The final loss value of the model Lmix
foreachMo

B⊂Dtrain do
Use equation ?? to obtain the shuffled mini-batchMs

B and its index indexR.
foreachmulti-head attention layer ∈Tpre do

Use equation ?? to obtain the feature sequence set FoB corresponding toM
o
B.

Use equation ?? to obtain the re-ordered feature sequence FsB based on indexR.
Use equations 6 to element-wise mixup FoB and FsB, obtaining the aggregated feature sequence
setMmix

B .
end
Use equation ?? to obtain the prediction result logits of the model.
Use equations ?? to calculate the loss value Lmix

end

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 10/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-2
http://dx.doi.org/10.7717/peerj-cs.2011


Table 1 The impact of different weight sampling numbers on AMPLIFY. The bold indicates the optimal results in each dataset.

Number of weights sampled MRPC SST-2 SST-5 TREC-fine TREC-coarse IMDB YELP-5 Mean

1 82.25 91.27 52.57 86.40 96.60 91.48 96.98 85.36
3 82.43 91.76 51.86 91.00 96.00 91.60 97.18 85.98
5 83.19 91.71 53.76 91.40 96.60 91.62 97.19 86.50
7 83.71 90.93 53.62 90.40 96.20 91.57 96.95 86.20
9 83.13 91.43 53.12 90.00 96.00 91.60 96.99 86.04
20 82.55 91.38 53.26 90.20 96.60 91.61 97.01 86.09

EXPERIMENTS
Benchmark datasets and models
When designing our experiment, considering the representativeness of the model and its
relevance to text classification tasks, we chose the BERT-base-uncased model (Devlin et al.,
2018) from the HuggingFace Transformers library as the backbone network among many
pre-trained models based on the Transformer architecture. we conducted experiments on
seven benchmark datasets including:

• MRPC (https://huggingface.co/datasets/SetFit/mrpc): The MRPC dataset is a binary
classification task dataset used for determining whether sentences have similar meanings.
It consists of sentence pairs sourced from the internet, where the pairs are annotated
as either ‘‘yes’’ or ‘‘no’’ to indicate whether they have the same semantics. The dataset
comprises 3,669 sentence pairs, with each pair having a binary label (Wang et al., 2018).
• SST-2 (https://huggingface.co/datasets/SetFit/sst2): The SST-2 dataset is a binary
classification task dataset used for sentiment classification, specifically classifying the
sentiment polarity of sentences as either positive or negative. It contains 6921 samples,
with each sample having a binary label (Wang et al., 2018).
• SST-5 (https://huggingface.co/datasets/SetFit/sst5): The SST-5 dataset is a fine-grained
sentiment classification task dataset used for sentiment classification. It divides sentences
into five emotional categories, namely very negative, negative, neutral, positive, and very
positive. The dataset comprises 8,545 samples, with each sample having a five-class
sentiment label (Socher et al., 2013).
• TREC (https://www.kaggle.com/datasets/thedevastator/the-trec-question-classification-
dataset-a-longi): The TREC dataset is a dataset used for question classification tasks,
classifying questions into coarse-grained and fine-grained categories. It encompasses
diverse types of questions, including those related to person names, locations, numbers,
and more. The dataset consists of 5,453 question samples, with six coarse-grained labels
and 50 fine-grained labels (Li & Roth, 2002).
• Yelp-5 (https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-
classes-csv): The YELP-5 dataset is a sentiment classification task dataset used for
sentiment analysis. It comprises user reviews sourced from the Yelp website. The task
involves categorizing the reviews into five sentiment categories: very negative, negative,
neutral, positive, and very positive. The dataset consists of 650,000 user review samples,
with each sample having a five-class sentiment label (Yelp, 2014).

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 11/27

https://peerj.com
https://huggingface.co/datasets/SetFit/mrpc
https://huggingface.co/datasets/SetFit/sst2
https://huggingface.co/datasets/SetFit/sst5
https://www.kaggle.com/datasets/thedevastator/the-trec-question-classification-dataset-a-longi
https://www.kaggle.com/datasets/thedevastator/the-trec-question-classification-dataset-a-longi
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
http://dx.doi.org/10.7717/peerj-cs.2011


• IMDB (https://www.kaggle.com/datasets/ashirwadsangwan/imdb-dataset): The IMDB
dataset is a sentiment classification task dataset used for sentiment analysis. It consists
of sentences extracted from movie reviews. The objective of the task is to determine
whether the reviews are positive or negative in sentiment. The dataset comprises 25,001
movie review samples, with each sample having a binary sentiment label (Maas et al.,
2011).

These datasets are all from the official websites of Huggingface datasets and the source
datasets.

Baselines
We conducted a detailed experimental comparison of our AMPLIFY method with the
following four baseline methods:

