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ABSTRACT
Mental health issues are a global concern, with a particular focus on the rise of
depression. Depression affects millions of people worldwide and is a leading cause
of suicide, particularly among young people. Recent surveys indicate an increase in
cases of depression during the COVID-19 pandemic, which affected approximately
5.4% of the population in Spain in 2020. Social media platforms such as X (formerly
Twitter) have become important hubs for health information as more people turn
to these platforms to share their struggles and seek emotional support. Researchers
have discovered a link between emotions and mental illnesses such as depression. This
correlation provides a valuable opportunity for automated analysis of social media
data to detect changes in mental health status that might otherwise go unnoticed, thus
preventingmore serious health consequences. Therefore, this research explores the field
of emotion analysis in Spanish towards mental disorders. There are two contributions
in this area. On the one hand, the compilation, translation, evaluation and correction
of a novel dataset composed of a mixture of other existing datasets in the bibliography.
This dataset compares a total of 16 emotions, with an emphasis on negative emotions.
On the other hand, the in-depth evaluation of this novel dataset with several state-of-
the-art transformers based on encoder-only and encoder-decoder architectures. The
analysis compromises monolingual, multilingual and distilled models as well as feature
integration techniques. The best results are obtained with the encoder-only MarIA
model, with a macro-average F1 score of 60.4771%.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech, Social
Computing, Sentiment Analysis
Keywords Emotion analysis, Depression detection, Linguistic corpus, Transformers, Natural
language processing

INTRODUCTION
Mental health is a major global public health problem. Specifically, depression affects
approximately 300 million people worldwide and is a major contributor to suicide; indeed,
depression is the third leading cause of death among people aged 10 to 24. According
to the National Statistics Institute (https://www.ine.es/) (INE) and the latest European
Mental Health Survey conducted in Spain, an increase in cases of depression in the
population due to the pandemic was observed between July 2019 and July 2020 (World
Health Organization (WHO), 2022). In 2020, a total of 5.4% of the population (about 2.1
million people) experienced some form of depression. Early diagnosis of mental health
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problems is critical to effective treatment, as individuals are typically reluctant to seek help
from specialized clinicians to treat their conditions. However, social media platforms are
often used by these individuals to discuss their difficulties and find emotional support. This
presents a significant opportunity for automated analysis of social media data to detect
potential changes in their mental state that would otherwise go unnoticed.

Emotion analysis (EA) is an aspect of automatic document classification (ADC)
that attempts to identify emotions conveyed in text documents. Ongoing research and
development in this area is motivated by the growing awareness of mental health, the
increased use of social networks, and the need to identify users’ states of mind. Advances
in natural language processing (NLP) research have led to the development of innovative
techniques that show remarkable performance in tasks such as EA, as demonstrated
by Transformer-based models (Acheampong, Nunoo-Mensah & Chen, 2021; Garcıa-Dıaz,
Colomo-Palacios & Valencia-Garcıa, 2021). This interest inNLP has led to exciting advances
in the field.

One way to detect mental disorders is through everyday communication. Research
conducted in De Choudhury et al. (2014); Guntuku et al. (2017) has shown that individuals
with mental disorders exhibit variations in language and behavior, including increased
expression of negative emotions and self-absorption. As a result, clues to an individual’s
altered mental state can be found in their online posts. Thus, text emotion recognition
is an important aspect of natural language, where emotions in written text are identified
using existing emotion-tagged datasets and algorithms. Unlike Sentiment Analysis (SA),
which generally categorizes text into broad classes (Medhat, Hassan & Korashy, 2014), EA
categorizes text into fine-grained emotional scales. The evaluation of emotions is a well-
researched topic, and the scales typically include Paul Ekman’s six basic emotions (Ekman
& Davidson, 1993). However, there is limited attention to the Spanish language in the
literature. In addition, the majority of studies only address the basic emotions outlined by
Ekman, leaving out other emotions that can help identify signs of depression. However,
considering complex emotions such as sadness, loneliness, and hopelessness may improve
early detection of depression.

