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ABSTRACT

Uncrewed aerial vehicle (UAV) aerial photography technology is widely used in both
industrial and military sectors, but remote sensing for small target detection still faces
several challenges. Firstly, the small size of targets increases the difficulty of detection
and recognition. Secondly, complex aerial environmental conditions, such as lighting
changes and background noise, significantly affect the quality of detection. Rapid and
accurate identification of target categories is also a key issue, requiring improvements
in detection speed and accuracy. This study proposes an improved remote sensing
target detection algorithm based on the YOLOV5 architecture. In the YOLOv5s
model, the Distribution Focal Loss function is introduced to accelerate the
convergence speed of the network and enhance the network’s focus on annotated
data. Simultaneously, adjustments are made to the Cross Stage Partial (CSP) network
structure, modifying the convolution kernel size, adding a new stack-separated
convolution module, and designing a new attention mechanism to achieve effective
feature fusion between different hierarchical structure feature maps. Experimental
results demonstrate a significant performance improvement of the proposed
algorithm on the RSOD dataset, with a 3.5% increase in detection accuracy compared
to the original algorithm. These findings indicate that our algorithm effectively
enhances the precision of remote sensing target detection and holds potential
application prospects.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Graphics, Spatial and
Geographic Information Systems
Keywords YOLOV5, Image, Aerial photography, Algorithm

INTRODUCTION

In recent years, uncrewed flight technology has matured significantly, leading to notable
advancements in uncrewed aerial photography. This technology is now used extensively in
both military and civilian applications (Jiao et al., 2019). Compared to traditional aerial
photography or manual survey methods, UAV aerial photography offers several
advantages. It is a cost-effective solution, as it does not require expensive equipment or
extensive human resources. UAV aerial photography also provides high-quality remote
sensing data, which is critical for decision-makers. Furthermore, it offers real-time
monitoring capabilities and instant feedback, enabling quick access to panoramic images
and video data of ground conditions, which facilitates rapid decision-making and strategic
adjustments. However, target detection algorithms, which are closely linked to UAV aerial
photography technology, face certain challenges. In complex aerial photography scenarios,
there may be a multitude of small targets to identify, primarily due to shooting distance.
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This presents challenges in accurately identifying small targets and achieving real-time
detection speed. Therefore, current research is mainly focused on improving target
detection algorithms to adapt to these complex situations.

In summary, the development of UAV aerial photography technology holds great
promise across various domains. However, continuous refinement of target detection
algorithms is imperative to overcome the challenges involved. This is essential for
enhancing the accuracy of recognizing small targets and achieving real-time detection
speeds, better aligning with the diverse needs of various applications.

Traditional target detection algorithms, such as the R-CNN series (Girshick et al., 2014),
the SSD series (Redmon et al., 2016), and the YOLO series (Liu et al., 2016), have proven
their efficacy in general detection scenarios. However, they face inherent limitations in
achieving highly accurate detection of small targets in complex settings. To overcome these
challenges, Lin et al. (2017a) introduced a groundbreaking structure within the Feature
Pyramid Network (FPN) algorithm. This innovative structure blends bottom-up and top-
down feature transfer methods, enabling the fusion of deep feature maps with high
semantic content from the upper layers and high-resolution shallow feature maps from the
lower layers. This fusion empowers independent predictions, significantly enhancing the
effectiveness of target detection algorithms, particularly for small targets. Kisantal et al.
(2019) harnessed oversampling amplification to boost the detection accuracy of neural
networks for small targets. Meanwhile, Fu et al. (2017) incorporated inverse convolution in
SSD to integrate contextual information, thereby enhancing the readiness of detecting
small targets. In Wang et al. (2019), an innovative enhancement was introduced to upgrade
the SSD network based on FPN, leading to notable improvements in both speed and
accuracy of target detection. In 2019, the advent of the CornerNet (Law ¢ Deng, 2018)
algorithm ushered in a new era of anchorless frame algorithms. This approach successfully
surmounted challenges associated with manual design, inefficient training and prediction
processes, and the imbalance of positive and negative samples inherent in anchor frame-
based methods. Additionally, CornerNet achieved accuracy on par with anchor frame-
based algorithms. Zhu et al. (2021) introduced the CBAM attention mechanism into the
YOLOV5 model to combat target blurring issues in aerial images. Miao, Yu & An (2022)
leveraged a multi-level fusion structure to generate multi-scale feature maps with precise
location information and semantic features. The generation of these feature maps further
refined the scale of candidate regions, enhancing the accuracy of detecting multi-scale
aircraft targets in remote sensing images. Wang et al. (2023) and Zhu et al. (2021) have
successfully incorporated the Transformer and feature pyramid structure into the realm of
remote sensing image target detection. This integration not only bolsters the network’s
feature representation capabilities but also intensifies the fusion of multi-scale features.
These improvements not only mitigate interference from complex backgrounds but also
facilitate deeper extraction of target feature information, ultimately leading to a substantial
improvement in detection accuracy. However, it is worth noting that the enhanced model
places significant demands on hardware performance and can pose implementation
challenges.
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In this article, we propose a novel and improved algorithm based on YOLOV5s, to tackle
the issue of poor accuracy in detecting small targets in remote sensing. Our contributions
can be summarized as follows:

1) We introduced the DFL (Li et al., 2020) loss function, which significantly enhances the
model’s precision and robustness in identifying boundary targets by employing
specialized treatment of pixels at the image’s edge during neural network training. The
design of the DFL loss function improves the model’s resilience and accuracy in the
detection of small targets.

2) We design a novel SSN module to enhance the neural network. This module enhances
the model’s capacity for representation by incorporating additional convolutional
layers, smaller convolutional kernels, and structures such as residual connectivity, thus
improving the model’s performance by capturing richer and more abstract data
features. Notably, substantial progress has been made in the realm of small target
detection.

3) We introduce an improved structure for the attention mechanism, effectively
facilitating information interaction and fusion across different contexts and optimizing
the inherent structure of information at various levels by judiciously assigning weights.
This innovation contributes to enhancing the model’s perception and inference
capabilities.

The remainder of this article is organized as follows. Our small target detection
algorithm is introduced and analyzed in detail in the ‘Algorithm Design and Analysis’
section. The ‘Experiment’ section evaluates the performance of our algorithm by a large
number of contrast experiments based on public datasets and makes relevant discussions.
The ‘Conclusion’ section summarizes this article.

ALGORITHM DESIGN AND ANALYSIS

In this article, we propose modifications to the YOLOv5s model in three key aspects:
enhancing the neck network model, introducing a new loss function, and incorporating a
novel attention mechanism. These modifications are aimed at improving the network’s
feature extraction capability, consequently enhancing the model’s detection accuracy.
Detailed explanations of these modifications can be found in sections “Neck Network
Design”, “Loss Function”, and “Attention Mechanism”, respectively.

Neck network design
The YOLOVS5 series of models can be categorized into four models based on depth and
width: YOLOv5s, YOLOVS5], YOLOv5m, and YOLOv5x. Among them, YOLOV5s is the
fastest and lightest model, which is very suitable for deployment and use on mobile devices.
This article aims to improve the accuracy of detecting small targets based on the YOLOv5
model.

The depth of a convolutional neural network (CNN) plays a crucial role in feature
extraction and characterization. However, as the number of layers in the network
increases, it often leads to the extraction of high-level features while simultaneously
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resulting in a loss of detailed information. This phenomenon is commonly referred to as
the “information bottleneck,” where deeper networks tend to focus more on abstracting
and generalizing features, potentially overlooking subtle differences in the original input.
To address this challenge, researchers frequently employ a strategy of fusing deep and
shallow layers in neural networks. This fusion introduces feature information from shallow
layers into the model, thereby enhancing the network’s expressive power. The key
advantage of this fusion approach is its ability to capture both high-level abstract features
and detailed information, significantly improving the performance and accuracy of the
network.

The design of YOLOV5’s input plays a crucial role in target detection, and it employs
Mosaic data augmentation and rectangular black-edge filling methods to improve the
model’s performance and robustness. Mosaic data augmentation is an innovation in
YOLOVS5’s input processing. The method provides more complex and diverse scene
information to the model by stitching four different images together to form a hybrid
image. This design introduces more perspectives and contexts during the training process,
which helps to improve the model’s adaptability to different scenes and targets. The
adoption of Mosaic data augmentation allows YOLOV5 to perform even better when
confronted with real-world, complex and varied target scenes.

To handle images of various sizes and scales, YOLOV5 utilizes the rectangular black
edge fill method. This method adjusts the image to a square shape by filling the edges of the
image with a black border to meet the model’s requirement for a uniform input size. This
plays an important role in eliminating inconsistencies in image sizes and improves training
stability and convergence speed. The use of rectangular black edge filling provides more
consistent and manageable inputs to the model, which helps to improve the effectiveness of
training.