• No mixup: Relying solely on the predictive ability of the backbone network without
using mixup technology (Devlin et al., 2018).
• EmbedMix: First, the zero-padding technique is used to pad all text sequences in the
training set to the same length. After completing word embedding processing, pairs of
sequences are randomly combined. Then, mixup operations are performed separately on
the two vectorized samples in the sequence pairs and their corresponding classification
labels to obtain the augmented sample and its pseudo-label. Therefore, the mixup
operation of this method occurs in the word embedding stage of the text preprocessing,
involving only semantic features in the word vector space (Guo, Mao & Zhang, 2019).
• SentenceMixup: First, the encoder of the text model is used to process all samples in
the training set to obtain the corresponding sentence-level sequence encoding. Then,
mixup operations are performed separately on the two randomly selected sequence
encodings and their labels to obtain the feature sequence after linear interpolation and
its pseudo-label. Finally, the mixed result is fed to the softmax layer at the end of the
network. Therefore, the mixup operation of this method occurs in the prediction stage
of text processing, and the entire feature aggregation process only involves the hidden
layers within the classification head (Guo, Mao & Zhang, 2019).
• TMix: First, two sequences xa and xb are randomly selected from the training set and
processed by the text model T . Then, a random hidden layer is selected from the hidden
layers of T , and the output x fa and x fb of xa and xb in that hidden layer are extracted.
Then, mixup operations are performed separately on these two feature sequences x fa
and x fb and their labels, obtaining mixed feature sequence after linear interpolation
and its corresponding pseudo-label, which are then fed to the subsequent hidden layer.
Therefore, the mixup operation of this method occurs in the feature extraction stage of
text processing, involving only a specific hidden layer in the model (Chen, Yang & Yang,
2020).

For EmbedMix, SenMixup, and TMix, we followed the best parameter settings provided
in their original papers, where shape parameter α= 0.2, and the mixup weight coefficients
λ for these methods are calculated using the following equations:

λt =WS(Beta(α,α)),λ=max(λt ,1−λt ). (9)

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 12/27

https://peerj.com
https://www.kaggle.com/datasets/ashirwadsangwan/imdb-dataset
http://dx.doi.org/10.7717/peerj-cs.2011


Table 2 Comparison experimental results of different mixupmethods on seven benchmark datasets. All values in the table are the average accu-
racy (%) and variance of the model after running three times with three different random seeds Dror et al. (2018). The bold indicates the optimal re-
sults in each dataset.

Method GLUE TREC SetFit IMDB

MRPC SST-2 coarse fine SST-5 YELP-5

No mixup 81.20 ± 0.442 91.05 ± 0.605 96.20 ± 0.240 86.47 ± 0.596 53.24 ± 0.519 97.18 ± 0.006 91.45 ± 0.007
EmbedMix 81.99 ± 0.346 91.31 ± 0.029 96.73 ± 0.036 89.67 ± 0.809 51.98 ± 0.306 97.15 ± 0.008 91.61 ± 0.008
SentenceMix 81.31 ± 0.135 91.71 ± 0.097 96.40 ± 0.187 89.87 ± 1.316 53.05 ± 0.017 97.12 ± 0.002 91.54± 0.024
TMix 81.57 ± 0.271 91.62 ± 0.065 96.87 ± 0.062 89.67 ± 0.969 52.91 ± 0.246 97.13 ± 0.003 91.54 ± 0.005
Ours 83.03 ± 0.110 91.01 ± 0.041 97.00 ± 0.187 90.67 ± 0.276 53.41 ± 0.227 97.18 ± 0.001 91.63 ± 0.009

For our AMPLIFY method, the weight coefficient λmax is calculated using Eq. (5), where
α= 0.1 and the number of samples n= 5. Additionally, during the training for the TMix
method, we randomly select one hidden layer from the 7th, 9th, and 12th blocks of the
BERT-base-uncased model for mixup operation.

Experimental settings
In all experiments, AdamW (Loshchilov & Hutter, 2017) is chosen as the optimizer for
training, using cosine learning rate (Shazeer & Stern, 2018), warmup step accounting for
10% of the total training steps, initial learning rate of 2e−5, EPS of 1e−8, weight decay
coefficient of 0.01, batch size of 32, maximum sequence length of 256, maximum epochs
of 15 for fine-tuning the pre-trained model, and early stop patience of 5. To ensure the
consistency and effectiveness of the experimental process, the construction method of
all neural network models involved comes from HuggingFace Transformers (Wolf et al.,
2019), and all experiments are completed on the same NVIDIA RTX A6000 GPU based
on the same configuration file parameters under the Pytorch Lightning framework. Each
experiment uses 3 different random seeds and reports themean and variance of the results.

RESULTS
Overall results
Table 2 details the impact of our AMPLIFY method and other standard mixup methods on
the performance of baseline pre-trained text models (denoted as ‘‘No Mixup’’ in the table)
on seven benchmark datasets. The results show that AMPLIFY provides better performance
gains for the baseline model, and the idea of introducing a random perturbation term also
serves as a good regularization to reduce the risk of overfitting. Moreover, with the
continuous iteration of the training process, AMPLIFY almost outperforms other standard
methods in all experiments, especially on the TREC-Fine dataset, where its improvement
on model accuracy reaches 4.2%. In addition, in terms of the variance of the results, the
performance gain of AMPLIFY is relatively stable, indicating that it has good robustness
to deal with uncertainty in the samples, as well as better overfitting resistance than other
mixup methods.

What caught our attention is that on the Yelp-5 dataset with 560,000 training samples,
almost all mixup methods failed to provide a net performance gain for the baseline model.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 13/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Observing the experimental process and results, We believe this is because pre-trained
models like BERT generally perform well when facing large-scale datasets, as they are
usually pre-trained on massive corpora of textual data, allowing them to learn more
language-level knowledge and patterns. Therefore, they have already achieved excellent
performance on datasets such as Yelp-5, which have relatively clear classification features,
leaving limited room for mixup to improve their performance. On the other hand, mixup
methods essentially augment the samples and their labels by using the existing feature
information in the same dataset, which is different from standard data augmentation
strategies and does not introduce out-of-domain feature information. Therefore, they
cannot significantly improve the model’s performance or seriously impair it. When the
dataset is large, the baselinemodel can already understand the text features well. In this case,
using mixup methods may not have a significant effect. However, when the dataset is small
and the model’s overfitting problem is severe, like many other data augmentation methods,
mixup can often have a significant effect, helping the model improve its generalization
ability and robustness in the face of sample uncertainty (Sun et al., 2020).