For the purposes of this article, we have defined the following research questions related
to EA for the detection of mental disorders:

• RQ1. How reliable is the identification of negative fine-grained emotions?
• RQ2. What is the best approach to face emotion analysis using text as input?
• RQ3. Are generative models effective at identifying different emotions?

The article makes two significant contributions to the field of EA for the detection of
mental disorders: (1) The dataset we compile and analyze includes 16 different emotions
using a multi-classification scheme. This dataset provides a unique approach by including
emotions and states beyond those defined by Ekman’s basic emotions, including emotions
such as loneliness, depression, suicidal ideation, and hopelessness. (2) We evaluate this
dataset with several encoder-only, encoder–decoder, and feature integration models for
text generation in EA due to the promising results reported in Plaza-del Arco, Nozza &
Hovy (2023).
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The article is organized as follows: ‘State of the art’ presents a summary of the current
literature on NLP and EA, as well as the state of the art of EA in mental disorders. ‘Materials
and methods’ describes the materials and methods used in this study, including a detailed
description of our proposed pipeline. ‘Dataset’ describes the compiled dataset and presents
the experiments for evaluating the dataset. Next, ‘Results and analysis’ illustrates the
experiments conducted to evaluate the different strategies analyzed and discusses the
results. Finally, ‘Conclusions and further work’, presents the implications of the results
and possible future work.

STATE OF THE ART
This section contains a review of recent research and literature on the use of NLP techniques
for analyzing emotions (see ‘Natural language processing for emotion analysis’) and their
application in the medical field (see ‘Emotion analysis in the medical domain’).

Natural language processing for emotion analysis
EA serves as a tool for identifying specific human emotions, including anger, sadness, and
fear, among others. With the advancement of Internet services, people are increasingly
using social media platforms to express their emotions, participate in discussions, and
exchange views on a variety of topics. In addition, some users provide feedback and review
various products and services on e-commerce websites. In today’s digital age, organizations
across all industries are experiencing a digital revolution, resulting in a significant increase
in both structured and unstructured data. A critical activity for these organizations is to
transform unstructured data into valuable insights that can inform the decision-making
process (Munezero et al., 2014). Identifying emotions from user-generated text enables the
recognition of their emotional state and perspective on products or services. As a result,
vendors and service providers are inspired to improve their current systems, products or
services.

Despite the latest advances in NLP, EA from text remains a challenging task due to
ambiguities and the introduction of new slang or terminology.

Broadly speaking, emotion models can be divided into two categories:

• Dimensional model of emotions: This model represents emotions using three
parameters: (1) valence, which refers to the polarity of an emotion; (2) arousal, which
measures the level of intensity associated with a feeling; and (3) power (also known as
dominance), which refers to the degree of control over an emotion.

• Categorical model of emotions: Thismodel represents emotions as discrete parameters,
such as sadness, happiness, and anger, among others. Emotions are categorized into
varying number of groups, ranging from four to eight depending on the specific
model. In this category, most researchers prefer Ekman’s or Plutchik’s (Plutchik, 1980)
emotion models as a fundamental basis. These models define emotional states to be
used when labeling sentences or documents. For example, Ekman’s six basic emotions
have been used by Batbaatar, Li & Ryu (2019), Becker, Moreira & dos Santos (2017),
while some researchers have introduced one or two additional emotional states, such as

Salmerón-Ríos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1992 3/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1992


Plutchik’s (Mohsin & Beltiukov, 2019; Park, Bae & Cheong, 2020) to develop customized
emotion models. In addition, in existing studies or cases, researchers have used a
classification system that includes more than 10 emotions. For example, Cowen &
Keltner (2017), employed a self-report measure that captured 27 different categories
of emotion, bridged by a continuous gradient. Similarly, Lazarus & Lazarus (1994)
considered emotional analysis as a set of 15 emotions.