YOLOV5s backbone network (Backbone) plays a crucial role in target detection and is
responsible for extracting rich features from the input image to provide strong support for
subsequent network layers. Prior to the v6.0 version of YOLOV5, the backbone network
utilized the Focus structure, and two CSP structures were proposed, which laid the
foundation for the performance enhancement of the model. The Focus module introduces
an innovative slicing operation at the input of the backbone network. This operation slices
the high-resolution input image into multiple low-resolution image blocks. Taking a
4 x 4 x 3 input image as an example, a 2 x 2 x 12 feature map is generated by interval
sampling and channel splicing. This operation aims to decompose and integrate the image
information efficiently, expanding the number of channels to four times the original to
provide richer features for subsequent convolutional operations. In YOLOV5s v6.0, the
SPPF module replaces the SPP module in the previous version and is placed at the end of
the backbone network. The SPPF module inputs the maximum pooling layer with a
convolutional kernel size of 5 x 5 through serial inputs before feature fusion. Compared to
the SPP module, the SPPF module is less computationally intensive and more efficient,
while maintaining the same sensory field. In the backbone structure of YOLOV5s, a
combination of the Conv module and the C3 module is utilized to achieve this
objective. The Conv module primarily handles downsampling and nonlinear
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Figure 1 Our network structure. Full-size K&l DOT: 10.7717/peerj-cs.2007/fig-1

transformation operations to derive more representative and abstracted features,

aiding the network in comprehending the overall structure and crucial features within the
image. Simultaneously, the C3 module is interposed between Conv modules to bolster
feature information for learning residual features. This layout of the C3 module better
captures contextual information from the image and leverages the residual structure
pioneered by ResNet (Targ, Almeida ¢ Lyman, 2016), effectively addressing the issue of
gradient vanishing in deep networks and enhancing the stability and reliability of network
training and optimization. This design not only heightens the network’s sensitivity to
detailed information but also improves its capability to express high-level semantic
features, thereby enhancing the performance and robustness of YOLOV5s.

In essence, the fusion of deep and shallow layers alongside the utilization of Conv and
C3 modules represents a common design strategy in contemporary convolutional neural
networks. This strategy effectively overcomes the information bottleneck inherent in deep
networks, thereby enhancing feature expression and overall network performance. Finally,
the detection head section facilitates fine-grained classification and positional regression of
candidate frames, playing a pivotal role in various deep learning tasks not only within
computer vision but across diverse domains.

To enhance YOLOVS5s’s ability to detect small targets in remote sensing applications, we
made several modifications to the network structure of YOLOVS5s, see Fig. 1. Firstly, we
replaced the C3 layer with a new SSN structure (see Fig. 2) and simultaneously optimized
the NECK component. The convolution kernel size has been adjusted to 3, improving the
extraction of fine details while minimizing the loss of target position information during
network transmission. Additionally, during the pre-processing stage, the number of
channels has been doubled, and these channels are further divided to incorporate multiple
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stacked modules. Given that most remote-sensing objects are small, this modification
addresses the challenges associated with detection. Including multiple stacked modules
helps mitigate network degradation and gradient vanishing issues, reducing instances of
feature semantic loss and enhancing the network’s fusion capabilities. Lastly, a DFL loss
function has been introduced to the detection header to improve boundary detection
accuracy.

The stacked convolutional module, by concatenating multiple smaller-sized
convolutional layers, effectively reduces the parameter and computational load compared
to a single large-sized convolutional layer. This design not only maintains model
performance but also reduces computational costs, making the model more feasible in
resource-constrained environments. Since the stacked convolutional module comprises
multiple convolutional layers, each layer can learn features at different scales. Such a design
enables the model to better capture multi-scale information of the targets, thereby
enhancing detection capabilities across various sizes, particularly for detecting tiny objects.

Through stacked convolutional layers, the model gradually constructs richer and more
abstract feature representations. This hierarchical feature extraction and composition aid
the model in better understanding image content, thereby improving detection accuracy
and robustness. The parameter-sharing characteristic among multiple convolutional layers
within the stacked convolutional module means the model can utilize the same weights to
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extract features at different positions and scales, further reducing the parameter count and
mitigating the risk of overfitting.