For example, the MRPC dataset has only 4,500 samples, and using the mixup method
on it can lead to performance gains, especially for AMPLIFY, which performs multiple
mixup operations during the model’s prediction process, effectively adding multiple mild
random perturbations to the feature sequence, resulting in more significant performance
gains. Additionally, when using the mixup method to augment feature sequences, the
mixed sequences must differ significantly from the original ones to improve the model’s
generalization performance. If the number of sequences per class in the dataset is relatively
balanced, the distribution of differences between the mixed samples will also be more
uniform, making it difficult for the mixup method to bring further performance gains, as
demonstrated in the study by Yoon, Kim & Park (2021). From this perspective, the sample
sizes of various categories in Yelp-5 are very similar, and the feature distribution of the
data is relatively balanced. Therefore, the differences between the mixed sequences are not
significant enough, which renders the mixup method ineffective. Furthermore, on SST-2,
the AMPLIFY method resulted in negative gains in model performance. After analyzing
the reasons, we found that SST-2 is a dataset used for sentiment binary classification
tasks, and it contains text samples of audience comments on movies or annotations of
audience sentiment on movies. Therefore, these comment texts vary greatly in length, and
after padding, many text sequences contain a large number of meaningless placeholders.
Therefore, when performingmixup operations on feature sequences of short and long texts,
it may mix placeholders with sentiment information, which weakens or even submerges
the classification features, thereby affecting the model’s prediction results.

To further validate the effectiveness of AMPLIFY, we selected the distilled version of
BERT, DistilBERT, as the backbone network for comparison. Table 3 details the impact of
AMPLIFY on the performance of DistilBERT on seven benchmark datasets. As can be seen
from the results, since DistilBERT has only six Transformer encoder blocks compared to
BERT’s 12, the number of mixup operations on DistilBERT with AMPLIFY was reduced by
half, resulting in a less significant improvement in performance compared to the standard

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Table 3 The effectiveness of using AMPLIFY on DistilBERT. The bold indicates the optimal results in each dataset.

Method GLUE TREC SetFit IMDB

MRPC SST-2 coarse fine SST-5 YELP-5

no mixup 81.76± 0.507 90.17± 0.135 97.13± 0.222 85.39± 1.307 50.99± 0.955 96.75± 0.005 90.62± 0.003
EmbedMix 81.79± 0.346 90.11± 0.029 97.03± 0.036 85.67± 0.809 50.98± 0.306 96.75± 0.008 90.61± 0.008
SentenceMix 81.74± 0.385 90.18± 0.101 97.00± 0.001 85.80± 1.386 50.83± 0.991 96.69± 0.011 90.70± 0.014
TMix 82.12± 0.216 89.62± 0.127 96.67± 0.249 85.73± 0.436 49.85± 0.088 96.73± 0.002 90.82± 0.015
Ours 81.87± 0.121 90.17± 0.062 97.13± 0.115 85.80± 0.779 51.07± 0.645 96.80± 0.005 90.64± 0.003

BERT model. However, consistent performance net gains were still achieved, indicating
that AMPLIFY can have a greater impact on complex Transformer models.

Figure 3 illustrates a heatmap of the p-values obtained from t-tests comparing our
method with other methods for the attention output matrices in each dataset we computed.
Each cell represents the t -test p-value between our method and other methods. It is worth
noting that in this heatmap, the p-values between our method and all other mixupmethods
are less than 0.05, indicating significant differences. These statistically significant differences
should not be overlooked. They suggest that our method exhibits notable distinctions
from other mixup methods in generating attention matrices, further emphasizing the
superiority of our approach. By analyzing these significant differences, we can gain a
deeper understanding of the improvements our method brings to attention output and
quantify their statistical significance. Firstly, we can discuss the quality of the attention
matrices. Through the attention analysis, our method demonstrates superior performance
in terms of stability, consistency, and accuracy compared to other methods. This implies
that our method is better able to capture crucial features and allocate attention weights
more accurately. Furthermore, the impact of these significant differences on practical
tasks is also noteworthy. Experimental results indicate that our method exhibits better
performance in specific tasks. Such practical performance disparities further strengthen
the advantages resulting from the improvements in attention output brought about by
our method. Additionally, a notable aspect of our method among mixup approaches lies
in how it leverages attention mechanisms to enhance the effectiveness of mixup. This
uniqueness positions our method as more advantageous in attention output compared to
other methods and further enhances the overall performance.

To further validate the potential issue ofmixup propagating noise or outlier features from
the original samples to the augmented samples, leading to over-sensitivity of the model,
as well as to demonstrate the effectiveness of our method in improving generalization and
denoising, we conducted additional experiments on five different datasets by randomly
deleting or swapping original data at proportions of 5%, 10%, 15%, and 20%. These
experiments aimed to investigate the performance of different mixup methods in the
presence of noisy datasets. The results in Tables 4 and 5 demonstrate that our method
achieved the highest accuracy in almost all datasets. We attribute this success to the
introduction of attention mechanisms in our method, which allows the model to focus
on important features and adaptively adjust attention weights during the mixup process.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 15/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 3 The figure presents a heatmap of the attention output matrices comparing our method with
EmbedMix, SentenceMix, TMix, and the baseline. Each element in the matrix represents the p-value ob-
tained from conducting a t -test between our method and the other methods. Different color distributions
are used to differentiate the magnitude of p-values.

