
Submitted 27 October 2023
Accepted 1 April 2024
Published 14 May 2024

Corresponding author
Harold N. Eyster,
haroldeyster@gmail.com

Academic editor
Paulo Coelho

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.2003

Copyright
2024 Eyster and Beckage

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Applying a deep learning pipeline to
classify land cover from low-quality
historical RGB imagery
Harold N. Eyster and Brian Beckage
Department of Plant Biology, University of Vermont, Burlington, VT, United States of America
Gund Institute for Environment, University of Vermont, Burlington, VT, United States of America

ABSTRACT
Land use and land cover (LULC) classification is becoming faster and more accurate
thanks to new deep learning algorithms. Moreover, new high spectral- and spatial-
resolution datasets offer opportunities to classify land cover with greater accuracy and
class specificity. However, deploying deep learning algorithms to characterize present-
day, modern land cover based on state-of-the-art data is insufficient for understanding
trends in land cover change and identifying changes in and drivers of ecological
and social variables of interest. These identifications require characterizing past land
cover, for which imagery is often lower-quality. We applied a deep learning pipeline
to classify land cover from historical, low-quality RGB aerial imagery, using a case
study of Vancouver, Canada. We deployed an atrous convolutional neural network
from DeepLabv3+ (which has previously shown to outperform other networks) and
trained it on modern Maxar satellite imagery using a modern land cover classification.
We fine-tuned the resultant model using a small dataset of manually annotated and
augmented historical imagery. This final model accurately predicted historical land
cover classification at rates similar to other studies that used high-quality imagery. These
predictions indicate thatVancouver has lost vegetative cover from1995–2021, including
a decrease in conifer cover, an increase in pavement cover, and an overall decrease in
tree and grass cover. Our workflow may be harnessed to understand historical land
cover and identify land cover change in other regions and at other times.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Deep learning, Vancouver, Land cover classification, Land use classification, Land use
change, Land cover change, Historical imagery, Neural networks, Land use land cover, Low quality
images

INTRODUCTION
Classifying land and water into different cover types or classes can produce datasets key
for understanding a wide variety of phenomena ranging from equity of park systems (Ibes,
2015) to urban temperatures (Zhou, Huang & Cadenasso, 2011) and the vulnerability
of birds to climate change (Jarzyna et al., 2016). However, the scale of land use and
land cover classifications (LULC; hence land cover for brevity) overwhelm manual
annotations and has required the development of automated techniques (Risojević, Momić
& Babić, 2011). Such techniques have sought to match, and even surpass, the accuracy of
manual classification (Carrasco et al., 2019). Artificial intelligence and machine learning
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methods—in particular deep learning algorithms—have increased the accuracy of land
cover classifications (Talukdar et al., 2020; Zhao et al., 2023). Deep learning algorithms
use artificial neural networks trained on images and their associated annotations to
create models that classify new images into land cover classes (Taghanaki et al., 2020).
Annotations indicate which part of each image belongs to which class and are used to
train the model. This neural network image classification process, known as semantic
segmentation, has become widely used for many tasks, including identifying landscape
features for autonomous vehicles (Cakir et al., 2022), diagnosing diseases from medical
images (Goceri & Goceri, 2017), and land cover classification (Ayhan & Kwan, 2020).
Semantic segmentation, as opposed to other methods, is particularly appropriate for land
cover classification because it classifies every single pixel, thus creating a map of land cover
that designates every pixel as a land cover type (Tzepkenlis, Marthoglou & Grammalidis,
2023).

As image classification technology has advanced, so has the available data. Hyperspectral
andmultispectral satellite imagery is becoming widely available, and can provide resolution
of less than 2 m (Vali, Comai & Matteucci, 2020; Shahfahad et al., 2023). Similarly,
autonomous drones can produce very high spatial and spectral resolution for specific
regions (e.g., spatial resolution less than 0.02 m; Nezami et al., 2020). LiDAR surveys
are becoming increasingly widespread, frequent, and publicly available, and can greatly
enhance the identification of land cover (Yan, Shaker & El-Ashmawy, 2015).