Text-based EA is usually considered as a supervisedmachine learning (ML) classification
problem, which involves assigning one or more emotion categories to documents.
The common pipeline in text-based EA involve steps such as (1) data preprocessing,
(2) tokenization and lemmatization, (3) feature extraction, and (4) machine learning
algorithms Saffar, Mann & Ofoghi (2023). The first step is to preprocess textual data. On
social media platforms, individuals often express their emotions informally, resulting in
highly unstructured data that is difficult for machines to extract meaningful information
from. Therefore, this step plays a key role in ensuring data quality, as it has a profound
impact on subsequent analysis. The second stage is tokenization and lemmatization, which
involves tokenizing the text into sentences and words. These tokens are then transformed
into understandable numerical vectors suitable forML algorithms. The third stage is feature
extraction; some prominent examples include techniques such as Bag of Words (BoW),
term frequency-inverse document frequency (TF–IDF), and word embedding. The fourth
stage involves training a supervised ML algorithm on the extracted features to identify the
emotions present in the text.

Traditionally, first text-based EA systems rely on approaches that use affective
lexicons associated with psychological states (Murthy & Kumar, 2021) such as WordNet-
Affect (Strapparava & Valitutti, 2004). WordNet-Affect is an extended form of
WordNet (Miller, 1995) that includes affective words annotated with emotion labels.
However, lexicon-based methods face challenges such as keyword ambiguity and limited
linguistic information. Another popular approach is to train ML-based models such
as support vector machine (SVM) or decision trees from statistical features such as
TF–IDF or Bag of Words (BoW). Modern approaches are based on word embeddings,
which rely on obtaining word or sentence representations to identify emotions in
text. Word2Vec (Mikolov et al., 2013), GloVe (Pennington, Socher & Manning, 2014),
fastText (Joulin et al., 2017), and ELMo (Peters et al., 2018) are commonly used embedding
techniques. The state of the art for word or sentence embeddings is the use of Transformers
architecture, as it provides contextual word embeddings thanks to attention mechanisms.
Moreover, Transformers approaches provide transfer learning, which allows to pre-train a
model with generic unsupervised tasks and then fine-tune it to specific tasks where we have
fewer training instances (Nandwani & Verma, 2021). Moreover, all these methods can be
combined in hybrid approaches that overcome the limitations of each approach separately.

Although EA is a frequently studied topic with a considerable amount of literature
available, little attention has been paid to the Spanish language.One study that has addressed
this issue is the EmoEvalEs shared task (Plaza-del Arco et al., 2021) organized by IberLEF
2021, which aims to promote the recognition and evaluation of emotions in the Spanish

Salmerón-Ríos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1992 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1992


language. Our research group participated in this task (Garcıa-Dıaz, Colomo-Palacios &
Valencia-Garcıa, 2021), where we presented a method that merges explainable linguistic
features with BETO (Cañete et al., 2020), resulting in an accuracy rate of 68.5990%.

Emotion analysis in the medical domain
Mental disorders alter the way a person feels, thinks, or acts and is a major public
health problem, causing disability and poor well-being worldwide (Rehm & Shield,
2019). The World Health Organization (WHO) highlights that one in eight people
struggle with mental disorders, posing a significant economic challenge to governments
(https://www.who.int/news-room/fact-sheets/detail/mental-disorders). The COVID-19
pandemic has exacerbated this problem and increased its impact (Skaik & Inkpen, 2020).
Early detection of mental illness can prevent its progression to a severe state and allow for
intervention (Leiva & Freire, 2017). However, most patients with mental disorders do not
receive effective diagnosis and treatment due to ignorance about mental health assessment
and the stigma associated with these illnesses.

Social media platforms such as X (formerly known as Twitter) have become valuable
sources of information for the healthcare industry, as more and more people turn to these
platforms to share their ailments and seek emotional support. This presents an important
opportunity for automated processing of social media data to detect changes in mental
health status that might otherwise go unnoticed, before they develop into more serious
health consequences (Zhang et al., 2023a). It is therefore imperative to detect mental
disorders in individuals at an early stage, as this could have life-saving implications. NLP
is playing an increasingly important role in the processing of social media data and has
been used to facilitate tasks such as Sentiment and Emotion Analysis and mental health
assessment.