As a modular design, the stacked convolutional module can be relatively easily
integrated into existing object detection frameworks. By adjusting the number and size of
convolutional layers, the complexity and performance of the model can be flexibly
controlled to meet the requirements of different scenarios.

Loss function

YOLOV5s model uses CIoU Loss to calculate the rectangular box loss, there are three main
components, the loss of predicting the position of the rectangular box (L,box), the loss of
confidence (L,bj), and the loss of categorization (L.Is), the specific formula for CIoU Loss is

_JANB]
IoU = (1)
AUB
A —U
GIloU = IoU — — (2)
Cc
L = Lypox + Lohj + L. (3)

The IoU loss, commonly used in object detection, measures the intersection over the
union between the ground truth box A and the predicted box B, as shown in Eq. (1). Unlike
IoU, which focuses solely on the overlapping region, GIoU considers both the overlapping
region and other non-overlapping areas to better reflect their degree of overlap, as depicted
in Eq. (2). The YOLOVS5 loss function consists of three components, as illustrated in
Eq. (3).

CloU Loss incorporates factors such as overlap region, center distance, and aspect ratio
of bounding boxes to enhance model training stability and convergence speed. However,
it’s important to note that while CIoU Loss considers these factors, it may not fully reflect
the true differences between the width, height, and confidence of the bounding boxes,
which could lead to insufficient precision in regression prediction results.

In YOLOVS5s, the confidence loss function employs the BCE Loss, typically used in
binary classification problems to measure the difference between the model’s predicted
class probability and the actual label. For binary classification problems, assuming the
model’s output is y representing the probability of predicting the positive class, and the
actual label is y;.,,. (taking values of 0 or 1, representing negative or positive class), BCE
Loss is calculated as shown in Eq. (4).

BCELoss = —(Ytrue log(y) + (1 — Yirue) log(1 — y)) (4)

Yirue log(y) is used to measure the loss of the model predicting a positive class when the
true label is 1, and (1-y4,.) log(1-y) is used to measure the loss of the model predicting a
negative class when the true label is 0. Overall, a smaller BCE Loss indicates that the
model’s prediction is closer to the true label. In the realm of traditional focal loss (Miao, Yu
¢ An, 2022), the adjustment of weights for difficult samples is achieved by introducing a
focusing parameter (FFP), which prioritizes the handling of challenging-to-classify
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samples, thereby improving the model’s performance. To address this challenge, this
article introduces the Distribution Focal Loss (DFL) loss function, which builds upon the
foundations of FL and further takes into account the issue of category imbalance. The
fundamental concept behind DFL is to enable the model to provide more precise
predictions when dealing with target boundary locations. This means generating sharp
predictive probability distributions at clear boundary locations while producing relatively
flat predictive probability distributions at ambiguous or uncertain boundary locations.
Locations with unclear or uncertain boundaries yield relatively smooth probability
distributions. This distinctive feature empowers the model to better adapt to target
boundaries in diverse scenarios, ultimately elevating accuracy and robustness in boundary
localization.

The specific formula for the DFL loss function is:

DFL(S;, Siv1) = —((yix1 — y) log(Si) + (y — i) log(Sit1)) (5)

Si and S;;; are the model’s predictive confidence for two different categories in target
detection. y; is the corresponding true label, and y;, is usually the label for the next
category. log(S;), on the other hand, represents a measure of the difference between the
model’s predicted probability distributions and the true labels. the goal of DFL is to make
the network quickly focus on the values near the target bounding box location by
expanding the probability values of the values near the target bounding box location.
bounding box location, allowing the network to quickly focus on values near the target
bounding box. By modeling the bounding box locations as general distributions, DFL can
provide more informative and accurate estimates of the bounding box, and the idea is to
use a cross-entropy function to optimize the probabilities of the left and right locations

near the label y, and to focus the network distribution near the labeled values. The global
Y=y Y=Yi

Yit1 =i Yir1—yi’

estimated regression objective ¥ is infinitely close to the corresponding label y, thus

minimum solutions for DFL are S; = and S;;; = which ensures that the
ensuring its correctness as a loss function.

Category imbalance is a prevalent challenge in target detection tasks, where some
categories may possess an abundance of samples, while others may be underrepresented.
The DFL function is a more effective solution in addressing category imbalance by
incorporating category distribution information, thus enhancing detection performance
for categories with fewer samples. Additionally, the design of DFL endows it with resilience
against misclassification, as it imposes a higher loss on samples that are challenging to
categorize, thereby directing the model’s attention to these samples and reducing the
likelihood of misclassifications.