However, these new datasets are insufficient for determining land cover change, which
is key for understanding environmental and social systems (Gaur & Singh, 2023). For
example, land cover change can help to identify the role of urban sprawl on bird
diversity (Montero et al., 2021) and the effects of racist housing and lending practices
on exposure to extreme heat events (Chen, 2022). Addressing today’s challenges requires
not only characterizing modern land cover, but also historical land cover, where imagery
is often sparse and low-quality.

Yet land cover analyses have focused on classifying high-quality modern imagery, not
lower-quality historical imagery (Yuan, Shi & Gu, 2021), making it unclear what analysis
pipelines might be suited to classifying such historical imagery. Moreover, while much
modern, high-resolution annotated imagery exists, such historical annotated imagery is
rare—for example, high-resolution annotations of Metro Vancouver, BC, Canada land
cover only go back to 2014 (https://open-data-portal-metrovancouver.hub.arcgis.com/,
accessed 2024 Feb. 16). This lack of proven approaches to classify historical land cover,
the lower quality of historical imagery, and the scarcity of annotated historical land cover
make classifying historical land cover difficult.

A new deep learning neural network architecture may offer a route towards historical
image classification. Recent papers have shown that a deep neural network for semantic
segmentation, DeepLabv3+ (Chen et al., 2018), outperforms other architectures in
classifying land cover (Du et al., 2019; Su & Chen, 2019; Ayhan & Kwan, 2020). For
example,Du et al. (2019) compared the performance of U-Net, PspNet, SegNet, DeepLabv2
(DLv2), and DeepLabv3+ (DLv3+) in classifying land cover from RGB images. Using OA,
Kappa, and F1-scores, they showed that DeepLabv3+ achieved much higher success in
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nearly all cases, including an average Kappa coefficient of 0.8, relative to 0.72, 0.67, 0.68,
and 0.72 for U-Net, PspNet, SegNet, and DLv2, respectively. These results, and others (Su
& Chen, 2019; Ayhan & Kwan, 2020; Chen et al., 2018) suggest that DeepLabv3+ may offer
promise for classifying historical imagery.

This superior performance of DeepLabv3+ is likely due to a number of features. First,
it uses an atrous (also known as dilated) deep convolutional neural network (Chen et al.,
2018). This feature enables it to integrate information across the whole image to make
inferences about a particular part of the image (Chen et al., 2018). Second, it uses atrous
spatial pyramid pooling (ASPP) which enables the integration of information at multiple
scales (Chen et al., 2018). Third, it uses batch normalization (Ioffe & Szegedy, 2015) to
greatly speed up the training time (Chen et al., 2018). Finally, it uses an encoder–decoder
structure to refine class boundaries (Chen et al., 2018). Moreover, atrous convolutional
and atrous spatial pyramid pooling methods may help take advantage of more of the
information in historical imagery, rather than just the information in a part of the image,
thereby optimizing the utility of the limited information contained in historical imagery.

However, despite the proven success of DeepLabv3+ in classifying land cover, its
capacity to classify low quality historical imagery into many land cover classes remains
untested. Although Su & Chen (2019) tested DeepLabv3+ on older images, they used
high-quality Google Earth images and these images were only classified into broad land
classes (e.g., ‘urban land’ without distinguishing between lawns, buildings, roads, or types
of trees etc.). Indeed, DeepLabv3+ has not been tested on its capacity to characterize specific
vegetation types like broadleaf vs. coniferous trees. Moreover, previous DeepLabv3+ land
cover analysis code has not been made publicly available (Du et al., 2019; Su & Chen, 2019;
Ayhan & Kwan, 2020), limiting the potential uptake of these methods.

Here, we apply DeepLabv3+ to classify historical, low-quality RGB aerial imagery into
fine-scale land cover classes and test this application with a case study of Metro Vancouver,
Canada. Our article contributes to the analysis of remote sensing data by showing that
fine-scale tree classes can be accurately distinguished in low quality RGB images by using a
small annotated region of the historical image to fine tune a modern classification model.

