
Submitted 4 March 2015
Accepted 9 August 2015
Published 26 August 2015

Corresponding author
Errol Strain,
errol.strain@fda.hhs.gov

Academic editor
C. Titus Brown

Additional Information and
Declarations can be found on
page 9

DOI 10.7717/peerj-cs.20

Distributed under
Creative Commons Public
Domain Dedication

OPEN ACCESS

CFSAN SNP Pipeline: an automated
method for constructing SNP matrices
from next-generation sequence data
Steve Davis1,∗, James B. Pettengill1,∗, Yan Luo1, Justin Payne2,
Al Shpuntoff3, Hugh Rand1 and Errol Strain1

1 Biostatistics and Bioinformatics Staff, Center for Food Safety and Applied Nutrition, Food and
Drug Administration, College Park, MD, USA

2 Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug
Administration, College Park, MD, USA

3 Center for Food Safety and Applied Nutrition Scientific Engineering, Engility Corporation at
FDA, Food and Drug Administration, College Park, MD, USA

∗ These authors contributed equally to this work.

ABSTRACT
The analysis of next-generation sequence (NGS) data is often a fragmented step-wise
process. For example, multiple pieces of software are typically needed to map NGS
reads, extract variant sites, and construct a DNA sequence matrix containing only
single nucleotide polymorphisms (i.e., a SNP matrix) for a set of individuals. The
management and chaining of these software pieces and their outputs can often be
a cumbersome and difficult task. Here, we present CFSAN SNP Pipeline, which
combines into a single package the mapping of NGS reads to a reference genome with
Bowtie2, processing of those mapping (BAM) files using SAMtools, identification of
variant sites using VarScan, and production of a SNP matrix using custom Python
scripts. We also introduce a Python package (CFSAN SNP Mutator) that when
given a reference genome will generate variants of known position against which
we validate our pipeline. We created 1,000 simulated Salmonella enterica sp. enterica
Serovar Agona genomes at 100× and 20× coverage, each containing 500 SNPs, 20
single-base insertions and 20 single-base deletions. For the 100× dataset, the CFSAN
SNP Pipeline recovered 98.9% of the introduced SNPs and had a false positive rate of
1.04 × 10−6; for the 20× dataset 98.8% of SNPs were recovered and the false positive
rate was 8.34 × 10−7. Based on these results, CFSAN SNP Pipeline is a robust and
accurate tool that it is among the first to combine into a single executable the myriad
steps required to produce a SNP matrix from NGS data. Such a tool is useful to those
working in an applied setting (e.g., food safety traceback investigations) as well as for
those interested in evolutionary questions.

Subjects Bioinformatics
Keywords Phylogenetics, Single nucleotide polymorphism, Mapping, Whole genome
sequencing, Python, Validation

INTRODUCTION
The application of whole genome sequence (WGS) data to problems in public health is

currently undergoing rapid expansion. Within public health, next generation sequence

(NGS) data provides superior discriminatory power compared to historical methods

How to cite this article Davis et al. (2015), CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-
generation sequence data. PeerJ Comput. Sci. 1:e20; DOI 10.7717/peerj-cs.20

mailto:errol.strain@fda.hhs.gov
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.20
http://dx.doi.org/10.7717/peerj-cs.20
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20


where it has, for example, been used to unequivocally trace the source of a number

of Salmonella outbreaks (Allard et al., 2013; Lienau et al., 2011). Given the impact

of regulatory decisions based on such data, there is a need for validated open-access

and robust analysis tools that are relatively easy to use and support transparent and

reproducible decision making.

The analysis of NGS data is a complex process within which multiple analysis steps

are combined to produce a final result (e.g., a list of variant sites, a phylogeny, or a list of

differentially expressed transcripts). Each of the steps often requires a different piece of

software where the results of the previous step are the input for the next. Managing the files

and processes of these steps can be inefficient and the results may not be easy to reproduce.

This is problematic when the full analysis must be run across many data sets or run many

times to assess sensitivity to parameter values.