The CLEF eRisk Lab (https://erisk.irlab.org/) has been held annually since 2017 as
a shared task aimed at identifying early signs of mental disorders from social media
posts. The 2023 edition of eRisk (Parapar et al., 2023) focused on detecting early signs of
depression, pathological gambling, andmeasuring the severity of eating disorder symptoms.
In the working note published by our research group on MentalRisk (Pan, Garcıa-Dıaz
& Valencia-Garcıa, 2023), we achieved good performance of pre-trained models based on
Transformers for the detection of mental disorders. Furthermore, in another study (Pan,
Díaz & Valencia-García, 2023), we observed that emotions are a feature that complements
depression detection models and could help improve their performance.

In addition, previous computational studies have shown that individuals with mental
disorders consistently exhibit changes in their speech and behavior, including an increased
prevalence of negative emotions and a heightened focus on self-attention (Guntuku et
al., 2017). As a result, daily communication is essential in detecting mental disorders. To
protect patients from mental health problems such as depression, physicians should use
automated sentiment and emotion analysis, as suggested in Singh, Jakhar & Pandey (2021).

There has been a growing focus on emotional dysfunction as central to depression,
and thus there has been much research on the relationship between mental disorders and
emotional variability. For example, Rottenberg (2017) reports on what is known about how
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depression affects emotional reactivity and regulation, while acknowledging the vast areas
that remain unknown. Some of the emotions suggested by the authors are directly related
to mental disorders, like hopelessness or sadness.

Given that emotions are an important part of human nature and can affect people’s
behavior and mental states (Canales & Martínez-Barco, 2014), a correlation has been
found between emotions and mental disorders such as depression (Compare et al., 2014).
For example, in Joormann & Gotlib (2010), it was shown that the severity of depressive
symptoms is associated with an increasingly inverse relationship between positive and
negative emotions. Furthermore, in Dejonckheere et al. (2019), Dejonckheere et al. (2018),
it was also shown that individuals with depressive symptoms have difficulty regulating
emotions, resulting in lower emotional complexity. Therefore, from a psychological
perspective, information about emotions is useful in diagnosing mental disorders.

Unlike other approaches to mental health detection, such as DAS (Depression, Anxiety,
Stress) detection models, EA models can provide greater consistency and enable the
visualization of mood changes through published text, thereby avoiding false positives. For
example, a semi-supervised ML model, DASentimental, has been proposed in Fatima et al.
(2021) to extract cues to depression, anxiety, and stress from written text. However, it is
only capable of identifying negative emotions.

Currently, several works on EA focus exclusively on the use of Paul Ekman’s basic
emotions. However, the importance of mental health at this time and the states associated
with it, such as depression, loneliness, and hopelessness, are indicators that would help
detect mental disorders. For this reason, in this article we compiled and evaluated a dataset
labeled with 14 different emotions, offering a unique approach by including emotions and
states that go beyond the basic emotions defined by Ekman (anger, disgust, fear, happiness,
sadness, and surprise). Our approach to EA is based on creating a multi-classification
dataset of 16 different emotions, covering emotions such as loneliness and hopelessness
and then using transfer learning by fine-tuning different Spanish and multilingual LLMs.
These models include (1) BETO (Cañete et al., 2020), (2) ALBETO (Cañete et al., 2022), (3)
BERTIN (de la Rosa et al., 2022), (4) XLM (Conneau et al., 2020), (5) DistilBETO (Cañete
et al., 2022), (6) MarIA (Gutiérrez-Fandiño et al., 2022), (7) multilingual BERT (Devlin et
al., 2019), (8) multilingual DeBERTA (He, Gao & Chen, 2021), and (9) TwHIN (Zhang et
al., 2023b). We also evaluate text generation models for text classification tasks, such as
BLOOM (Scao et al., 2022), BART (Lewis et al., 2020), GPT-2 (Radford et al., 2019), and
Llama-2 (Touvron et al., 2023).

DATASET
In this research, a novel dataset is formulated by combining, translating, and relabeling
pre-existing datasets using a detailed emotional classification system.