METHODS
Pipeline overview
Our objective was to apply a deep learning pipeline to classify low-quality RGB imagery. Our
pipeline (Fig. 1) used modern annotated and RGB images to train an initial DeepLabv3+
model. Then, after manually annotating a small selection of a historical RGB image, the
model was fine-tuned by training it on this small annotated region. Our pipeline produced
twomodels (amodel for classifyingmodern land cover and amodel for classifying historical
land cover). These models can be used to estimate modern and historical land cover, which
in turn can be compared to calculate land cover change.We applied this land cover pipeline
to classify land cover in Metro Vancouver, BC for 1995. Custom code used in this analysis
can be found on DOI: 10.17605/OSF.IO/BWJKN.
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Figure 1 Our pipeline for using deep learning models to classify low-quality historical imagery, show-
ing each step.Map imagery Google, Maxar Technologies.

Full-size DOI: 10.7717/peerjcs.2003/fig-1

Images
We used a modern, geo-referenced, annotated land cover mask and two geo-referenced
RGB images—one modern and one historical (Figs. 1A, 1D). Each pixel value in the
mask indicates the land cover type of the location associated with that pixel. While
high-spatial resolution multispectral images are widely available now, aerial RGB images
often provide the highest spatial resolution remote sensing of land in the 1990s necessary
for understanding fine-scale changes in land cover such as single trees.

For our modern RGB image, we obtained modern satellite imagery taken over Metro
Vancouver in 2021 from Maxar Technologies via Google Imagery (RGB, ∼0.5 m spatial
resolution, 8 bit unsigned integer, accessed 01 November, 2022) and downsampled to 1 m
spatial resolution (Fig. S6 for map of training imagery extent). We cropped the modern
mask and RGB image to cover an area of 48,640 m × 28,672 m. We obtained a 5 m spatial
resolution annotated land cover mask for Metro Vancouver representing 2019 (Metro
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Map imagery © Google, Maxar Technologies 

Figure 2 Examples of low quality features of RGB aerial photos showing general low-details and dif-
ferences in ocean and forest color (left) and in building angles (right) across the boundaries of mo-
saicked aerial photos captured in 1995 over Vancouver, BC, Canada.Map imagery Google, Maxar Tech-
nologies.

Full-size DOI: 10.7717/peerjcs.2003/fig-2

Vancouver, 2019). We upsampled the mask to obtain 1 m spatial resolution and reduced
the 14 classes into eight classes, including water, buildings, pavement, bare, shrub, grass
(including herbs), coniferous trees, and deciduous trees. We obtained a low-quality 1 m
spatial resolution (RGB, 16 bit unsigned integer) aerial photos from the Canadian Wildlife
Service, Pacific Region (obtained January 2022) (Fig. 2). These photos were taken over
Vancouver, BC, by airplane in May and July 1995 by the Selkirk Remote Sensing Ltd.
(Selkirk Remote Sensing, 1995) and georeferenced and othorectified by Triathlon Mapping
Corporation (Burnaby, BC) (Triathlon Mapping Corporation, 1996).

We cropped themodernmask and RGB images to cover an area of 48,640m× 28,672m.
More spatially extensive images will produce more training data and thus a more accurate
model as long as increasing the spatial extent does not also increase the diversity of land
cover types or appearances. Note that the annotated mask has limited accuracy—e.g.,
Fig. 3A shows how it classifies the grass field in the lower left as barren. Given the limited
accuracy of the original input modern land cover classification, accuracy and confusion
matrices for the modern land cover should be interpreted cautiously.

To format images for training, we tiled the modern mask and modern RGB image into
512 × 512 pixels (following Su & Chen, 2019), resulting in 5320 tiles for each image type,
where each tile of the RGB image represents the same land area as the corresponding mask
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Map imagery © Google, Maxar Technologies 

Figure 3 Example model inputs and land cover predictions for (A) modern images and (B) historical
images showing 512× 512 pixel tiles. For additional example historical tile land cover classifications, see
Fig. S7. Map imagery Google, Maxar Technologies.