Full-size DOI: 10.7717/peerjcs.2011/fig-3

This adaptive adjustment of attention weights enables our method to handle variations
introduced by randomly deleting or swapping data samplesmore effectively. By dynamically
allocating attention weights, the model can effectively handle missing or swapped data,
resulting in more accurate predictions. Furthermore, the performance improvement of
our method, AMPLIFY, can also be attributed to its utilization of inherent dependencies
and correlations within the data through attention mechanisms. By attending to relevant
regions or features, AMPLIFY can effectively propagate useful information among samples,
thereby enhancing generalization and accuracy.

Variance
The experimental results show that compared to the baseline model and most other
mixup methods, our AMPLIFY achieves better performance gains while also having
lower variance. Especially on the TREC-Fine dataset, AMPLIFY outperforms the baseline
accuracy by 4.2%, while its variance is reduced by 0.32. Compared to other mixupmethods,
AMPLIFY also has lower variances on the gain by 0.533, 1.04, and 0.693, respectively. We
analyzed the reasons and found that TREC-Fine is a dataset for multi-classification tasks

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 16/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-3
http://dx.doi.org/10.7717/peerj-cs.2011


Table 4 Results of four mixupmethods on SST-2, SST-5, MRPC, TREC-coarse and TREC-fine training
sets with random deleted of data at various proportions of 5%, 10%, 15%, and 20%. The bold indicates
the optimal results in each dataset.

Dataset Percentage NoMixup EmbedMix SentenceMix TMix Ours

5% 68.52 67.30 68.41 68.46 73.04
10% 67.83 67.25 66.84 67.77 72.87
15% 67.30 67.30 68.23 67.19 72.64

MRPC

20% 67.25 68.99 68.93 68.81 71.65
5% 39.55 37.87 40.63 39.19 44.30
10% 37.96 36.02 37.56 36.61 43.12
15% 39.23 37.60 40.50 39.32 43.26

SST-5

20% 34.71 35.43 38.64 36.61 42.62
5% 85.67 86.60 86.82 86.99 87.48
10% 86.38 86.00 86.44 86.44 86.66
15% 84.68 83.96 85.28 85.61 87.48

SST-2

20% 83.53 83.03 82.87 83.47 85.61
5% 91.49 91.51 91.56 91.64 91.78
10% 91.55 91.72 91.61 91.67 91.89
15% 91.67 91.64 91.57 91.42 91.81

IMDB

20% 91.45 91.50 91.55 91.60 91.65
5% 95.80 96.60 96.40 96.20 96.80
10% 96.80 96.40 96.20 95.20 97.00
15% 96.40 95.80 95.40 96.40 96.60

TREC-coarse

20% 96.00 95.80 96.10 95.90 96.40
5% 87.00 85.80 87.60 86.20 87.80
10% 86.40 86.20 87.00 87.20 87.60
15% 85.20 85.40 84.40 84.40 85.60

TREC-fine

20% 84.60 84.20 84.20 84.80 85.80

composed of 6,850 questions and their classification labels. Since the samples are divided
into 47 categories, the number of samples under each category is relatively small, and the
distribution of samples between these categories is very unbalanced. As a consequence,
the category distribution of the augmented samples mixed by mixup methods is also
very unbalanced. When training the model, its predictions will be more biased towards
categories with more samples and ignore categories with fewer samples. Although the
overall accuracy of the model is not low, its performance on few-shot categories may be
very poor. Moreover, if considering the variance of accuracy, the situation will be different.
In a dataset with an imbalanced sample size, few-shot categories will bring greater accuracy
variance because the model is difficult to get sufficient training on these categories and
learn the features of them. This easily leads to larger errors when the model predicts these
categories, thereby increasing variance. On the other hand, AMPLIFY can fully utilize
the advantages of MHA in preserving local feature information and semantic relevance
when processing natural language sequences. By adding mild random perturbations to the
feature sequence and mixing the outputs of attention multiple times, the coherence of the
features and the consistency of the semantics are not impaired, allowing the features of

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 17/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Table 5 Results of four mixupmethods on SST-2, SST-5, MRPC, TREC-coarse and TREC-fine training
sets with random swapped of data at various proportions of 5%, 10%, 15%, and 20%. The bold indicates
the optimal results in each dataset.

Dataset Percentage NoMixup EmbedMix SentenceMix TMix Ours

5% 67.88 66.90 68.75 67.01 72.93
10% 67.65 64.35 67.19 66.67 71.30
15% 66.20 65.16 63.01 59.94 70.72

MRPC

20% 65.10 65.04 63.13 66.90 67.30
5% 40.65 40.95 40.95 41.95 43.67
10% 36.86 35.88 34.98 37.06 44.25
15% 38.16 38.55 37.96 38.14 41.36

SST-5

20% 36.60 22.04 35.20 38.64 38.96
5% 81.76 85.94 87.31 86.11 87.59
10% 84.97 85.17 84.46 85.34 87.77
15% 84.88 83.42 84.68 85.50 87.59

SST-2

20% 85.39 82.59 82.92 82.04 87.15
5% 91.42 91.46 91.40 91.56 91.74
10% 91.43 91.43 90.96 90.79 91.56
15% 90.25 89.82 90.36 90.28 90.56

IMDB

20% 86.51 88.80 88.48 88.35 89.08
5% 97.00 96.40 97.00 96.60 97.80
10% 95.80 96.60 96.20 96.20 96.80
15% 94.60 95.60 95.60 95.60 95.80

TREC-coarse

20% 96.20 96.00 95.60 95.40 96.80
5% 86.60 86.40 86.40 87.40 87.60
10% 85.80 84.80 86.00 84.80 86.40
15% 84.60 84.00 84.40 84.60 85.80

TREC-fine

20% 84.80 85.00 86.00 83.60 85.80

few-shot categories to be more likely learned by the model and reducing variance. This also
means that AMPLIFY can better adapt to the imbalanced sample distribution of the dataset,
effectively reducing the performance fluctuations of the model, making it less prone to
overfitting while having better generalization ability, bringing higher performance and
reliability to the model in real application scenarios.