The first step in developing this corpus is to create a taxonomy of emotions.We start with
Ekman’s taxonomy, which includes negative emotions such as sadness and anger. Next, we
include Plutchik’s Wheel of Emotions, which is a broader representation than Ekman’s and
considers fine-grained emotions such as grief, disgust, or remorse. We complement this
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taxonomy with research from Leis et al. (2019), which identified a list of words that may
indicate signs of depression. The selection of words was made by psychiatrists, members
of the Institute of Neuropsychiatry and Addictions (INAD), Parc Salut Mar, Barcelona,
Spain. It includes both the words and a global score assigned to them, which is the sum of
the scores given by each evaluator on a Likert scale (from 1 to 5). The scores are based on
the relevance of that word to a patient with depression. The alternative state or emotion
that some of them could reflect was extracted. Some of the emotional states are depressed,
disappointed, ashamed, hopeless, lonely, regretful, nervous, and suicidal. Keeping in
mind that the terms provided could represent other conditions in addition to identifying
signs of depression, the terms with the highest scores were extracted and included in the
taxonomy. The final list of emotional states are: (1) angry, (2) depressed, (3) disappointed,
(4) disgusted, (5) embarrassed, (6) fearful, (7) grieved, (8) hopeless, (9) joyful, (10) lonely,
(11) nervous, (12) neutral, (13) regretful, (14) sad, (15) suicidal, and (16) surprised.

Once the emotions were identified, the next step was to find corpora that contained at
least one or more of these emotions.

• Merging Datasets for EA (De Arriba, Oriol & Franch, 2021). The International
Workshop on Software Engineering Automation: A Natural Language Perspective
(NLP-SEA) presented this dataset in 2021. It contains 5,260 Spanish documents classified
as:(1) sadness, (2) not relevant, (3) fear, (4) happiness, (5) anger, and (6) surprise. The
dataset was collected from Twitter and it is related to the COVID-19 outbreak.

• Detecting signs of depression in tweets in Spanish: behavioral and linguistic analysis (Leis
et al., 2019). It contains documents about detecting signs of depression in Spanish.

• Detecting Depression in Social Media Via Twitter Usage (https://github.com/ram574/
Detecting-Depression-using-Tweets). This dataset is compiled from X and contains
texts related to the labels depressed, hopeless, lonely, and suicidal. The keywords
used to retrieve the dataset are depressed, depression, hopeless, lonely, suicide, and
antidepressant.

• GoEmotions (Demszky et al., 2020). This dataset was collected by Google from popular
English subreddits andmanually taggedwith 27 emotion categories, including 12 positive
emotion categories, 11 negative, four ambiguous, and one neutral. To validate that the
taxonomic choices were consistent with the given emotions, a principal component
analysis was performed, which allowed two datasets to be compared by extracting linear
combinations with greater variability.

Next, we show some translated examples from the dataset. There are several
messages about coronavirus: I think no one is going to forget the ‘‘COVID-19’’ pandemic...
not even the children. (sadness), I’m so scared to go to my doctor’s appointment tomorrow
because I don’t want to catch the coronavirus, I hope no one there has it when I go tomorrow.
(fear), or The European Medicines Agency will make a statement shortly. Yes, there is a link
between the ASTRA-ZENECA vaccine and blood clots. Better late than never. (anger). Other
examples are I have been going to a Mexican restaurant in my neighborhood every month for
the past 2.5 years, but no one knows my name. (disappointment) and Every night I cry in my
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1Please, refer to the ‘Baseline’ section for a
description of the linguistic categories of
this tool.

Table 1 Dataset statistics, including the number of emotions per label and split.

