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ABSTRACT
Training with soft labels instead of hard labels can effectively improve the robustness
and generalization of deep learning models. Label smoothing often provides
uniformly distributed soft labels during the training process, whereas it does not take
the semantic difference of labels into account. This article introduces discrimination-
aware label smoothing, an adaptive label smoothing approach that learns appropriate
distributions of labels for iterative optimization objectives. In this approach, positive
and negative samples are employed to provide experience from both sides, and the
performances of regularization and model calibration are improved through an
iterative learning method. Experiments on five text classification datasets
demonstrate the effectiveness of the proposed method.

Subjects Algorithms and Analysis of Algorithms, Computational Linguistics, Data Mining and
Machine Learning, Text Mining, Neural Networks
Keywords Text classification, Neural network, Label smoothing, Excessive regularization, Soft label

INTRODUCTION
The benchmark performances of natural language processing applications are constantly
pushed by the increasing model complexity in the past decades (Chen et al., 2021).
Complex models contain complicated encoding and decoding structures as well as
significant numbers of parameters, which may lead to model overfitting (Zhang et al.,
2018), which means that a model performing well in the training stage achieves low
performance in the testing stage. The main reason for this is insufficient training data and
noise interference (Ying, 2019). To address this problem, a wide range of regularization
techniques have been investigated, considering both generalization and training errors
(Srivastava et al., 2014).

Label smoothing (LS) (Szegedy et al., 2016) is a type of label regularization that provides
more reasonable class labels. The basic idea of LS is to change the optimization objective
from one-hot target to a value between 0 and 1. It normally adds noises to the model, to
mitigate the problem of overfitting. This idea encourages the model to learn generalizable
representations and make calibrated predictions. LS is also widely used in text classification
models (Desai & Durrett, 2020; Liu et al., 2022).
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However, many studies on LS add uniform noise to the models, neglecting the
relationships between categories. For instance, when the target is tea, it would be
inappropriate to apply the same degree of smoothness to coffee and CPU. The predicted
probability of coffee increases while the probability of CPU decreases. To create more
reasonable labels, several studies have been conducted to improve LS. In dialog generation,
Wang et al. (2021b) used an auxiliary distribution and one-hot distribution weighting.
Saha, Das & Srihari (2022) transformed a uniform distribution into a more natural
distribution based on semantics. In image classification,Maher & Kull (2021) investigated
the utilization of a teacher network to guide non-target probabilities. Among studies
conducted on node classification, Zhou et al. (2023) and Wang et al. (2021a) represented
labels as graphs, propagating node information to aggregate neighboring distributions to
determine an appropriate node representation. In text classification, Luo, Xi & Mao (2021)
proposed a label smoothing method using a fake label, but failed to explain the role played
by the fake label. Margin-based label smoothing (Liu et al., 2022) imposes a controllable
margin on logit distances, penalizing the distances exceeding a specified margin. Although
the above methods can enhance model generalization, they do not consider the impact of
incorrect examples on the model.

In this study, we propose an adaptive label smoothing method to address the problem of
non-target distribution by learning soft label distributions during the training process. We
argue that the probabilities of non-target classes should be positively correlated with
similar ground-truth labels; that is, the greater the similarity to the real labels, the higher
the probability. Inspired by the work of Ding et al. (2019), we developed an adaptive label
regularization method to adjust the strength of regularization, benefiting from erroneous
experiences. For classes in which instances are often misclassified, stricter constraints
should be adopted to improve model performance, considering that the model may not be
learning adequate information or may even be underfitting. In summary, the differences
between the proposed method and current approaches to LS are two folds: 1) few studies of
LS have discussed the restricted generalization imposed by incorrect cases, whereas this
study considers erroneous examples; 2) in contrast to other models, our approach
explicitly considers the impact of excessive regularization, aiming to strike a balance
between regularization and performance.

The major contributions of this study are as follows:
• A novel method, discrimination-aware label smoothing (DALS), is proposed based on

negative samples to alleviate the underfitting problem caused by excessive regularization.
• The model learns and obtains adaptive soft labels through a training process requiring

neither external knowledge nor changes to the original structure of the model. Thus, it is
applicable to any backbone model.

• Experiments on several benchmark datasets indicate that the proposed method
addresses the problem of overfitting and achieves competitive improvement. The average
increases in accuracy for the Ohsumed, 20NG, and R52 datasets were 5%, 2%, and 2%,
respectively.