Visualization of experimental results
Figure 4 shows the cross-entropy loss values of four mixup methods, EmbedMix, TMix,
AMPLIFY, and SentenceMix, on the MRPC dataset for the first 12k training iterations.
From this figure, it can be seen that the AMPLIFY method has a lower loss value and less
fluctuation during the training process compared to other mixup methods, indicating a
more stable training process. However, using mixup operation may aggregate noise and
outlier features from the original sequence into the mixed sequence, leading to overly
concerning these interference information and reducing the model’s generalization ability.
Specifically, themixed sequence contains features from both two original sequences, but the
linear interpolation operation also interferes with the information from them, weakening

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 18/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 4 The cross-entropy loss values for four mixupmethods, EmbedMix, TMix, AMPLIFY, and
SentenceMix, on theMRPC dataset in the first 12k training iterations.

Full-size DOI: 10.7717/peerjcs.2011/fig-4

or even drowning out useful features. Therefore, as a special data augmentation technique,
mixup increases noise during the training process, making it harder for the model to
fit the data, and thus increasing the loss value. As a comparison, AMPLIFY reduces
interference from noise and useless features by adding mild random perturbation terms to
the explanatory terms multiple times, while retaining the advantages of the mixup method.
In terms of computation time, the experimental results further illustrate that AMPLIFY
saves 24s, 32s, and 472s compared to EmbedMix, SentenceMix, and TMix, respectively,
within the first 12k iterations. It is shown that while bringing better performance gains
and more stable performance, AMPLIFY also largely saves the computational cost of other
mixup methods during the mixing process.

Figure 5 shows the effect of the two different mixup operations on the attention
mechanism in the same text sequence. It is clear that after the AMPLIFY operation, the
attention between words in the same sentence remains at a high level, while after the
EmbedMix operation, the MHA cannot recognize the special separator between the two
sentences very well, and establishes a high-level attention between words in different
sentences. This is because the linear interpolation operation of EmbedMix makes the
feature sequence of a mixed sentence contain context information from another sentence,
which even overwhelms the semantics of the separator itself, causing confusion in the
understanding of sentence context by the attention mechanism.

Figure 6 shows the effect of the two mixup operations on the attention mechanism when
applied to a specific word in the same sentence. Clearly, AMPLIFY does not have a negative
impact on the output of MHA, the separator is successfully recognized, and closely related
words still have a high attention weight, such as the two words ‘‘rabbit’’ and ‘‘hopped’’
which have the highest attention weight. In contrast, EmbedMix has a negative impact on
the output of MHA, making it difficult to select the correct word and assign appropriate

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 19/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-4
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 5 The influence of the fourthMHA layer of the model on the same text sequence after undergo-
ing AMPLIFY and EmbedMix operations, respectively. The left side of the figure represents the word be-
ing updated, while the right side represents the word being processed. The lines in the figure represent the
semantic correlations between words, and the color depth reflects the weight of attention obtained from
the correlation. The text sequence consists of two sentences ‘‘the rabbit quickly hopped’’ and ‘‘the turtle
slowly crawled’’, with [SEP] being a special token used to separate the two sentences and [CLS] being a
special token used to classify the text sequence.

Full-size DOI: 10.7717/peerjcs.2011/fig-5

Figure 6 The influence of the fourthMHA layer of the model, after undergoing AMPLIFY and Embed-
Mix operations, respectively, on a specific word ‘‘rabbit’’.

Full-size DOI: 10.7717/peerjcs.2011/fig-6

attention weights, resulting in the separator not playing its role and the attention being
scattered.

Figure 7 demonstrates the impact of differentmixup operations onMHAwhen querying
other words in the same sentence that have high correlation with the word ‘‘it’’. The query
vector q and key vector k jointly determine the correlation value between any two words,
while the element-wise multiplication of q and k, q ·k, determines the attention value,
and the softmax provides the query result based on the attention distribution. In the
figure, EmbedMix focuses the attention on ‘‘too’’ and ‘‘tired’’, which is not the semantic

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 20/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-5
https://doi.org/10.7717/peerjcs.2011/fig-6
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 7 The neuron view of how the fourthMHA layer of the model calculates attention weights
based on query and key vectors after being mixed by twomixupmethods, AMPLIFY and EmbedMix,
respectively. The positive values are represented in blue, while the negative values are represented in or-
ange. The depth of the color indicates the weight, and the lines represent the attention between words. The
input text sequence consists of two identical sentences, ‘‘The animal didn’t cross the street because it was
too tired’’.

Full-size DOI: 10.7717/peerjcs.2011/fig-7

correlation we expect. In contrast, AMPLIFY made a more accurate choice by putting the
attention on ‘‘animal’’ and ‘‘it’’. This is consistent with our understanding that ‘‘it’’ should
refer to ‘‘animal’’.