Emotional state Train Val Test Total

Angry 775 259 259 1,293
Depressed 3,520 1,174 1,174 5,868
Disappointed 2,823 941 941 4,705
Disgusted 1,295 432 432 2,159
Embarrassed 730 243 244 1,217
Fearful 1,280 427 427 2,134
Grieved 184 61 62 307
Hopeless 739 247 247 1,233
Joyful 111 37 38 186
Lonely 2,931 977 977 4,885
Nervous 358 120 120 598
Neutral 3,358 1120 1,120 5,598
Regretful 596 199 199 994
Sad 639 213 214 1,066
Suicidal 3,786 1262 1,263 6,311
Surprised 3 1 1 5
Total 23,128 7,713 7,718 38,559

bed and think of ways to kill myself. I have wanted to end my life for years, but I couldn’t. If I
didn’t know that suicide is a sin, I would have done it long ago. (suicidal).

The English sentences are translated into Spanish using SYSTRAN (https://www.systran.
net/en/translate/). A manual check was then performed to verify their accuracy.

Another problem we faced was that the sentences from Reddit were too long for some
models, such as Transformers. Since these documents were too complex, we decided to
split them into sentences and annotate each sentence individually. The annotation phase
was carried out by members of our research group, where each document was revised three
times and the emotion of the sentence was decided in a final meeting.

The final step is a cleanup process that removes retweets, removes line breaks, mentions,
hyperlinks, images, and ensures there are no duplicate documents.

Next, we split the dataset into training, validation, and test in a ratio of 60-20-20. Table 1
shows the statistics of the final dataset and the number of instances in each split. This
dataset contains 38,559 sentences annotated with 16 emotions. It can be observed that the
emotions are not balanced, and there is a significant lack of emotions labeled as surprise.
Joy is another underrepresented emotion, with only 186 instances. However, sentences
related to negative emotions, such as disappointment, lonely, and sadness contain several
examples.

Figure 1 illustrates the information gain of the linguistic features extracted with
UMUTextStats (García-Díaz et al., 2022) for each emotion1. It can be observed that
the most informative features are related to stylometry, specifically the length of the corpus
and the number of syllables and words. Other significant features are health-related lexical
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Figure 1 Information gain of the top 10 linguistic features of the dataset. The values are normalized in
order to fit the 100%.

Full-size DOI: 10.7717/peerjcs.1992/fig-1

items, which are correlated with sadness and suicidal feelings. Other relevant features
include qualifying adjectives and negative processes.

The compiled dataset is available to the scientific community (https://github.com/NLP-
UMUTeam/peerj-fine-grain-emotion-analysis).

MATERIALS AND METHODS
To evaluate the dataset, we mainly used two techniques that involve fine-tune different
LLMs to determine the emotion. Specifically, we analyzed two different languagemodels for
the classification task: (1) encoder-only models based on masked language models (MLM),
and (2) encoder–decoder autoregressive transformers for text generation, including BART,
T5, GPT-2, BLOOM, and Llama-2. We have also tested several model combination
techniques, including knowledge integration and ensemble learning.

Our pipeline is shown in Fig. 2. First, the data preprocessing module is used to cleanse
the texts. Second, the splitter module separates the corpus into training, validation, and test
sets. Third, feature sets are extracted to train the classification model. Fourth, we fine-tune
different LLMs for emotion classification. Finally, we evaluate different ensemble learning
methods for text classification.

Data pre-processing and splitter
We used a variety of feature sets, including linguistic features (LFs) for the baseline and
different types of embedding. A standard preprocessing procedure was performed, which
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Figure 2 General architecture of our pipeline for emotion classification.
Full-size DOI: 10.7717/peerjcs.1992/fig-2

consisted of removing all social media jargon, such as hyperlinks, hashtags, and mentions.
In addition, all percentages and numbers were replaced with fixed tokens to prevent the
classifiers from learning specific quantities. Finally, the normalized version is used to
extract tokens of the embedding-based features and then to fine-tune various LLMs.

The splitter module plays a crucial role in extracting the training, development, and test
datasets, and these splits vary depending on the task at hand. In this particular scenario,
we have divided the dataset in a 60-20-20 ratio with stratified sampling to ensure that each
emotion is correctly represented in each sample.