In this article, we have implemented the DFL loss function within the Head structure to
compute regression values, rather than directly obtaining the regression values. We employ
two independent convolutions for each feature layer to adjust the number of channels,
enabling us to derive the regression values for the prediction frame corresponding to each
feature point target individually.
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Attention mechanism

Inspired by the way humans process visual information, attention mechanisms have been
developed to enable computers to concentrate their attention on the most informative
aspects of the input signal. Attention mechanisms originally employed in machine
translation (Lin et al., 2017b), which have been proven to enhance the understanding of
contextual relationships. Subsequently, this technique has found widespread application in
computer vision, yielding remarkable results. Within neural networks, attention
mechanisms can be integrated into the spatial dimension, the channel dimension
(Bahdanau, Cho & Bengio, 2014), or a combination of both, thereby providing models with
greater flexibility in handling complex input data and enhancing their performance in
tasks like image classification, target detection, and image segmentation.

Spatial attention (Hu, Shen ¢ Sun, 2018) is a commonly used attention mechanism.
When introduced in the spatial dimension, it allows the model to learn and assign different
attention weights to various regions of an image. Consequently, the model can prioritize
important regions of the image, leading to improved target detection and recognition.
Conversely, channel attention (Wang et al., 2020) introduces the attention mechanism in
the channel dimension, enabling the model to allocate varying attention weights to feature
channels. This approach allows the model to focus more on feature channels that are more
relevant to the task, reducing the response to irrelevant information and, in turn,
enhancing the model’s overall performance. Hybrid attention mechanisms that combine
spatial and channel dimensions also exist (Zhang & Sabuncu, 2018). By integrating
attention mechanisms into both spatial and channel dimensions, these models can
simultaneously focus on different regions and feature channels within an image (Guan
et al., 2023). This comprehensive approach enables the model to capture important
information in the image more effectively. Adhering to the standards set by scientific
publications, the integration of attention mechanisms has revolutionized the field of
computer vision and substantially improved its capabilities in various visual recognition
tasks.

Currently, widely used attention mechanisms include SE, CA (Hou, Zhou ¢ Feng,
2021), CBAM (Woo et al., 2018), etc., all of which acquire critical information about the
target on a global scale. However, these methods often come with high computational
complexity and significant memory consumption. To enhance the model’s feature
extraction capabilities while avoiding excessive computational burden, this article
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introduces a new attention mechanism by modifying SE. As depicted in Fig. 3, this
attention structure takes an input tensor, initially mapping the input data through a linear
layer to a hidden layer, followed by a non-linear transformation using the tanh activation
function. Subsequently, the output of the hidden layer is mapped through another linear
layer to obtain attention weights, which are then normalized using the softmax function to
derive the final attention weights. Finally, the input features are multiplied by the attention
weights and summed to obtain the ultimate output.

As illustrated in Fig. 3, this attention structure takes an input tensor and produces a
weighted sum along with the corresponding attention weights. In the forward propagation
process, we initiate by calculating the hidden representation through a linear layer followed
by a nonlinear activation function. Subsequently, attention weights are computed through
another linear layer, combined with a softmax activation function. Finally, these attention
weights are multiplied with the input tensor to yield the weighted sum.

Under the standards set by scientific publications, these enhancements contribute to a
more efficient and powerful feature extraction mechanism, ensuring the model’s improved
performance without overburdening the network with excessive computational demands.

Firstly, our attention mechanism can more accurately capture key information and
utilize it more effectively. Compared to traditional SE methods, our design allows for finer
adjustments of attention weights, enabling the model to focus more intensely on features
that have a greater impact on the task.

Secondly, our attention mechanism performs better when handling information of
different scales. Through clever design, we enable the model to comprehensively
understand input data at various levels, thereby enhancing the model’s capability to
process complex data.

Finally, our attention mechanism demonstrates better convergence and stability during
training. Through thoughtful design, we successfully mitigate the risk of overfitting or
underfitting in the model during training, thereby improving the model’s generalization

ability.
EXPERIMENT

The hardware environment used in this article is 64-bit Windows 10, the GPU used is
NVIDIA Tesla V100-SXM2 32GB, CUDN is version 10.0, CUDNN is version 10.1, and the
learning framework is Pytorch 1.2.0. The model is set to an initial learning rate of le-2,
trained by default for 300 epochs, with the trunk frozen for the first 50 epochs, using
stochastic gradient descent (SGD) optimizer.