In the semantic relationship diagram of the word ‘‘it’’ shown in Fig. 8, because the
sentence initially defines ‘‘film’’, expresses dissatisfaction with a certain type of movie, and
finally expresses a positive attitude towards ‘‘film’’, it can be inferred that the ‘‘it’’ appearing
in the sentence refers to ‘‘film’’ based on the consistency of semantic logic and the way the
sentence expresses emotions. However, common pre-trained text models such as BERT
split the keyword ‘‘cartoonish’’ into two lower-granularity tokens ‘‘cartoon’’ and ‘‘#ish’’
in order to solve the out-of-vocabulary problem, which obviously led EmbedMix to not
consider that ‘‘cartoonish’’ is a complete adjective used to describe a certain movie genre.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 21/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-7
http://dx.doi.org/10.7717/peerj-cs.2011


Figure 8 The semantic relationship graph between words corresponding to the output of the first
MHA layer, with or without the AMPLIFY operation. The color depth of the nodes represents different
attention weights, and the currently focused word is highlighted. The input text sequence consists of two
identical sentences, ‘‘A coming-of-age film that avoids the cartoonish clichés and sneering humor of the
genre as it provides a fresh view of an old type’’.

Full-size DOI: 10.7717/peerjcs.2011/fig-8

On the other hand, AMPLIFY not only focuses on ‘‘film’’, but also extends attention to the
grammar dependencies between subjects and predicates such as ‘‘#ish’’, and ‘‘provides’’.

For the sake of fairness, bothmixupmethods used in this section to compare respectively
copy the outputs of the hidden layers at the same position, and perform mixup after
shuffling. Other settings are consistent with those in the ‘Experimental Settings’ section. In
addition, all attention visualization patterns in this section are from Vig (2019) andWang,
Turko & Chau (2021).

Further studies on hidden mixup
Table 6 shows in detail the effects of applying the AMPLIFY operation to hidden layers
of different depths on seven benchmark datasets for the BERT-base-uncased model. The
experimental results illustrate that for different datasets, the corresponding MHA layer
should be selected at the appropriate depth to use mixup to achieve the best performance
gain. In other words, performing mixup operations on MHA layers fixed at a certain depth
can only allow the model to achieve ideal results on a few datasets. After considering the
trade-offs, we chose to perform a relatively mild mixup on all MHA layers to achieve
relatively better performance gains on as many datasets as possible.

Bidirectional Encoder Representation from Transformers (BERT) is a common pre-
trained language model consisting of 12 Transformer encoder blocks (referred to as BERT
layers), each with its own attention mechanism and feedforward neural network layer.
BERT-base-uncased is a case-insensitive version of the BERT-base model fine-tuned on
large-scale unlabeled text data, such as Wikipedia, news articles, and website texts. Since it
only requires character-level BPE (Byte Pair Encoding) on input text, it can be trained and
deployed quickly.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 22/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2011/fig-8
http://dx.doi.org/10.7717/peerj-cs.2011


Table 6 The effects of applying the AMPLIFY operation to hidden layers of different depths in the model on seven benchmark datasets. The In-
put layer, Middle layer, and Last layer correspond to the MHA layers in the 4th, 8th, and 12th blocks, respectively. The experimental settings are the
same as in section, and the values in the table are the average accuracy (%) and corresponding variance after running three times with three different
random seeds. The bold indicates the optimal results in each dataset.

Method GLUE TREC SetFit IMDB

MRPC SST-2 coarse fine SST-5 YELP-5

Input layer 83.32± 0.283 91.21± 0.032 96.60± 0.240 90.33± 0.169 53.77± 0.216 97.15± 0.001 91.45± 0.006
Middle layer 82.51± 0.615 91.36± 0.089 96.27± 0.169 91.47± 0.436 52.78± 0.309 97.12± 0.002 91.51± 0.012
Last layer 82.69± 0.068 91.18± 0.041 96.73± 0.062 92.40± 0.347 53.03± 0.091 97.15± 0.001 91.49± 0.040
Mean 82.84± 0.322 91.25± 0.054 96.53± 0.471 91.4± 0.317 53.19± 0.205 97.14± 0.001 91.48± 0.019

Research (Clark et al., 2019; Vig, 2019) found that the lower blocks (BERT layers 1–4)
of BERT-base-uncased mainly learn vocabulary, syntax, and semantic information in the
text sequence, the middle blocks (BERT layers 5–8) focus more on syntax information,
and the last few blocks (BERT layers 9–12) focus on abstract semantic information and
context-related information. Therefore, using mixup in the lower layers can enhance the
model’s robustness and generalization ability to word-level features. In the lower layers,
BERT learns basic language features and contextual relationships between vocabulary, and
using mixup can enhance BERT’s perception of local information in the input text. Using
mixup in the middle layers can enhance the model’s robustness and generalization ability
to sentence-level features. In the middle layers, BERT learns long dependency relationships
between higher-level syntactic structures and morphemes, and using mixup can enhance
BERT’s ability to resist noise and out-of-domain features in the sequence. In theory,
using mixup in the high layers of the model should have the best effect, because in the high
layers, BERT learns global feature information of the text, usingmixup can enhance BERT’s
ability to recognize noisy and out-of-domain samples in the dataset, and thus improve
its performance on downstream tasks. In addition, these global feature information is to
some extent universal for different downstream tasks, so using mixup in the high layers
can effectively improve the model’s generalization ability and reduce the risk of overfitting.
In summary, this also provides us with a better reason to perform mixup on all layers.