A specific use of NGS data in public health is the determination of the relationship

between samples potentially associated with a foodborne pathogen outbreak. This rela-

tionship can be determined from the phylogenetic analysis of a DNA sequence alignment

containing only variable positions, which we refer to as a SNP matrix. Creation of a SNP

matrix may include a number of steps, such as the mapping of reads to a reference genome,

organization of the mapping files, identification of variant sites, calling of SNPs at each

variant site, combining the SNPs into a SNP matrix, and summarizing the results of the

process. For such work, a researcher would likely have to use at least three different pieces

of software and track the results for each sample. Furthermore, one may be working with

hundreds of samples, and these may accrue over time, further complicating the analyses.

Here, we describe CFSAN SNP Pipeline, which combines all the steps necessary to

construct a reference-based SNP matrix from an NGS sample data set into a single,

easy-to-use package. Having a single package facilitates the use of NGS data and SNP based

analyses to identify differences among a set of closely related samples. The applications

of such a matrix include inferring a phylogeny for systematic studies and determining

within traceback investigations whether a clinical sample is significantly different from

environmental/product samples.

METHODS AND RESULTS
CFSAN SNP Pipeline architecture
The CFSAN SNP Pipeline is written in a combination of Bash and Python (it has been

tested on Python 2.6 and 2.7). The code is designed to be straightforward to install

(with pip) and has been tested on current versions of Red Hat, CentOS, and Ubuntu.

When processing large datasets, the pipeline can take advantage of concurrent processing

capabilities on high performance computing (HPC) systems or cloud-based clusters. The

Bash scripts that manage the pipeline run seamlessly on a workstation or HPC with either

Torque (Adaptive Computing, Provo, UT, USA) or Grid Engine (Univa Co., Lisle, Illinois,

USA) job schedulers.

Scripts are provided to run the Python code from the command line. A configuration

file allows customization of the pipeline, including changing the default parameter settings

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 2/11

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20


Table 1 Test dataset characteristics. These datasets are described in the CFSAN SNP Pipeline documentation. Full directions for download and/or
construction of these datasets is provided.

Dataset Number of samples Approximate genome size
(Mbp)

Number of positions in
SNP matrixa

CFSAN SNP pipeline analysis
runtimeb (HH:MM:SS)

Lambda 4 0.05 165 0:00:18

Salmonella 5 4.5 3,624 1:10:47

Listeria 48 2.9 11,787 3:26:16

Notes.
a Results were generated using VarScan v.2.3.6.
b Based on a dual processor Xeon E5-2609 @ 2.40 GHz with 64GB RAM.

within each step of the pipeline. In situations where additional customization is desired,

the code is not highly complex and can be modified as necessary. BioPython must be

installed and there are also three executable software dependencies, Bowtie2 (Langmead

& Salzberg, 2012), SAMtools (Li et al., 2009), and VarScan, (Koboldt et al., 2012).

Configuration management of these dependencies is up to the user, as the dependencies

are not supplied as part of the download. The CFSAN SNP Pipeline uses the versions of

these tools found on the path. As new versions of the tools are released, the CFSAN SNP

Pipeline is updated to include options associated with the new releases of the dependencies,

which can be passed via the configuration file. The dependencies were chosen based on a

combination of factors including being published in a peer-reviewed journal, performance

metrics (e.g., Bowtie2; Langmead & Salzberg, 2012), and flexibility to handle haploid and

diploid organisms (e.g., VarScan).

The CFSAN SNP Pipeline uses reference-based alignments to create a matrix of SNPs

for a given set of samples. As a result, a reference in fasta format to which reads are mapped

must be provided; suitable references include a high quality draft assembly or closed

genome. For samples, sequence data must be in fastq format but can either be paired-end

or single-read data. Three example datasets are provided with the release of the software

(Table 1). The pipeline does not quality filter the fastq data so that must be done before

running the program if desired (for issues surrounding quality filtering see e.g., Del Fabbro

et al., 2013; Macmanes, 2014). However, certain steps within the pipeline filter results based

on quality scores (e.g., variant detection with VarScan). Additionally, parameter settings

can be altered to take advantage of the other software employed that can filter based on

quality data (e.g., trimming with Bowtie2).

Once the reference sequence and sample data have been organized appropriately, the

general steps in the CFSAN SNP Pipeline are as follows (Fig. 1):

1. Create an indexed reference using Bowtie2.

2. Map sample reads to reference and create SAM files using Bowtie2.

3. Generate pileups from the SAM files using SAMtools.

4. Call variant sites (VCF file generation) from the pileup files using VarScan.

5. Using a custom script, generate a file (snplist.txt) containing all variant sites by

aggregating across all VCF files.