There are 936 remote sensing images in the RSOD (Long et al., 2017) dataset, the RSOD
dataset includes four categories: aircraft, oil tank, overpass, and playground, the RSOD
dataset totals 446 aircraft images, 189 playground images, 4,993 aircraft samples, 191
playground samples, 176 overpass images, 180 overpass samples, 165 oil drum images, and
1,586 oil drum samples.
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Evaluation index

The experiment uses precision rate and average precision mean (mAP@0.5) as the
performance evaluation criteria for evaluating the target detection methods. The precision
rate and recall are calculated as shown below:

P TP (6)
- TP+ FP
R— TP )
- TP+ EN
n—1
AP = Z (rig1 — 7i) Pinter(ri + 1) (8)
i=1
" AP,
map — 20 AP (9)
n

P is precision, TP represents the number of positive samples correctly identified as
positive, FP represents the number of negative samples incorrectly identified as positive.
Precision P is the ratio of true positives to the total number of samples identified as positive
by the model, including both true positives and false positives. It provides the accuracy of
the model in identifying positives. A higher precision value indicates that the model more
accurately identifies positives, while a lower precision value suggests that the model may
incorrectly classify negatives as positives. The detailed formula for precision P is shown in
Eq. (6).

R is recall, which measures the proportion of positive instances correctly identified by
the model among all actual positive instances. FN represents the number of positive
samples incorrectly identified as negative. Recall is the ratio of true positives to the total
number of actual positives, including both true positives and false negatives. It evaluates
the model’s ability to capture all positives in the dataset. A higher recall value indicates that
the model is better at identifying positives, while a lower recall value suggests that the
model may miss some positives. The calculation formula for recall R is shown in Eq. (7).

AP is average precision, where n is the total number of true positives, r; is the number of
true positives in the top i predicted results returned by the model, (P, (7i11)) is the
interpolated precision when the recall is r;; ;. Average precision evaluates the model’s
performance based on the relationship between the predicted results returned by the
model and the ground truth labels, as well as the precision values within each recall
interval. The calculation formula for average precision AP is shown in Eq. (8).

AP; refers to the average precision of the ith class detection target, which is the area
under the PR curve. n represents the number of categories. mAP, the mean average
precision, is the average of the average precision of all categories, providing a
comprehensive evaluation of the model’s performance across multiple categories. The
calculation formula for mAP is shown in Eq. (9).

Ablation experiment
Figure 4 demonstrates the F1 score status of this experiment. To verify the effectiveness of
adding the DFL loss function, the improved multi-scale feature extraction module SSN,
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Figure 4 Structure of attention mechanism. Full-size K&l DOT: 10.7717/peerj-cs.2007/fig-4

and the new attention mechanism, this article chooses YOLOV5s as the baseline model and
evaluates the impact of different modules and methods on the target detection
performance when they are combined through the ablation experiments under the same
experimental conditions.

In Table 1, The baseline model is YOLOV5s, achieves precision, recall, and mAP scores
of 90.61%, 97.92%, and 91.93%, respectively, with a parameter count of 7.46 MB 1. Upon
integrating the DFL loss function into the baseline model, the mAP increases from 91.93%
to 93.52%, accompanied by a reduction in parameters, indicating a significant
enhancement in boundary box detection accuracy. Further improvement is observed when
incorporating the SSN structure, resulting in a heightened detection accuracy of 93.96%,
with a reduced parameter count of 7.15 M. Subsequent integration of the new VAM
attention mechanism leads to an mAP increase to 92.02%. In subsequent grouped
comparative experiments, the performance is significantly enhanced when both DFL and
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Table 1 Ablation experiments on the RSOD dataset.

Algorithm P (%) R (%) mAP (%) Parameters (MB)
Baseline (YOLOv5s) 90.61 97.92 91.93 7.46
Baseline+DFL 91.34 96.81 93.52 7.38
Baseline+NCSP 89.92 98.21 93.96 7.15
Baseline+VAM 92.32 96.14 92.02 7.52
Baseline+DFL+SSN 92.55 96.52 94.23 7.41
Baseline+DFL+VAM 92.83 95.82 93.75 7.39
Baseline+SSN+VAM 91.53 96.81 93.56 7.24
Baseline+DFL+NCSP+VAM 93.15 92.76 95.44 7.26

Table 2 Effectiveness of different algorithms on RSOD dataset.