The remainder of this article is organized as follows: “Related Work” summarizes the
regularization tools for labels. The calculations used for the proposed approach are
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described in “Model”. In “Experimental Analysis”, extensive experiments on comparative
analyses are presented. Finally, conclusions are drawn in “Results”.

RELATED WORK
Label smoothing
As previously discussed, LS has boosted the performance of computer vision (Xu et al.,
2020) and natural language processing tasks (Lukasik et al., 2020). Unlike LS, the unigram
label smoothing developed by Pereyra et al. (2017) assigns the frequency of each label as
the prior distribution rather than the uniform distribution. Both share a fixed prior-label
distribution, which may not be satisfied by numerous complex tasks. To fill this gap,
substantial advancements have been made in adaptive LS, which can be divided into two
categories.

a) Revising the uniform distribution of LS. Incorporating the idea of the k-nearest
neighbor algorithm, Bahri & Jiang (2021) assigned weights between the uniform
distribution and the number of correct samples within radius K divided by the total
amount of samples. Penha & Hauff (2021) replaced non-target labels with negative
sampler scores. Song et al. (2020) selected candidate words that shared the history of the
previous step, thereby redefining and calculating the probability distribution of candidate
words as a smoothing distribution based on context. However, these methods either
require a specific model structure or are only performed for specific tasks, posing
challenges for text classification tasks. In contrast, our method can be applied to any
model. For image processing, Zhang et al. (2021) improved the loss function by
accumulating the distributions of correctly classified labels to enhance image recognition;
however, this method ignores the adjusted effect of negative samples on the models.

b) Changing the smoothing factor. Krothapalli & Abbott (2020) chopped images by
considering the relative sizes of the objects in the training set. Li, Dasarathy & Berisha
(2020) performed clustering on the training data and learned the smoothing intensity of
each cluster. Wei et al. (2022a) proposed the use of a negative smoothing factor in high-
noise regimes.

Our method falls into the first category, as we determine a more natural label
distribution in the training process.

Calibration
Calibration predicts the probability or confidence in the model to approximate its true
accuracy. The calibrated probability is important for interpreting the model (Guo et al.,
2017) because it reflects the confidence level in an actual scenario. Efforts aimed at
estimating calibration in well-trained models are mainly divided into two classes: post-
processing and model calibration. Some classic binary models that use post-processing
steps include Platt scaling (Platt, 1999), histogram binning (Zadrozny & Elkan, 2001), and
isotonic regression (Zadrozny & Elkan, 2002). For multiclass settings, temperature scaling
is a competitive calibration method (Guo et al., 2017; Balanya, Maroñas & Ramos, 2022;
Khan, Wang & Liu, 2023) prevalent in knowledge distillation (Hinton, Vinyals & Dean,
2015). LogitNorm (Wei et al., 2022b) optimizes the logit vector as a unit vector with a
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constant magnitude. Model calibration introduces calibration terms for loss (Kumar,
Sarawagi & Jain, 2018; Mukhoti et al., 2020), LS (Szegedy et al., 2016; Wang et al., 2021b),
and data augmentation (Thulasidasan et al., 2019; Yun et al., 2019). Pereyra et al. (2017)
were the first to propose LS for model calibration. Müller, Kornblith & Hinton (2019)
conducted an in-depth study on LS calibration. The principle of LS is to increase the
entropy of the output probability distribution to alleviate the problem of overconfidence.
We also investigated the calibration effects of the proposed method.

Label regularization
Label-correction techniques that consider label quality have been developed to prevent
mistakes in handcrafted labeling. Bootstrapping loss was proposed by Reed et al. (2014),
which involves weighting the real labels with a predicted probability to reduce the
influence of noise on parameter updating. Another approach described byMa et al. (2018)
decreases the weight of the hard labels over time. Arazo et al. (2019) integrated the concept
of bootstrapping loss with dynamic weight adjustment, updating the loss of normal and
noisy samples in opposite directions. Other regularization methods are employed at the
loss level. For instance, Patrini et al. (2017) introduced a matrix T to estimate the transition
probability from real to noisy labels, proposing forward and backward losses based on T to
optimize real labels. In DisturbLabel (Xie et al., 2016), a few samples are randomly selected
and trained using incorrect labels during each iteration. Similarly, the proposed method
utilizes loss-function augmentation, which enables more flexible operations to adaptively
adjust to the target distribution.