Baseline
To compare the results, we created a baseline based on LFs. LFs are a means of representing
documents as a vector formed by the percentages and raw counts of linguistically relevant
features that indicate what a text says and how it says so (Tausczik & Pennebaker, 2010).
To extract the LFs, we rely on UMUTextStats (García-Díaz et al., 2022). This tool captures
365 linguistic features, organized as follows:

• Correction and style of written communication (COR). The analysis detects a variety
of errors, including orthographic errors such as misspelled words, style issues, and
performance errors. These performance errors can consist of sentences beginning with
numbers or the same word, as well as identifying common errors and unnecessary
phrases.

• Phonetics (PHO). It captures expressive lengthening, in which certain letters are
deliberately extended to emphasize their meaning.

• Morphosyntax (MOR). The structure of words is recorded along with grammatical
attributes, including gender and number, and various affixes, such as nominal, adjectival,
verbal, adverbial, augmentative, diminutive, and derogatory suffixes. In addition, these
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Figure 3 General architecture of the feature-based classification model for EA.
Full-size DOI: 10.7717/peerjcs.1992/fig-3

features are organized according to their respective part-of-speech categories, such as
verbs, nouns, and adjectives.

• Semantics (SEM). Includes sound words, polite expressions, derogatory terms, and
figures of speech in which the part represents the whole.

• Pragmatics (PRA). The use of figurative language devices, including understatement,
rhetorical questions, hyperbole, idiomatic expressions, verbal irony, metaphors, and
similes.

• Stylometry (STY). It records punctuation symbols, corpus statistics, and metrics related
to the number of words, syllables, or sentences.

• Lexical (LEC). The text provides a thorough identification and analysis of the topics,
covering both abstract and general topics.

• Psycho-linguistic processes (PLI). This category contains emoticons and lexicons
related to emotions and feelings.

• Register (REG). It emphasizes the distinction between informal and formal language,
and addresses topics that may be considered offensive.

• Social media jargon (SOC). This category captures features related to the speaker’s
mastery of social media jargon.

For the training the baseline based on the LFs, we relied on a multilayer perceptron
(MLP) because these features do not contain sequential information such as text.

Encoder-only classification model
We evaluated several encoder-only language models. Figure 3 shows the pipeline of our
approach as well as different feature-integration strategies, such as knowledge integration.
Regarding sentence embeddings, several pre-trained transformer-based models are
evaluated, which can be broadly classified into BERT-based and RoBERTa-based models.
The main difference between these two architectures is that RoBERTa performs masking
during training, whereas BERT performs masking at the beginning of training.
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Transformer-based models can be pre-trained with a multilingual corpus or with
a monolingual corpus of a specific language. Thus, we have performed an evaluation
of several multilingual and monolingual Spanish models for this task. It is possible to
categorize models using BERT and RoBERTa-based architectures as follows:

• BERT-based monolingual model. The study used the Spanish variant of BERT called
BETO (Cañete et al., 2020). The evaluation of BETO model also included two lighter
versions derived from it: ALBETO and DistilBETO (Cañete et al., 2022).

• BERT-based multilingual model. In terms of BERT-based models pre-trained with
a multilingual corpus, the models used are: (1) TwHIN-BERT (Zhang et al., 2023b), a
multilingual tweet language model trained with 7 billion tweets from more than 100
different languages; (2) M-BERT (Devlin et al., 2019), a transformer model pre-trained
with a large corpus of multilingual data in a self-supervised manner; (3) M-DistilBERT
(Sanh et al., 2019), a distilled version of the multilingual BERT base model.

• RoBERTa-based monolingual model. In this article, we have evaluated differentmodels
pre-trained with the Spanish corpora, such as MarIA (Gutiérrez-Fandiño et al., 2022)
and BERTIN (de la Rosa et al., 2022).

• RoBERTa-based multilingual model. Regarding RoBERTa-based models pre-trained
with a multilingual corpus, we evaluated XLM-RoBERTa (100–1,280) (Lample &
Conneau, 2019), which is a multilingual version of RoBERTa trained with data filtered
from CommonCrawl from 100 different languages.