Model Airplane Oil tank Playground Overpass mAP (%)
SSD 87.3 92.5 85.3 80.4 86.4
YOLOV4 90.1 93.6 88.4 84.3 89.1
FasterR-CNN 92.3 95.7 89 83.6 90.2
YOLOv5s 94.2 96.4 93.7 83.3 91.9
YOLOV7 96.9 99.6 99.4 89.2 96.1
Ours 96.2 99.7 99.1 85.7 95.4

SSN are applied, achieving an mAP of 94.23%. Similarly, when both DFL and VAM are
applied, there is a slight performance improvement, reaching an mAP of 94.23%, with a
reduced parameter count of 7.39 MB. The best performance is achieved when DFL, SSN,
and VAM are all applied simultaneously, yielding a precision of 93.15% and an mAP of
95.44%, with a parameter count of 7.26 MB. Compared to the baseline, there is a 3.51%
improvement in mAP, along with a 0.2 reduction in parameter count, demonstrating
optimization in both accuracy and parameter usage. These results affirm the effectiveness
of the algorithmic improvements made in this study.

Table 2 provides a comparison of the detection performance between our proposed
method and other classical algorithms on the RSDO dataset to further validate the
effectiveness of our approach. The table presents the detection accuracy of various
algorithms across different categories in the RSOD dataset. Noticeable performance
differences among different models are observed across different categories. For instance,
in the “Oil tank” category, both YOLOv7 and our model exhibit notably higher
performance compared to other models, achieving 99.6% and 99.7%, respectively, while in
the “Overpass” category, YOLOvV7 and our model demonstrate relatively lower
performance, with accuracies of 89.2% and 85.7%, respectively. Upon observing the overall
average precision (AP) results, it is noted that YOLOv7 and our model slightly outperform
other models, achieving 96.1% and 95.4% AP, respectively, indicating their
competitiveness in overall performance. Conversely, SSD and Faster R-CNN exhibit lower
performance, with accuracies of 86.4% and 90.2%, respectively. YOLOv5s performance
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Table 3 Comparative experiments of different attention mechanisms.

Model Parameters/MB mAP/%
SE 7.55 91.6
CBAM 7.48 91.1
ECA 7.55 90.5
CA 7.44 92.1
VAM 7.52 92.2

falls between these two extremes, with an accuracy of 91.9%. These results reflect
performance discrepancies among different models across various categories. From
Table 2, it is evident that YOLOV7 achieves the highest detection accuracy; however,
YOLOV7 also possesses a deeper network, resulting in a higher parameter count compared
to YOLOV5. Considering the application scenarios’ requirements, we ultimately select
YOLOVS5 as the baseline for algorithmic improvements.

To assess the effectiveness of the newly designed attention mechanism in this article and
analyze the performance of various attention mechanisms within the algorithm, SE,
CBAM, ECA, CA, and the VAM introduced in this article are chosen for comparative
experiments. In each experiment, a specific attention mechanism module is employed in
the network’s feature extraction section of the YOLOVS5s architecture. To ensure the
validity of the comparison experiments, the different attention mechanism modules are
placed at the same positions in the network structure while maintaining the network’s
remaining configurations. Additionally, the same loss function is employed for model
training and testing. The results of the comparison experiments for attention mechanisms
are detailed in Table 3.

Table 3 provides data comparing the performance of different attention mechanisms
(SE, CBAM, ECA, CA, VAM) applied to object detection models. By observing the
relationship between model parameters and average precision (mAP), several important
conclusions can be drawn.

Firstly, from the perspective of model parameters, it can be observed that different
attention mechanisms have varying degrees of impact on the model’s parameter count.
Specifically, the Channel Attention (CA) model has the lowest parameter count (7.44 MB),
while the Efficient Channel Attention (ECA) model has the highest parameter count
(7.55 MB). This indicates that different attention mechanisms have different effects on
model complexity, and selecting the appropriate attention mechanism can minimize the
model’s parameter count while maintaining performance.