Full-size DOI: 10.7717/peerjcs.2003/fig-3

tile (Fig. 1A). Future work might investigate the optimal tile size. We converted each tile
into png format for compatibility with the TensorFlow image decoder.

Modern deep learning model
To train the initial DeepLabv3+ model, we used TensorFlow 2 (version 2.11.0), Keras
(version 2.11.0), and DeepLabv3+ within a Python (version 3.10.9) environment. Analyses
were conducted on GNU Linux (6.1.12-arch1-1, 64-bit) 16 × AMD Ryzen 7 4800H
processors with 15.0 GiB RAM. DeepLabv3+ can be freely downloaded and installed from
https://github.com/google-research/deeplab2. We randomly sorted the mask and RGB tiles
into training (90%) and validation (10%) datasets (following Su & Chen, 2019), then
converted the tiles into tensors. Future research might test the optimality of this 90/10
ratio.

We trained the DeepLabv3+ dilated convolutional neural network on the modern tiles
and masks (Fig. 1B). We used a dilation rate ranging from 1 to 18 in order to capture
spatial information. Low-level features were initialized with weights from a backbone
model (ResNet50 model trained on the ImageNet database; He et al., 2015). We trained
the model for 25 epochs using a batch size of 4. We optimized the model using sparse
categorical crossentropy as the loss function and the Adam algorithm for gradient-based
optimization (Kingma & Ba, 2014).

Modern model validation
To validate the model, we used the model to predict the land cover classes for the 10%
of the modern images that were set aside for validation (Fig. 1C). We compared the
resulting predictions with the original annotated masks to calculate model accuracy,
produce confusion matrices, and visually inspect the accuracy of the predictions (Fig. 3A).
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We modified model parameters and training dataset size until the accuracy became
satisfactory.

Historical annotations
Many deep learning analyses of land cover stop at this point (Su & Chen, 2019; Du et
al., 2019). However, because our historical RGB imagery is much lower quality and was
produced using different imaging technology than the modern RGB image (Fig. 2), the
historical imagery likely does not represent the same feature space nor have the same
distribution as the modern RGB training data. Thus following standard methods and using
the model trained on the modern data to predict historical land cover classes will likely
yield low accuracy (Pan & Yang, 2010). Instead, we manually annotated a small area of the
historical image (Fig. 1D) and used transfer-learning to fine-tune the model on this small
additional training dataset (Figs. 1E, 1F).

We used the ThRasE plugin (version 22.3.3a; https://github.com/SMByC/ThRasE) in
QGIS (version 3.28.0) to manually annotate 58 historical RGB tiles (each tile was 512 m ×
512 m, resulting in a total annotated area of ∼ 15 km2). The first author, who carried out
the annotation, spent five years in Vancouver, BC, where he conducted many avian and
vegetation surveys and ran every street in the city. This first-hand knowledge of the city
likely affected the manual annotations. We selected an annotation region that included
coniferous forest, broadleaf forest, industrial, residential, and downtown urban core, lakes,
and ocean.

To annotate the historical image, we selected an area of the image that was representative
of the area of interest. We manually annotated the historical image using the same classes
that were contained in the modern annotation mask. To ensure consistency between
the classifications, we reviewed the relationship between the modern annotation mask
and the modern RGB image. To accelerate manual annotation, the modern model can
be used to create initial estimates of historical land cover cover; the modern land cover
classification may also provide useful initial estimates that can then be manually corrected.
QGIS and the ThRasE plugin make manual annotating easier and are freely available. Label
Studio (https://labelstud.io/, accessed 20 March 2023) also provides a free platform for land
cover annotation (see e.g., https://www.youtube.com/watch?v=UUP_omOSKuc; accessed
20 March 2023).

After completing annotations, we tiled the historical annotation and spatially-matched
historical RGB image. We doubled the size of the annotated dataset by copying each tile
and rotating by 90◦. Because this annotation dataset is small, such data augmentation via
image rotation can increase model accuracy (Perez & Wang, 2017).