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 3/11

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20


Figure 1 Steps in the SNP Pipeline. Rounded blue outlined boxes are analysis steps and squared red
outlined boxes are files produced by the pipeline.

6. Determine the base for each sample at each position in the snplist.txt file using a custom

written consensus basecaller. We do not rely on VarScan to make the consensus call

as it defaults to the nucleotide state of the reference when mapping quality falls below

user-defined thresholds or the position is variant in one sample but missing in another.

7. Create a SNP matrix in fasta format for all samples where positions in the matrix are

those found in snplist.txt.

All of these steps are run automatically, and only depend on the proper organization

of the input files (see online documentation for further details) and identification of a

suitable reference. Additionally, each of the above steps can either be run using individual

shell scripts or the user can run a single shell script (run snp pipeline.sh) that will carry

out all steps in the pipeline. The addition of new samples is very straightforward, and result

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 4/11

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20


files from previous portions of the analysis that do not need to be re-generated are reused.

This greatly reduces the computational time when adding new samples as the mapping and

pileup steps are not re-executed.

CFSAN SNP Pipeline performance
To evaluate the performance of CFSAN SNP Pipeline, we developed a Python package

(CFSAN SNP Mutator; https://github.com/CFSAN-Biostatistics/snp-mutator) to generate

mutated genomes within which we know the positions where SNPs exist with respect to

a reference. CFSAN SNP Mutator takes as input the reference sequence in fasta format,

for example a closed bacterial reference genome, and based on user defined values will

generate a number of replicate mutated genomes with a given number of single-base

substitution and insertion/deletion polymorphisms. The output of CFSAN SNP Mutator

is the mutated reference in fasta format and, if specified, a summary file of the differences

from the reference. Each row of the summary file corresponds to one mutation with respect

to the reference and contains four columns: (1) Replicate: identifier for the simulated

genome; (2) Position: position in the reference that was mutated; (3) Original Base:

the nucleotide state of the position in the reference and; (4) New Base: the mutation

introduced, which will either be one of the four nucleotide states if a substitution was

introduced, or “ deletion,” or two bases followed by “ insertion.”

Using CFSAN SNP Mutator, we generated 1,000 mutated genomes from the reference

isolate (NCBI RefSeq Acces. NC 011149.1) that is part of the Agona test dataset for CFSAN

SNP Pipeline (Table 1). Each mutated genome contained 500 substitution, 20 insertion,

and 20 deletion polymorphisms. From these mutated genomes, we generated two datasets

of simulated 250 bp paired end reads under the default Illumina MiSeq error profile

using the program ART version ChocolateCherryCake (Huang et al., 2012). The two

simulated fastq datasets had coverage depths of 20 and 100, which were then analyzed

with the CFSAN SNP Pipeline (See Data S1 for instructions on how to recreate simulations

analyzed here.). In the analysis of the reads with CFSAN SNP Pipeline we set the maximum

fragment length for valid paired-end alignments to 547 via the –X Bowtie2 option. Given

the parameters used for ART, this ensured that ∼99% of paired reads are considered

concordant by Bowtie2; without adjusting this parameter half of our synthetic reads would

have been considered ‘orphans’ by samtools and not included in the pileup (unless we had

used the liberal—A flag with samtools).

One of the novel features of the CFSAN SNP Pipeline is the consensus snp caller. We

analyzed all the mutated genomes simultaneously with one run of CFSAN SNP Pipeline.

This will produce different results from running all of the mutated genomes individually

because some mutated positions are shared among the 1,000 mutated genomes and some

of these positions will not be detected individually by VarScan with the parameter settings

we used (at least 8x coverage and 0.9 consensus frequency). However, the state for all

samples at these shared mutated sites will be called using our consensus caller, and thus

a difference at a site may be identified that was not detected by VarScan. This occurs in

empirical datasets we work with where, for example, two samples are closely related and

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 5/11

https://peerj.com/computer-science/
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/CFSAN-Biostatistics/snp-mutator
http://dx.doi.org/10.7717/peerj-cs.20/supp-1
http://dx.doi.org/10.7717/peerj-cs.20/supp-1
http://dx.doi.org/10.7717/peerj-cs.20


Table 2 Performance metrics for CFSAN SNP Pipeline based on the analysis of 1,000 mutated
genomes generated with CFSAN SNP Mutator. Within each genome, 500 SNPs, 20 insertions, and 20
deletions were introduced.