Secondly, from the perspective of average precision (mAP), it can be observed that
different attention mechanisms have different effects on model performance. The VAM
model exhibits the highest average precision (92.2%), while the ECA model shows the
lowest average precision (90.5%). This suggests that selecting the appropriate attention
mechanism can significantly impact the model’s performance, thereby affecting the
accuracy and stability of object detection.
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Figure 5 Detection effects of the RSOD dataset. Full-size K&l DOT: 10.7717/peerj-cs.2007/fig-5

From Table 3, it can be seen that VAM has better detection performance in this model,
with a 0.6 improvement compared to SE. This implies that VAM helps the convolutional
network better capture image features while also performing well in model parameters.
Compared to SE, it reduces computational complexity, making it more lightweight and
suitable for deployment on resource-constrained devices. Therefore, it can be inferred
from Table 3 that the attention mechanism VAM designed in this article has a significant
impact.
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Figure 6 Comparative status of RSOD dataset on different algorithms. Full-size k&l DOT: 10.7717/peetj-cs.2007/fig-6

Result visualization

In this article, multiple images are taken from the RSOD dataset, and the values in the
figure represent the confidence level of this detection effect, which refers to the size of the
probability of detecting the authenticity of the target. The detection effect of the model is
shown in Fig. 5.

To thoroughly investigate the comparative detection performance before and after the
implementation of our improved algorithm, we selected an image from the RSOD dataset
containing small targets such as aircraft and oil tanks. We conducted detection using
classic algorithms YOLOv4, YOLOVS5s, our improved algorithm, and YOLOv7. The
detection results are depicted in Fig. 6.

Primarily, it is evident from the images that the detection accuracy of YOLOV4 is
comparatively low, performing the worst among the models considered. This might be
attributed to factors such as the architectural design or optimization techniques of
YOLOV4. A clear observation from the image compositions in Fig. 6 indicates that the
original algorithm exhibits poor detection of small targets such as oil tanks and aircraft.

Furthermore, our modified models, through improvements in loss functions, network
architecture, and the addition of attention mechanisms, show a certain degree of
improvement in detection accuracy compared to YOLOV5s. This suggests that
modifications made to the model architecture and training process have positively
influenced its performance. Comparison with YOLOv7 demonstrates that our modified
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model achieves detection results comparable to YOLOv7. This indicates that while
YOLOV7 may contain more advanced features or optimizations, our model can achieve
similar performance levels through customized modifications.

Through modifications such as altering the feature extraction network structure,
introducing new DFL loss functions, and integrating better-performing attention
mechanisms, significant enhancements have been achieved. As depicted in the image
compositions in Fig. 6, our algorithm can comprehensively detect objects, with a notable
improvement in the accuracy of detection boxes. These improvement strategies make the
algorithm more suitable for feature extraction in small targets, effectively addressing the
issue of target scale differences, particularly enhancing performance in small target
detection. Additionally, our algorithm pays more attention to difficult-to-classify targets,
further enhancing detection accuracy. These improvements make remote sensing image
object detection more reliable and precise. The refined algorithm should more accurately
identify and locate these targets, reducing instances of missed detections, thereby
enhancing the reliability and accuracy of remote sensing object detection.

CONCLUSION

This article addresses the challenges of small object detection and inadequate recognition
accuracy in aerial images and proposes an improved algorithm based on YOLOV5s.
Specifically, our contributions can be summarized in three aspects:

Firstly, we introduce the DFL loss function. This loss function, by specially processing
pixels at boundaries during neural network training, enhances the model’s accuracy and
robustness in recognizing objects at boundaries. By designing the DFL loss function, we
enhance the robustness and accuracy of the model in small object detection.

Secondly, we introduce a novel Small-Scale Network (SNN) module to improve the
neural network. This module enhances the model’s representational capacity by adding
convolutional layers, using smaller convolutional kernels, and introducing residual
connections. It better captures rich, abstract features of the data, thereby improving the
model’s performance, particularly in small object detection.

Lastly, we introduce an improved attention mechanism structure. This structure, by
appropriately allocating weights, effectively promotes the interaction and fusion of
information between different contexts, optimizing the intrinsic structure of information
at different levels. This innovation aids in enhancing the model’s perception and inference
capabilities.

We comprehensively evaluate and analyze the improved model. Through comparative
experiments and ablation studies, we found that our proposed improved algorithm
achieved a significant improvement in mAP (mean Average Precision) by 3.51 compared
to the baseline, while also reducing the model parameter count by 0.2. Compared to other
common network models, our model improvement also demonstrates certain advantages.

In summary, the proposed improved algorithm makes significant advancements in the
field of small object detection, enhancing detection accuracy and model lightweightness. It
is poised to provide more powerful tools and performance for aerial image processing in
practical applications.
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