Fine tuning
Transfer learning enables the model trained on the modern images to adapt to the lower-
quality historical imagery (Pan & Yang, 2010). Thus, we fine-tuned the model trained on
the modern images on the historical mask and image tiles (Fig. 1E) using a lower learning
rate (10× lower; Shin et al., 2016) and only 20 epochs.
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Historical model validation
To validate the fine-tuned model for classifying the historical land cover, we used the
fine-tuned model to predict the land cover class for the annotated dataset (using the entire
dataset since the annotated dataset is very small; Fig. 1F). We compared the resulting
predictions with the manual annotated masks to calculate the model accuracy, produce
confusion matrices, and visually inspect the accuracy of the predictions (Fig. 3). To show
the effect of fine tuning and data augmentation of the annotated historical images, we tested
each of the threemodels for their capacity to estimate historical land cover, includingModel
1: the original modern deep learning model, Model 2: the fine-tuned deep learning model
trained without historical data augmentation, and Model 3: the fine-tuned deep learning
model trained with historical data augmentation.

Accuracy evaluation indicators
We used overall accuracy (OA) and Cohen’s Kappa, κ , (Cohen, 1960) to evaluate the
models, defined as:

accuracy=
number of matching cells

number of cells
, (1)

κ = (p0−pe)/(1−pe), (2)

where p0 is the observed agreement ratio between two classifiers, and pe is the expected
agreement if both classifiers were random.

Land cover prediction
To predict the land cover across the region of interest, we selected the region of interest and
tiled the modern and historical RGB georeferenced images representing this region into
512× 512 pixel images. We used the first model to create images predicting the land cover
classes for each of themodern tiles and the fine-tunedmodel to create images predicting the
land cover classes for each of the historical tiles.We associated the georeference information
for each of the tiled RGB images with each of the predicted images and mosaicked the tiles
together to create a complete modern and a complete historical land cover image. We used
the final models to predict eight land cover classes for Vancouver, BC, Canada for 1995
and 2021. We corrected the land cover for water, since water is easy to manually classify.
We compared the distribution of land cover classes within the city to show estimated land
cover change over the 26-year period. To show more general changes, we also reduced the
eight land classes into three bins: water, built (including buildings, pavement, and bare),
and greenery (including shrubs, grass, coniferous trees, and deciduous trees). We used the
error rate from the confusion matrices (percentage of classifications that do not match the
original annotations) to plot uncertainty of land cover change.

RESULTS
Modern classification
Our land cover classification of the modern image produced an overall accuracy of 0.7037
relative to the 2019 Metro Vancouver land cover classification (Metro Vancouver, 2019).
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Our land cover class estimates were most consistent with the 2019 Metro Vancouver land
cover classification for water (95%), and least consistent for shrubs (7%) (Fig. 4A). Binning
the land cover classes into water, built, and greenery yielded improved accuracy, varying
from 80% to 95% (Fig. 4B).