MODEL
Label smoothing
Let D ¼ xi; yið Þf gNi¼1, where xi denotes the i-th document; Y ¼ yi 2 0; 1f gK� �

, where K
is the number of document category. When xi is fed into the deep neural network, the
model outputs a K-dimensional representation. The softmax function is used in the output
layer of the neural network models to predict probability p kjxið Þ for class k. The output
distribution of the model is denoted by p. The standard cross-entropy (CE) loss function
can then be written as

Lhard ¼ H q; pð Þ ¼ �
XK
k¼1

q kjxið Þ log p kjxið Þð Þ (1)

where q is the ground-truth label, which is typically a one-hot distribution; q kjxið Þ is
marked as 1 if and only if category k is the target class and 0 otherwise. Following this, we
use the backbone to denote the model with CE. However, LS does not use a one-hot
distribution to calculate the loss, introducing the noise distribution u kjxið Þ instead. Thus,
the ground-truth label becomes

q0 kjxið Þ ¼ 1� eð Þq kjxið Þ þ eu kjxið Þ (2)

and the loss is changed to
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L0 ¼ 1� eð ÞH q; pð Þ þ eH u; pð Þ (3)

where e is the smoothing factor. The loss function comprises two parts: 1) CE between the
one-hot distribution and the predicted distribution H q; pð Þ and 2) CE between the noise
distribution and the predicted distribution H u; pð Þ.

During the training process, if a machine learning model becomes overconfident in its
predictions, H q; pð Þ approaches 0, whereas H u; pð Þ increases significantly. This implies
that LS introduces a regularizing effect, H u; pð Þ, to prevent overconfident model
predictions.

In traditional LS, u kjxð Þ follows a uniform distribution, that is, u ¼ 1
K
. The loss function

is expressed as follows:

Lls ¼ �
XK
k¼1

1� eð Þq kjxið Þ þ e
K

h i
� log p kjxið Þð Þ (4)

where e is usually set to 0.1 in LS. When e ¼ 0, this is equivalent to calculating CE using
hard labels.

However, u is independent of the data: u kjxð Þ ¼ u kð Þ. Hence, the uniform distribution
is questioned when applying the same probability distribution to incorrect labels. We
assume that the label distribution correlates with the similarity between categories. One
way to reduce the loss and optimize model performance is to reduce H u; pð Þ, specifically
by making the u distribution as close as possible to the predicted distribution. We posit
that an iterative approach for updating soft labels is more reasonable than using fixed
values, as inspired by Zhang et al. (2021) and Zhou et al. (2023). Therefore, we designed a
DALS method based on this strategy. DALS considers the real relationships between
different categories and uses predictions to extract inter-class relationships that are more
discriminative for the model.

Discrimination-aware label smoothing
DALS uses category correlation in model prediction and dynamically updates soft labels
during the training stage. The soft-label distribution is u kjxð Þ, which differs for each epoch.
The model is supervised by the soft label calculated in the previous epoch, and the soft label
is updated at the end of the current epoch. For a one-hot distribution, the probabilities for
all classes are 0 except for the target class, which is marked with a probability of 1.
Traditional LS employs a uniform distribution for non-target classes and reduces the
probability of the target class to slightly below 1. In contrast, DALS discards the uniform
distribution for the assignment of non-target classes and adaptively adjusts the label
distribution.

We define qtxi;k as the soft distribution of class k in the t-th epoch, where these
distributions are specified for xi. The soft label qt�1

xi;k
calculated in the (t−1)-th epoch will be

used to guide the training process of the t-th epoch. The training loss at this time can be
represented as

Lt
soft ¼ �

XK
k¼1

qt�1
xi; k � log p kjxið Þð Þ (5)
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Figure 1 illustrates the overall framework. Text xi can be classified using any
classification backbone, such as TextCNN (Kim, 2014) or BertGCN (Lin et al., 2021). The
logits from the last layer are denoted as Z. The predicted score p xið Þ is then obtained using
a softmax layer. The p xið Þ scores of the true positive and false positive samples are
accumulated separately.