20× coverage 100× coverage

True positives 493,857 (0.988) 494,844 (0.990)

True negatives 4,298,658 4,298,657

False negatives 6,143 (0.123) 5,156 (0.103)

False positives 4 (8.34 × 10−7) 5 (1.04 × 10−6)

Deletions called as gapsa 1,048 1,051

Gaps inferredb 6 2

Insertions called as SNP 0 0

Notes.
a Number of gaps that were inferred when that position was also mutated to a SNP in the CFSAN SNP Mutator program.
b Number of novel gaps that were inferred by the CFSAN SNP Pipeline. These positions were not mutated (as a SNP or

otherwise) by the CFSAN SNP Mutator program.

Table 3 Explanations for the 6,143 and 5,156 false negatives within the 20× and 100× datasets,
respectively.

20× coverage 100× coverage

Coverage < 8 923 13

Consensus frequency < 0.9 4,800 4,991

Coverage < 8 & Consensus frequency < 0.9 63 2

Coverage > 8 & Consensus frequency > 0.9 285 140

Consensus = reference 185 109

Consensus ! = reference 100 31

Failed strand filter 98 31

VarScan identifies variant positions within one sample that have not been detected in the

other (due to a lower coverage (8x) or consensus frequency (0.9)). However, the actual

nucleotide state found in the SNP matrix for such positions is called for both samples using

our consensus caller.

The results from analyzing the genomes created by CFSAN SNP Mutator illustrate

that the CFSAN SNP Pipeline has high true positive and true negative rates and low false

positive and false negative rates (Table 2 and Fig. 2). The amount of coverage within the

dataset did have some impact on the results but differences in performance were on the

order of tenths of a percent. Not surprisingly, there is higher recovery rate of SNPs and

a lower false negative rate within the 100× dataset compared to 20× . Looking closer at

the causes for missed SNPs (false negatives), the vast majority of them within each dataset

are due to a lack of consensus among reads where the frequency was below 0.9 (Table 3);

as expected, failure to detect a SNP due to low coverage was higher in the 20× dataset.

There were only 4 and 5 false positives detected in the 20× and 100× datasets, respectively

(Fig. 2). The majority of false positives occurred at deletions that were a substitution in

another sample (Table S1). For those samples with the false positive, the coverage at the

deletion was only one. This leads to calling an incorrect nucleotide state rather than a

gap because there is no threshold coverage in the consensus caller. This raises the caveat

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 6/11

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20


×

Figure 2 Differences in performance between 100× and 20× datasets generated from the 1,000 mu-
tated genomes. (A) density plot of true positives; (B) density plot false negatives; (C) histogram of false
positives; (D) histogram of gaps from indels; and (E) histogram of gaps inferred (i.e., gaps that were not
originally mutated as an indel by CFSAN SNP Mutator).

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 7/11

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20


that incorrect states may be inferred with our consensus caller due to lack of a coverage

threshold; future developments of the CFSAN SNP Pipeline will include such a threshold.

Although the CFSAN SNP Pipeline is designed to identify SNPs and not indels, we

introduced the latter mutations to evaluate how they may impact the detection of variant

positions within our pipeline. We found that the vast majority of the 20,000 deletions

in each dataset were not identified as a variant unless that position was also mutated

to a substitution in another sample (see Table S1 for exceptions). For example, in the

100× dataset 1,051 out of 1,053 gaps called by the CFSAN SNP Pipeline were deletions

in one sample but those positions were also mutated to a substitution in another sample.

There were also 6 and 2 gaps called by the CFSAN SNP Pipeline that were not introduced as

a deletion into a genome by CFSAN SNP Mutator (Table 2). However, those positions were

mutated in another sample and thus our consensus caller determined the state as a missing

character because the allele frequency was below 0.6.

Of the 20,000 insertions introduced, none of them were called as a variant site in either

dataset regardless of whether the position was also mutated in another sample.