Historical classification
Using the model trained only on the modern image produced low accuracy of 55.07%.
It particularly struggled to classify water, mischaracterizing many non-water features as
water, especially conifers (Fig. 5A). Moreover, pavement and deciduous trees were labelled
incorrectly as buildings (Fig. 5A). Fine tuning the model by training on annotated historical
imagery produced better predictions, improving the accuracy to 64.74%. In particular,
pavement was more accurately labeled as pavement instead of mislabeled as buildings Fig.
5B). Conifers were no longer misclassified as water, though many classes were misclassified
as conifers, particularly deciduous trees Fig. 5B). Water was also still overestimated,
with grass in particular being misclassified as water (Fig. 5B). Fine tuning the model on
augmented historical imagery produced much improved predictions (Fig. 5C). This final
model produced an overall accuracy of 75.85% and a kappa coefficient of 68.76 relative to
our manual annotation, and a clear diagonal corridor visible in the confusion matrix (Fig.
5C). This model finally correctly classified conifers, with deciduous trees only uncommonly
misclassified as conifers. However, shrubs remained poorly classified. Compared to the
model only trained on modern imagery, training on augmented annotated historical
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Figure 5 Confusionmatrix of historical land cover predictions using the (A) traditional DeepLabv3+
pipeline using unaltered modern deep learning model trained only onmodern imagery, (B) fine-tuned
deep learning model trained on additional hand-annotated historical imagery, (C) and our pipeline
presented here, using fine tuned deep learning model trained on hand-annotated historical imagery
augmented by rotation. (D) shows confusion matrix for same model as (C), but for binned land cover
categories. All confusion matrices are normalized by row. The confusion matrices reveal how the mod-
els improved from (A) through (C). In (A), many landcovers were labeled as water, even when they were
not water (especially conifers), and pavement and deciduous trees were labelled incorrectly as buildings.
In (B), pavement was more accurately labeled as pavement rather than incorrectly labeled as buildings,
though some features were still incorrectly labeled as water. However, conifers were now correctly labeled,
but many (e.g., grass) features that were not conifers were incorrectly labeled as conifers, especially decid-
uous trees and buildings. The accuracy in (C) is much improved, and the dark diagonal becomes more
evident. Conifers are now correctly classified, and deciduous trees are only uncommonly misclassified as
conifers. However, shrubs are still often misclassified.

Full-size DOI: 10.7717/peerjcs.2003/fig-5
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Figure 6 Predicted land cover change between 1995 (shown in blue) and 2021 (shown in orange) dis-
playing (A) eight land cover classes and (B) the eight land cover classes condensed into three general
bins.Note variable y axes. Points represent estimates from deep learning model. Error bars represent deep
learning model consistency with the Metro Vancouver land cover classification (Metro Vancouver, 2019)
for 2021 estimates and with our own annotations for 1995 estimates.
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imagery increased the mean intersection over union (mIoU) by nearly a factor of two
(38.63% to 63.62%). Binning the land cover classes into water, built, and greenery yielded
further improved accuracy (Fig. 5D). Under our architecture, all models had a computation
efficiency of 6 s per step.

Land cover change
Our land cover predictions indicate that between 1995 and 2021, conifer cover decreased
by 54%, pavement cover increased by 26%, and deciduous tree cover decreased by 9%
(Fig. 6A). Overall, our results indicate that greenery cover decreased by 14% and the built
environment cover increased by 10% (Fig. 6B). A contingency matrix of 1995 and 2021
land cover suggests that deciduous trees, grass, and conifers may have been replaced by
pavement and buildings (Fig. 7). However, some pavement (12%) and buildings (9%) may
have been replaced by deciduous trees (Fig. 7).

DISCUSSION
Our findings suggest that a deep learning network using atrous convolutional neural
networks with atrous spatial pyramid pooling for semantic segmentation (DeepLabv3+)
can successfully classify many land cover types from low-quality historical RGB imagery.
Our pipeline harnessed modern land cover and RGB images to build an initial model,
then used a small region of manually annotated and augmented historical land cover
images to fine-tune this model. Our application of this pipeline to classify 1995 land
cover in Vancouver, BC, Canada into eight classes yielded accuracy of over 75%. While
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DeepLabv3+’s performance at classifying modern RGB imagery has previously been
demonstrated (Du et al., 2019), our results further show that, when combined with fine
tuning and image augmentation, this deep learning architecture can successfully classify
historical imagery.

Fine-tuning to historical imagery and data augmentation improved our classification in
different ways.While the non-fine-tunedmodel incorrectly classified pavement as buildings
and conifers as water, the fine-tuning was particularly helpful in enabling the model to
distinguish between these land cover types (Figs. 5A, 5B), likely because the historical water
imagery was particularly poor quality and buildings and pavement were more similar in
the historical imagery (Fig. 2). However, the fine-tuned model still incorrectly classified
many areas as coniferous. Augmenting the model helped to correctly classify conifers,
likely because conifers are relatively more scarce across Vancouver’s landscape, and so
augmenting their representation helped to classify them.
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While manual annotation can be time-consuming and inefficient, we found that
manually annotating a small region of the low-quality historical image and then using
these annotations to fine-tune the model produced much better results. Because this
dataset is so small, augmenting the dataset with image rotation and then training on
this doubled dataset further increased the accuracy of the model. A small investment in
manual annotation can greatly increase model accuracy. Nevertheless, this annotation step
is a disadvantage of our workflow. Additionally, the long model run-time prevented fast
iterative improvement of the modeling parameters and samples.