AMPLIFY is effectively a process of sample simulation, as the Attention matrix reflects
the distribution of the association degree between feature elements. Therefore, blending
the attention output is akin to sampling from this distribution, creating a new hypothetical
distribution. This assumed distribution concurrently contains the feature distribution of
the original sample and introduces a certain level of randomness. The model, learning
this fictitious distribution with random disturbance, essentially accepts the smoothed
labels in the process, which ultimately facilitates soft label learning. Under soft labels, the
model would lower its dependency on singular strong features and boost the learning
of global features. Through repetitive mixups, this process effectively applies a degree of
Laplace smoothing to the model, enhancing its robustness. In a statistical sense, Laplace
smoothing canminimize the variables in the program, alleviating the impact of the assumed
distribution bias on the results. Hence, from the perspective of Bayesian inference, the

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 23/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


AMPLIFY algorithm, via Attention mixup, implements a soft-label Bayesian model to
bolster its generalization capabilities.

CONCLUSION AND FUTURE WORK
This article proposes a novel and simple hidden layer mixup method called AMPLIFY,
which solves the limitations of the standardmixupmethod’s sensitivity to noise information
and out-of-domain features. By performing mixup operations on all MHA layers of pre-
trained language models based on Transformer architecture and using mild random
perturbation terms to augment the explanatory feature sequences of each attention
mechanism output, AMPLIFY suppresses the effects of noise information and out-of-
domain features on the mixed results. Compared with standard data augmentation
strategies, AMPLIFY can better control the fluctuations in model performance gains.
Compared with traditional mixup methods, AMPLIFY has better robustness and
generalization. The experimental results show that our proposed method has practical
significance for exploring the performance potential of models in different NLP tasks. In
addition, the AMPLIFY method has high computational efficiency, avoiding the partial
resource overhead required by other mixup methods, reducing the overall cost of the
algorithm, and making it more engineering-oriented. The experimental results also show
that using mixup in different MHA layers is a more effective choice depending on the
features of different datasets. However, constructing a mixup method that can dynamically
adjust the structure and application location for different datasets is a very difficult task.
More generally, research on the learning rules of the BERT model also shows that the
semantic features and grammar-related information learned by the model in different
network layers are different, and the benefits brought by them are also different. Therefore,
it is recommended to perform appropriate mixup on different network layers to obtain
more significant overall performance gains, which is consistent with the idea of AMPLIFY.

For future work, we believe that there is still considerable exploration space in how to
combine mixup operations with various attention mechanisms. In addition, extending
and optimizing existing mixup methods is also a potential opportunity. For example, our
next research direction is to apply AMPLIFY to models in other fields outside of NLP
classification tasks, such as ViT (Vision Transformer) or Contrastive Language-Image
Pre-training (CLIP), to evaluate its applicability and effectiveness. Additionally, we plan
to combine AMPLIFY with other data augmentation techniques (such as Test-Time
Augmentation) to further improve the performance of pre-trained language models.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 24/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2011


Author Contributions
• Leixin Yang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Yu Xiang conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Zenodo: ylx. (2024). kiwi-lilo/AMPLIFY: AMPLIFY (code).
Zenodo. https://doi.org/10.5281/zenodo.10832328.

The data is available at:
- https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-

csv
- https://huggingface.co/datasets/SetFit/mrpc
- https://huggingface.co/datasets/SetFit/sst2
- https://huggingface.co/datasets/SetFit/sst5
- https://www.kaggle.com/datasets/thedevastator/the-trec-question-classification-

dataset-a-longi
- https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-

csv
- https://www.kaggle.com/datasets/ashirwadsangwan/imdb-dataset.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2011#supplemental-information.

REFERENCES
Chen J-N, Sun S, He J, Torr PH, Yuille A, Bai S. 2022. Transmix: attend to mix for vision

transformers. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 12135–12144.

Chen J, Yang Z, Yang D. 2020.Mixtext: linguistically-informed interpolation of hidden
space for semi-supervised text classification. ArXiv arXiv:2004.12239.

Clark K, Khandelwal U, Levy O, Manning CD. 2019.What does BERT look at? an
analysis of BERT’s attention. ArXiv arXiv:1906.04341.

Devlin J, ChangM-W, Lee K, Toutanova K. 2018. Bert: pre-training of deep bidirec-
tional transformers for language understanding. ArXiv arXiv:1810.04805.

Dror R, Baumer G, Shlomov S, Reichart R. 2018. The hitchhiker’s guide to testing
statistical significance in natural language processing. In: Proceedings of the 56th
annual meeting of the association for computational linguistics (volume 1: Long papers).
1383–1392 DOI 10.18653/v1/P18-1128.

GuoH,Mao Y, Zhang R. 2019. Augmenting data with mixup for sentence classification:
an empirical study. ArXiv arXiv:1905.08941.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 25/27

https://peerj.com
https://doi.org/10.5281/zenodo.10832328
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
https://huggingface.co/datasets/SetFit/mrpc
https://huggingface.co/datasets/SetFit/sst2
https://huggingface.co/datasets/SetFit/sst5
https://www.kaggle.com/datasets/thedevastator/the-trec-question-classification-dataset-a-longi
https://www.kaggle.com/datasets/thedevastator/the-trec-question-classification-dataset-a-longi
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
https://www.kaggle.com/datasets/ashirwadsangwan/imdb-dataset
http://dx.doi.org/10.7717/peerj-cs.2011#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2011#supplemental-information
http://arXiv.org/abs/2004.12239
http://arXiv.org/abs/1906.04341
http://arXiv.org/abs/1810.04805
http://dx.doi.org/10.18653/v1/P18-1128
http://arXiv.org/abs/1905.08941
http://dx.doi.org/10.7717/peerj-cs.2011


Kim J-H, ChooW, Song HO. 2020. Puzzle mix: exploiting saliency and local statistics for
optimal mixup. In: International conference on machine learning. PMLR, 5275–5285.