DISCUSSION
The CFSAN SNP Pipeline implements a robust and accurate methodology for constructing

a matrix of SNPs for a given set of closely related sequences. The pipeline performs

best when there is appreciable coverage at all sites, which was mostly the case in both

the 20× and 100× datasets were investigated. This software was developed with the

objective of creating high quality SNP matrices from WGS data of isolates derived

from samples presumed to be involved with a single food-borne disease outbreak. The

focus on closely related samples means that this code is not suited for the analysis of

relatively distantly related organisms (e.g., with regards to bacteria, greater than a few

hundred SNP differences), where there is likely not a single appropriate reference sequence

(see Bertels et al., 2014; Pightling, Petronella & Pagotto, 2014 for issues surrounding the

use of a distant reference). Furthermore, although a number of reference free, easy to

use packages have been developed to construct SNP matrices for phylogenetic analyses

(e.g., Gardner & Hall, 2013; Schwartz et al., 2013), those reference free approaches suffer

from an increased false-discovery rate and are not as conservative as reference based

approaches (Pettengill et al., 2014).

The CFSAN SNP Pipeline documentation provides examples of using the code as well

as three test data sets (Table 3). We also developed a package to generate mutated genomes

within which the variants are known. These test and simulated datasets serve as unit

tests that allows for the verification that changes to the code have not changed the results

produced. The simulated data used here for validation, that can be reproduced based

on information in Data S1, also provides data that others can use to compare the results

obtained from their analysis methodology. Such datasets, in which the variants are known,

appear to be lacking within the arena of variant callers like CFSAN SNP Pipeline.

The SNP matrix produced with our pipeline can be used for a number of different

purposes. Our particular focus is using such a matrix to construct a phylogeny to resolve

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 8/11

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.20/supp-1
http://dx.doi.org/10.7717/peerj-cs.20/supp-1
http://dx.doi.org/10.7717/peerj-cs.20


outbreaks of foodborne pathogens, and, thus the CFSAN SNP Pipeline is a particularly

useful and necessary tool for those within public health. We are only aware of one other

package that has bundled together many of the steps for creating a SNP matrix using a

reference-based approach (Lee et al., 2014), but that method assumes that user has variants

already in VCF files. The CFSAN SNP Pipeline represents one of the first complete tools for

constructing a SNP matrix from raw reads and a reference.

Availability and requirements

Project name: CFSAN SNP Pipeline

Source code: https://github.com/CFSAN-Biostatistics/snp-pipeline

Documentation: http://snp-pipeline.rtfd.org

PyPI package: https://pypi.python.org/pypi/snp-pipeline

Operating system: Linux (Red Hat, CentOS, and Ubuntu)

Programming language: Bash and Python

Other requirements: Java v1.3.1 or higher, Bowtie2, sra-toolkit, SAMtools, VarScan,

BioPython. (Note: use of version 2.3.6 of VarScan is not recommended due to occasional

omission of the header information in the output .vcf files that cause problems with the

CFSAN SNP Pipeline. Use of version 2.3.9 is known to work properly).

License: As a work of the United Stated Government, CFSAN SNP Pipeline is not subject to

copyright protection and will remain freely available.

Any restrictions to use by non-academics: None

Abbreviations

BAM Binary alignment/map

NGS Next-generation sequencing

SAM Sequence alignment/map

SNP Single nucleotide polymorphism

VCF Variant call file

WGS Whole genome sequencing

ACKNOWLEDGEMENTS
The authors would like to thank the CFSAN Scientific Computing and Engineering groups

for supporting the different systems on which the CFSAN SNP Pipeline has been tested.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the Center for Food Safety and Applied Nutrition, US FDA. The

funders had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 9/11

https://peerj.com/computer-science/
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
http://snp-pipeline.rtfd.org
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline
http://dx.doi.org/10.7717/peerj-cs.20


Grant Disclosures
The following grant information was disclosed by the authors:

Center for Food Safety and Applied Nutrition, US FDA.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Steve Davis and James B. Pettengill conceived and designed the experiments, performed

the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote

the paper, prepared figures and/or tables, performed the computation work, reviewed

drafts of the paper.

• Yan Luo and Hugh Rand conceived and designed the experiments, performed the

experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote

the paper, performed the computation work, reviewed drafts of the paper.

• Justin Payne and Al Shpuntoff analyzed the data, contributed

reagents/materials/analysis tools, performed the computation work, reviewed drafts

of the paper.

• Errol Strain conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, performed the

computation work, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding the availability of data:

https://github.com/CFSAN-Biostatistics/snp-pipeline.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj-cs.20#supplemental-information.