Specifically, we denote the set of samples with the prediction class c ¼ argmax
k

p kjxið Þ
as D. We also define a true positive set called Dþ and a false positive set called D�. At
the end of each epoch, the accumulated class distribution is processed to balance
the score contributions of each sample. The following equations are used for the
calculation:

qþt
xi;k

¼ 1
Dj j

X
xi2Dþ

p kjxið Þ

q�t
xi;k

¼ 1
Dj j

X
xi2D�

p kjxið Þ

8>>><
>>>:

(6)

where qþt
xi;k

is the soft label of class k calculated using true positive samples corresponding
to sample xi. Similarly, q�t

xi;k
is computed using false positive samples. Our soft label q is

calculated in two parts: qþ and q�. A truncation value of 0 is set to limit the impact of false
positive distributions on the overall values. We define

qtxi; k ¼ max 0; kqþt
xi;k

� q�t
xi;k

� �
(7)

where k is a hyperparameter to balance the impact of true positive and false positive cases.
By adding hard label supervision, the updated training loss is changed to

Lall ¼ 1� að Þ � Lt
soft þ a � Lhard (8)

where a determines the trade-off between soft and hard losses, and the value of

C
la
s
s

C
la
s
s

C
la
s
s

C
la
s
s

l

Figure 1 The overall structure of DALS. The overall structure of our DALS. This figure depicts the
process to produce qt in the epoch of t. Predicted score is supervised by qt−1 and used to calculate the loss.

Full-size DOI: 10.7717/peerj-cs.2005/fig-1
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a represents the confidence in the hard label. When a equals 1, it is equivalent to

calculating with the hard label. We define qþ0 as a uniform distribution, and q�0 ¼ 0

because the soft label in the 0-th epoch is unavailable, according to Eq. (5). Thus, q̂0≜
1
K
I,

where I denotes the identity matrix. In the early stage; this model is equivalent to
using traditional LS.

True positive samples enable the model to generalize, allowing it to identify
documents that were previously misclassified because the correct class was similar to the
other classes. However, for categories with low precision, the model carries the risk of
underfitting and an increased error rate. Thus, more generalization capabilities are
not urgently needed. In particular, for these classes, we need to reduce the impact of
true positive sample-based generalization on the model and implement a more rigorous
loss assessment. Subtracting the value of q�t

xi; k
weakens the regularization degree and

reduces the blurring degree of the boundary between classes, making the class
boundary clearer.

Thus, we propose DALS to reduce the underfitting caused by excessive regularization.

EXPERIMENTAL ANALYSIS
Datasets
The datasets included 20-Newsgroups (20NG), R8 and R52 in Reuters 21,578, Ohsumed,
and a movie review (MR) (Table 1).

20NG has 18,846 news documents, of which 113,134 and 7,532 were used for the
training and test sets, respectively, which were classified with 20 labels.

R8 and R52, extracted from Reuters 21,578, have eight and 52 categories, respectively.
R8 was divided into 5,485 documents for training and 2,189 documents for testing,
whereas R52 was split into 6,532 training documents and 2,568 testing documents.

The Ohsumed Corpus comes from the MEDLINE database, which contains
bibliographies of medical literature and has been processed to retain only 7,400 documents
belonging to a single category. There were 3,357 documents in the training set and 4,043
documents in the test set, which were divided into 23 classes.

MR (Pang & Lee, 2005) is a short-text dataset of film reviews containing one sentence
for each document and is mainly used for dichotomous emotional classification. There
were 5,331 positive and 5,331 negative comments.

Table 1 Datasets in the experiment.

Dataset #Documents #Training #Test #Classes #Words

20NG 18,846 11,314 7,532 20 42,757

R8 7,674 5,485 2,189 8 7,688

R52 9,100 6,532 2,568 52 8,892

Ohsumed 7,400 3,357 4,043 23 14,175

MR 10,662 7,108 3,554 2 18,764
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Baselines
The various models chosen for the baselines are listed as follows:

TextCNN (Kim, 2014) automatically combines and filters n-gram features to obtain
high-level semantic information.

LSTM (Hochreiter & Schmidhuber, 1997) is a special form of recurrent neural network.
The hidden state in the final step is used to represent the entire text.

FastText (Joulin et al., 2017), wherein the word vector and average n-gram vector are
regarded as the document embedding.