Li B, Hou Y, CheW. 2022. Data augmentation approaches in natural language process-
ing: a survey. AI Open 3:71–90 DOI 10.1016/j.aiopen.2022.03.001.

Li X, Roth D. 2002. Learning question classifiers. In: COLING 2002: the 19th international
conference on computational linguistics.

Loshchilov I, Hutter F. 2017. Decoupled weight decay regularization. ArXiv
arXiv:1711.05101.

Maas A, Daly RE, Pham PT, Huang D, Ng AY, Potts C. 2011. Learning word vectors for
sentiment analysis. In: Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies. 142–150.

Min J, McCoy RT, Das D, Pitler E, Linzen T. 2020. Syntactic data augmentation increases
robustness to inference heuristics. ArXiv arXiv:2004.11999.

Shazeer N, SternM. 2018. Adafactor: adaptive learning rates with sublinear memory cost.
In: International conference on machine learning. PMLR, 4596–4604.

Socher R, Perelygin A,Wu J, Chuang J, Manning CD, Ng AY, Potts C. 2013. Recursive
deep models for semantic compositionality over a sentiment treebank. In: Pro-
ceedings of the 2013 conference on empirical methods in natural language processing.
1631–1642.

Sun L, Xia C, YinW, Liang T, Yu PS, He L. 2020.Mixup-transformer: dynamic data
augmentation for NLP tasks. ArXiv arXiv:2010.02394.

Uddin A, Monira M, ShinW, Chung T, Bae S-H. 2020. Saliencymix: a saliency guided
data augmentation strategy for better regularization. ArXiv arXiv:2006.01791.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polo-
sukhin I. 2017. Attention is all you need. Advances in Neural Information Processing
Systems 30.

Verma V, Lamb A, Beckham C, Najafi A, Mitliagkas I, Lopez-Paz D, Bengio Y. 2019.
Manifold mixup: better representations by interpolating hidden states. In: Interna-
tional conference on machine learning. PMLR, 6438–6447.

Vig J. 2019. A multiscale visualization of attention in the transformer model. ArXiv
arXiv:1906.05714.

Walawalkar D, Shen Z, Liu Z, Savvides M. 2020. Attentive cutmix: an enhanced
data augmentation approach for deep learning based image classification. ArXiv
arXiv:2003.13048.

Wang A, Singh A, Michael J, Hill F, Levy O, Bowman SR. 2018. GLUE: a multi-task
benchmark and analysis platform for natural language understanding. ArXiv
arXiv:1804.07461.

Wang ZJ, Turko R, Chau DH. 2021. Dodrio: exploring transformer models with
interactive visualization. ArXiv arXiv:2103.14625.

WangWY, Yang D. 2015. That’s so annoying!!!: a lexical and frame-semantic embedding
based data augmentation approach to automatic categorization of annoying
behaviors using# petpeeve tweets. In: Proceedings of the 2015 conference on empirical
methods in natural language processing. 2557–2563 DOI 10.18653/v1/D15-1306.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 26/27

https://peerj.com
http://dx.doi.org/10.1016/j.aiopen.2022.03.001
http://arXiv.org/abs/1711.05101
http://arXiv.org/abs/2004.11999
http://arXiv.org/abs/2010.02394
http://arXiv.org/abs/2006.01791
http://arXiv.org/abs/1906.05714
http://arXiv.org/abs/2003.13048
http://arXiv.org/abs/1804.07461
http://arXiv.org/abs/2103.14625
http://dx.doi.org/10.18653/v1/D15-1306
http://dx.doi.org/10.7717/peerj-cs.2011


Wei J, Zou K. 2019. Eda: easy data augmentation techniques for boosting performance
on text classification tasks. ArXiv arXiv:1901.11196.

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R,
Funtowicz M. 2019.Huggingface’s transformers: state-of-the-art natural language
processing. ArXiv arXiv:1910.03771.

Xie Q, Dai Z, Hovy E, Luong T, Le Q. 2020. Unsupervised data augmentation for con-
sistency training. Advances in Neural Information Processing Systems 33:6256–6268.
ArXiv arXiv:1904.12848.

Yelp. 2014. YELP-5 dataset. Available at https://www.kaggle.com/datasets/yacharki/yelp-
reviews-for-sa-finegrained-5-classes-csv .

Yoon S, Kim G, Park K. 2021. Ssmix: saliency-based span mixup for text classification.
ArXiv arXiv:2106.08062.

Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y. 2019. Cutmix: regularization strategy
to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF
international conference on computer vision. Piscataway: IEEE, 6023–6032.

Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. 2017.mixup: beyond empirical risk
minimization. ArXiv arXiv:1710.09412.

Zhang R, Yu Y, Zhang C. 2020. Seqmix: augmenting active sequence labeling via
sequence mixup. ArXiv arXiv:2010.02322.

Zhang X, Zhao J, LeCun Y. 2015. Character-level convolutional networks for text
classification. Advances in Neural Information Processing Systems 28.ArXiv arXiv:
1509.01626.

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2011 27/27

https://peerj.com
http://arXiv.org/abs/1901.11196
http://arXiv.org/abs/1910.03771
http://arXiv.org/abs/1904.12848
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
https://www.kaggle.com/datasets/yacharki/yelp-reviews-for-sa-finegrained-5-classes-csv
http://arXiv.org/abs/2106.08062
http://arXiv.org/abs/1710.09412
http://arXiv.org/abs/2010.02322
http://arXiv.org/abs/ 1509.01626
http://arXiv.org/abs/ 1509.01626
http://dx.doi.org/10.7717/peerj-cs.2011