The accuracy of our pipeline for classifying low-quality historical land cover was within
the spread of previousDeepLabv3+ land cover classifications ofmodern imagery. Ourmean
intersection over union (mIoU) value of 63.62% was substantially greater than the mIoU
values of 33.46–38.58% reported by Ayhan & Kwan (2020). Our accuracy was slightly
lower than reported by Su & Chen (2019) (mIoU = 75.6%). Du et al. (2019) achieved
higher accuracy (kappa = 80% vs our 68.76%), but they only classified land cover into
either crop area or non-crop area. Our accuracy was substantially higher than many other
previous classifications, for example the DeepGlobe land cover classification challenge
achieved an mIoU of only 43.3% (Demir et al., 2018). These comparisons suggest that our
pipeline is able to distinguish land cover types in low-quality historical imagery at rates
similar to other deep learning classifications of broad vegetation classes from high-quality
modern imagery. Future research might test DeepLabv3+ against these more traditional
algorithms, particularly for datasets that require larger models, where DeepLabv3+’s spatial
pyramid pooling may not scale well due to large GPU requirements (Chen et al., 2018).

Our model included much higher vegetation specificity than previous models (Ayhan &
Kwan, 2020; Du et al., 2019; Su & Chen, 2019). Such specificity of deciduous vs coniferous
trees provides data useful for understanding Vancouver’s bird diversity (Melles, 2000)
and heat waves (Eyster & Beckage, 2022; Eyster & Beckage, 2023). Our estimate that overall
greenery may have decreased, and in particular that conifer cover may have decreased
(Fig. 6), suggests that the city’s capacity to ameliorate urban heat waves may have decreased
since 1995 (Eyster & Beckage, 2022).

Our deep learning model was able to classify some land cover types more accurately
than others. Shrubs were particularly difficult to classify (Fig. 5B), likely due to their
relative scarcity in the training dataset (shrubs was the the rarest class at only 0.015 of the
modern annotated dataset). The low accuracy of shrub identification could also be due to
the continuous gradient between grass–shrubs–trees, lack of height information, and the
visual similarity of shrubs and grasses in the low-quality 1995 images. Some classes may
be indistinguishable in low-quality images, although increasing their frequency in training
datasets and more heavily penalizing rare or hard-to-classify classes (e.g., through focal
loss; Lin et al., 2017) may help. Moreover, degrading the quality of modern imagery to
match historical imagery and then using these degraded imagery in concert with modern
annotations to train the historical model may increase the accuracy. We expect that future
work optimizing our pipeline could increase the accuracy for this and other land cover
classes. Future work might also test the generalizability of our pipeline on additional time
points (beyond the two we used). Moreover, note that the error rate for modern land
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cover class may be over- or under-estimated, since we used the full dataset for historical
validation and since the original annotation sometimes incorrectly classified land cover,
while our model sometimes correctly classifies these same regions. For example, Fig. 3A
shows how the original annotation (panel 2) incorrectly classifies a grass field as bare, while
our model (panel 3 and 4) correctly classifies this field as grass.

CONCLUSIONS
Historical land cover classifications are necessary for understanding land cover change.
However, historical remote sensing data is often low-quality and difficult to classify. We
applied a state-of-the-art deep learning algorithm, fine-tuning, and data augmentation to
accurately classify low quality historical imagery. Not only does this pipeline accurately
distinguish between broad land cover classes, but also fine-scale classifications of broadleaf
and coniferous trees. We recommend that our pipeline might serve as a template and be
widely applied to other low-quality datasets to increase our understandings of land cover
change.
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