TextGCN (Yao, Mao & Luo, 2019) constructs the entire corpus as a heterogeneous
word-document graph, whereby the document classification problem is transformed into
node classification.

SGC (Wu et al., 2019) reduces complexity by removing nonlinearities between the GCN
layers, thereby collapsing the function into a linear transformation.

TensorGCN (Liu et al., 2020) constructs a text-graph tensor to describe semantic,
syntactic, and sequential contextual information. Intragraph and intergraph propagations
were conducted.

BERT (Kenton & Toutanova, 2019) and its variant RoBERTa (Liu et al., 2019): BERT
refers to the bidirectional encoder representations from transformers that create numerous
state-of-the-art models. RoBERTa is a robust, optimized BERT pre-training method.

BertGCN also builds a heterogeneous graph in which the document nodes are initialized
with a pre-trained Bert. Subsequently, they are jointly trained with Bert and GCN for text
classification. RoBERTaGCN, BertGAT, and RoBERTaGAT share this concept.

Experimental setup
Five models were selected for topic classification and sentiment analysis: TextCNN, LSTM,
FastText, TextGCN, and BertGCN. For TextCNN, three types of kernels with sizes of two,
three, and four were set, and the number of kernels for each type was 100. For LSTM, we
chose a hidden layer size of 64. In BertGCN, the [CLS] token of the output feature was
treated as the document embedding. The Bert-base-uncased model from HuggingFace
(https://huggingface.co/bert-base-uncased) was used following (Lin et al., 2021), randomly
dividing 10% of the training data for validation. All models used the Adam (Kingma & Ba,
2015) optimizer and adopted 300-dimensional GloVe word embeddings (Pennington,
Socher & Manning, 2014). The main parameters included the number of epochs, batch
size, learning rate, early stopping, a, and k. Early stopping indicates that the training
process is terminated in advance if the performance of the validation set does not improve
within a certain number of steps. Table 2 lists the parameter configurations of different
models selected for comparison. We retained the default parameters in the original
methods, setting k ¼ 1:4 and a ¼ 0:96 as moderate choices for the experiments. The
performance was enhanced through further tuning. The models were trained using an
NVIDIA A100 Tensor Core GPU.
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RESULTS
Performance of text classification
Experiments were conducted on five benchmark datasets, and the results are listed in
Table 3. The experimental results on the original benchmark models were obtained from
TextGCN (Yao, Mao & Luo, 2019) and other original studies (Liu et al., 2020; Lin et al.,
2021). The results in Table 3 show that DALS performed well on several datasets when
using the BertGCN backbone, achieving higher classification accuracy than some
traditional and outstanding methods.

Table 4 lists the accuracy and Macro-F1 results of five models with DALS. It shows that
systems with DALS outperform those without DALS in all datasets. Compared with the
baselines, the accuracy of models using DALS on Ohsumed improved by 5% on average
and by 2% on the 20NG and R52 datasets. The existence of several categories in these
datasets, where some categories are difficult to distinguish, may be a possible explanation
for this phenomenon. The enhancements are not evident in MR because it only has two
opposing labels without any explicit label correlation. However, our method takes
advantage of label correlations, which provide limited help on the MR dataset. Although

Table 2 Experimental setting.

Parameters TextCNN LSTM FastText TextGCN BertGCN SGC TensorGCN BERT

Epoch 100 100 100 200 60 3 1,000 60

Batch size 64 64 64 – 16 – – 64

Learning rate 0.008 0.008 0.008 0.02 0.001 0.2 0.002 0.001

Early stopping 50 50 50 10 – – 10 –

Optimizer Adam Adam Adam Adam Adam L-BFGS Adam Adam

Table 3 Performance on test data.

Models 20NG R8 R52 Ohsumed MR

TextCNN 0.8215 0.9571 0.8759 0.5844 0.7775

LSTM 0.7543 0.9609 0.9048 0.5110 0.7733

FastText 0.7938 0.9613 0.9281 0.5770 0.7514

TextGCN 0.8634 0.9707 0.9356 0.6836 0.7674

SGC 0.885 0.972 0.940 0.685 0.759

TensorGCN 0.8794 0.9804 0.9505 0.7011 0.7791

BERT 0.853 0.978 0.964 0.705 0.857

RoBERTa 0.838 0.978 0.962 0.707 0.894

RoBERTaGCN 0.895 0.982 0.961 0.728 0.897

BertGAT 0.874 0.978 0.965 0.712 0.865

RoBERTaGAT 0.865 0.980 0.961 0.712 0.892

BertGCN 0.893 0.981 0.966 0.728 0.860

BertGCN w/DALS 0.8947 0.9828 0.9667 0.7361 0.8646

Note:
Each bold entry denotes the best performance of the metric in the column.
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some results cannot meet the desired performance on the MR dataset, the overall results
remain competitive, which proves the effectiveness and flexibility of DALS.