REFERENCES
Allard MW, Luo Y, Strain E, Pettengill J, Timme R, Wang C, Li C, Keys CE, Zheng J, Stones R,

Wilson MR, Musser SM, Brown EW. 2013. On the evolutionary history, population genetics
and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS ONE
8:e55254 DOI 10.1371/journal.pone.0055254.

Bertels F, Silander OK, Pachkov M, Rainey PB, Van Nimwegen E. 2014. Automated
reconstruction of whole-genome phylogenies from short-sequence reads. Molecular Biology
and Evolution 31:1077–1088 DOI 10.1093/molbev/msu088.

Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. 2013. An extensive evaluation of
read trimming effects on illumina NGS data analysis. PLoS ONE 8(12):e85024
DOI 10.1371/journal.pone.0085024.

Gardner SN, Hall BG. 2013. When whole-genome alignments just won’t work: kSNP v2 software
for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS
ONE 8:e81760 DOI 10.1371/journal.pone.0081760.

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 10/11

https://peerj.com/computer-science/
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://github.com/CFSAN-Biostatistics/snp-pipeline
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.20#supplemental-information
http://dx.doi.org/10.1371/journal.pone.0055254
http://dx.doi.org/10.1093/molbev/msu088
http://dx.doi.org/10.1371/journal.pone.0085024
http://dx.doi.org/10.1371/journal.pone.0081760
http://dx.doi.org/10.7717/peerj-cs.20


Huang WC, Li LP, Myers JR, Marth GT. 2012. ART: a next-generation sequencing read simulator.
Bioinformatics 28:593–594 DOI 10.1093/bioinformatics/btr708.

Koboldt DC, Zhang QY, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER,
Ding L, Wilson RK. 2012. VarScan 2: somatic mutation and copy number alteration discovery
in cancer by exome sequencing. Genome Research 22:568–576 DOI 10.1101/gr.129684.111.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods
9:U357–U354 DOI 10.1038/nmeth.1923.

Lee TH, Guo H, Wang XY, Kim C, Paterson AH. 2014. SNPhylo: a pipeline to construct a phylo-
genetic tree from huge SNP data. BMC Genomics 15(1):162 DOI 10.1186/1471-2164-15-162.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
Proc GPD. 2009. The sequence alignment/map format and SAMtools. Bioinformatics
25:2078–2079 DOI 10.1093/bioinformatics/btp352.

Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR, Keys CE, Hammack TS, Musser SM,
Brown EW, Allard MW, Cao G, Meng J, Stones R. 2011. Identification of a salmonellosis
outbreak by means of molecular sequencing. New England Journal of Medicine 364:981–982
DOI 10.1056/NEJMc1100443.

Macmanes MD. 2014. On the optimal trimming of high-throughput mRNA sequence data.
Frontiers in Genetics 5:13 DOI 10.3389/fgene.2014.00013.

Pettengill JB, Luo Y, Davis S, Chen Y, Gonzalez-Escalona N, Ottesen A, Rand H, Allard MW,
Strain E. 2014. An evaluation of alternative methods for constructing phylogenies from whole
genome sequence data: a case study with Salmonella. PeerJ 2:e620 DOI 10.7717/peerj.620.

Pightling AW, Petronella N, Pagotto F. 2014. Choice of reference sequence and assembler for
alignment of listeria monocytogenes short-read sequence data greatly influences rates of error
in SNP analyses. PLoS ONE 9:e104579 DOI 10.1371/journal.pone.0104579.

Schwartz RS, Harkins K, Stone AC, Cartwright RA. 2013. SISRS: SNP identification from short
read sequences. ArXiv preprint. arXiv:1305.3665.

Davis et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.20 11/11

https://peerj.com/computer-science/
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1101/gr.129684.111
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1186/1471-2164-15-162
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1056/NEJMc1100443
http://dx.doi.org/10.3389/fgene.2014.00013
http://dx.doi.org/10.7717/peerj.620
http://dx.doi.org/10.1371/journal.pone.0104579
http://arxiv.org/abs/1305.3665
http://dx.doi.org/10.7717/peerj-cs.20

	CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data
	Introduction
	Methods and Results
	CFSAN SNP Pipeline architecture
	CFSAN SNP Pipeline performance

	Discussion
	Availability and requirements

	Acknowledgements
	References