Accuracy and calibration performance with different losses
In this study, we also explored the test performance and calibration ability of DALS
compared with other methods. The expected calibration error (ECE) (Naeini, Cooper &
Hauskrecht, 2015; Guo et al., 2017) is a commonly used method for measuring calibration.
The samples were evenly distributed inM bins. Bm represents the set of predicted samples
belonging to the m-th bin. The average accuracy of the samples in Bm is denoted as Accm,
and the average confidence within Bm is denoted as Confm. Here, we set M ¼ 10.

ECE ¼
XM
m

Bmj j
N

Accm � Confmj j: (9)

As shown in Table 5, the accuracy and ECE of the different methods are reported on the
four datasets, and only the state-of-the-art BertGCN model is chosen for comparison. Our
method achieves a higher accuracy than other existing methods. The performance gains
suggest that DALS helps improve text classification models, such as BertGCN. The ECE
results also show that our method achieves a lower ECE than most other methods,
including CE, and enables the calibration of neural models. Although our ECE result on

Table 4 Performance of backbones with and without DALS.

Model 20NG R8 R52 Ohsumed MR

Acc Macro-
F1

Acc Macro-
F1

Acc Macro-
F1

Acc Macro-
F1

Acc Macro-
F1

TextCNN 0.8502 (+0.0287) 0.8465 0.9628 (+0.0057) 0.9161 0.9166 (+0.0407) 0.6841 0.6233 (+0.0389) 0.5570 0.7917 (+0.0142) 0.7917

LSTM 0.8143 (+0.0600) 0.8123 0.9743 (+0.0134) 0.9348 0.9441 (+0.0393) 0.7173 0.6320 (+0.1210) 0.5222 0.7789 (+0.0056) 0.7799

FastText 0.8519 (+0.0581) 0.8479 0.9743 (+0.0130) 0.9302 0.9441 (+0.0160) 0.7470 0.6588 (+0.0818) 0.5874 0.7766 (+0.0252) 0.7768

TextGCN 0.8634 (+0.0000) 0.8585 0.9710 (+0.0003) 0.9330 0.9381 (+0.0025) 0.6808 0.6875 (+0.0039) 0.6281 0.7608 (−0.0066) 0.7608

BertGCN 0.8947 (+0.0017) 0.8888 0.9828 (+0.0018) 0.9487 0.9667 (+0.0007) 0.8419 0.7361 (+0.0081) 0.6603 0.8646 (+0.0046) 0.8647

Note:
Each bold entry denotes the best performance of the metric in the column.

Table 5 Test accuracy and calibration performance of BertGCN with different loss functions.

Methods R8 R52 Ohsumed MR

Acc ECE Acc ECE Acc ECE Acc ECE

CE 0.9810 0.012991 0.966 0.033264 0.728 0.244315 0.8600 0.105862

LS 0.9790 0.069798 0.9638 0.074365 0.7316 0.168407 0.8613 0.077004

FL (Lin et al., 2017) 0.9804 0.008995 0.9533 0.031282 0.6960 0.249241 0.8576 0.113956

MbLS (Liu et al., 2022) 0.9758 0.013138 0.9603 0.031092 0.7062 0.210890 0.8571 0.115159

DALS 0.9828 0.008458 0.9667 0.030494 0.7361 0.168829 0.8646 0.075474

Note:
Best results are highlighted in bold style.
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Ohsumed is less satisfactory than that on LS, a balanced performance is achieved with
higher accuracy.

Effect of corrupted labels
To explore the ability of the model to deal with mislabeling, 5%, 10%, 15%, 20%, 25%, and
30% of the training data were randomly selected, and the labels were randomly replaced
from among the remaining labels with the same transition probability. The test set
remained unchanged. Figures 2 and 3 both show the effects of different proportions of
corrupted labels on the test results. Figure 2 presents the results of the experiments
conducted on TextCNN, whereas Fig. 3 uses TextGCN. In general, as the
percentage of fake labels increases, the accuracy decreases. After using DALS, the
performance of the backbone improved in most cases. These experiments prove that the
proposed method maintains its robustness and reduces the negative impact of labeling
errors on the model.

Confusion matrices were generated on the Ohsumed dataset (Fig. 4), where each case
tends to be classified into the C23 category of the backbone; therefore, the color of this
column is darker. After applying DALS, the model reduces the predicted probability of
C23, and the color of column C23 is lighter. This suggests that if the sample is often

l l l l

l ll l

Figure 2 Performance with different proportions of corrupted labels (TextCNN).
Full-size DOI: 10.7717/peerj-cs.2005/fig-2
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misclassified into certain categories that are confusing, more supervision is required for
that class instead of excessive regularization.

DISCUSSION
Effect of hyperparameters
Among the hyperparameters, a measures the contribution of soft and hard targets, which
represents the degree to which model prediction deviates from the hard labels. As shown in
Fig. 5A, when a ¼ 0:96, TextGCN with DALS achieves the best result on the Ohsumed
dataset. When the value exceeds 0.96, the model performance degrades, caused by the
small proportion of soft labels. The increase in the non-target distribution is too small to
show a difference between labels. When a is lower than 0.96, the contribution of the soft
label is higher, increasing error tolerance. This can easily cause underfitting, reducing the
learning ability of the model. Figure 5A also shows that the highest accuracy of BertGCN
with DALS is obtained when a = 0.95. We also explored the settings of k to balance the
impact of true positive and false positive cases, as shown in Fig. 5B. A k value of
approximately 1.4 emerges as the optimal balance point, yielding the highest accuracy on
the test set with the TextGCN method. Deviations towards smaller or larger values of k
result in a decline in model efficacy. Tuning k to an appropriate value can effectively
control the smoothness of the model, thereby enhancing the overall model by managing
true positive and false positive instances.

l l l l

l ll l

Figure 3 Performance with different proportions of corrupted labels (TextGCN).
Full-size DOI: 10.7717/peerj-cs.2005/fig-3
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Connection with model complexity
We also investigated whether our regularization method affects the complexity of the
model. The TextCNNmodel requires several kernels to capture different text features, with
a default kernel size of 100. Our experiments reduced the number of neurons by reducing
the number of kernels to 2, 4, 6, 8, and 10. The results shown in Fig. 6 indicate that the

l l

l
l

l
l

l l

Figure 4 Confusion matrix of TextCNN and TextCNN with DALS on the Ohsumed dataset. Full-size DOI: 10.7717/peerj-cs.2005/fig-4

l l

Figure 5 Effect of hyperparameters on the Ohsumed dataset (TextGCN and BertGCN).
Full-size DOI: 10.7717/peerj-cs.2005/fig-5
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model captures more features with an increasing number of kernels, and its accuracy
remains higher than that of the backbone.

CONCLUSIONS
LS helps alleviate the problem of overconfidence and enhances the calibration ability of
models. DALS, an adaptive LS method, offers a reasonable approach for obtaining the soft
distribution of classes by employing true and false positive samples to iteratively learn their
distribution scores. Experiments on five datasets show that DALS promotes classification
performance, calibration ability, and model robustness. In summary, the advantages of our
model are: 1) employing both true positive and false positive cases in learning smoothing
parameters, thereby expanding the training data for model calibration and improving
performance; 2) providing a LS approach via plug-and-play without any changes to the
original models.

Our approach has several limitations that need to be considered for improvement: 1)
DALS may not yield significant performance improvements for classification tasks with
sparse data. In such cases, the model should focus more on data fitting than generalization;
2) model hyperparameters are dataset-dependent. Consequently, hyperparameter settings
become essential during the learning process to ensure optimal performance across
different datasets.

In future work, we plan to extend our research by integrating this method into machine
learning pipelines for various applications in downstream tasks to measure the correlation

l l

ll

Figure 6 Effect of neuron number. Full-size DOI: 10.7717/peerj-cs.2005/fig-6
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between the decision thresholds of these tasks and the adaptive LS method and improve
performance.
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