We fine-tuned each model separately for each feature set using hyperparameter tuning.
To do this, we use a network architecture design in which each feature set is connected
to a separate stack of hidden layers. The output of each layer is then concatenated and
connected to a new set of hidden layers, which in turn are connected to the final output
layer. We select the best model based on the validation split.

In order to produce more robust solutions, we evaluate one feature integration strategy
known as knowledge integration. This strategy involves training a multi-input neural
network from scratch, incorporating all the sentence embeddings for each encoder-only
mode at once. The idea behind this approach is that the network learns during training
how to exploit the strengths of each feature set.

Encoder–decoder models
LLMs have revolutionized many aspects of NLP. LLMs possess few-shot and even zero-shot
learning capabilitiesBrown et al. (2020). Newmodels such as Llama-2 (Touvron et al., 2023)
and GPT-3 (Brown et al., 2020), which have been trained on large and diverse text corpora,
have further enhanced these capabilities. This has opened up a wide range of possibilities in
the field of NLP, such as direct label prediction through prompting. In fact, several articles
have tested this hypothesis and achieved good performance across a wide variety of NLP
tasks (Plaza-del Arco, Nozza & Hovy, 2023;Wang et al., 2023).

In this study, we evaluate several generative LLMs such as GPT-2 (Radford et al., 2019),
BLOOM (Scao et al., 2022), BART (Lewis et al., 2020), and Llama-2 (Touvron et al., 2023).
These models were pre-trained on massive amounts of text data, enabling them to generate
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coherent and contextually relevant text in ER tasks. However, since we have a total of
16 possible emotions and some of them are similar, we apply a fine-tuning approach
instead of a contextual learning approach such as ZSL or FSL. Fine-tuning involves taking
a pre-trained LLM and adapting it to a specific task or domain. This is done by training
the LLM on a smaller dataset that is specific to the task or domain and adjusting the model
weights and parameters to better fit the new data. In this way, the model can achieve good
performance without the need for extensive training data or abundant computational
resources. The models tested in this study are the following:

• BLOOM. It is an autoregressive LLM that has been trained on extensive text data
using industrial-scale computing resources. It excels at generating coherent text in 46
languages and 13 programming languages, making it nearly indistinguishable from
human-generated text (Scao et al., 2022). In this article, we have used a smaller version
of BLOOM, known as BLOOM-3B (https://huggingface.co/bigscience/bloom-3b), which
has 3 billion parameters.

• GPT-2. It is a pre-trained model using a causal language modeling (CLM) target and a
Transformer-based model that has undergone extensive pre-training on large corpora
in a self-supervised manner (Radford et al., 2019). In this case, we used a Spanish version
of GPT-2 called ‘‘Spanish GPT-2 (https://huggingface.co/mrm8488/spanish-gpt2)’’. This
model was trained from scratch on the large Spanish corpus, also known as the BETO
corpus, using Flax.

• BART. It is a transformer encoder–decoder (seq2seq) model with a bidirectional
encoder, similar to BERT, and an autoregressive (GPT-like) decoder. BART is pre-
trained by two key steps: (1) introducing noise into the text using a flexible noise
function, and (2) training a model to recover the original, uncorrupted text. This
model shows remarkable effectiveness when fine-tuned for text generation tasks such
as summarization and translation. However, it also performs well in comprehension
tasks, including text classification and question-answering. Specifically, we have used
mBART-50, which is a pre-trained multilingual Sequence-to-Sequence model using the
‘‘Multilingual Denoising Pretraining’’ target (Lewis et al., 2020).

• Llama-2. Llama 2 contains a set of pre-trained and fine-tuned generative text models
with parameters ranging from 7 to 70 billions. In this article we have used a version of 7B
optimized for the dialog cases (meta-llama/Llama-2-7b-chat-hf ) (Touvron et al., 2023).

Ensemble learning
After acquiring differentmodels for identifying emotions, we evaluated different techniques
for ensemble learning, which consists of combining predictions from many individual
estimators to produce a more robust estimator. During our research, we investigated two
methods of averaging to combine predictions from the best encoder-only model and the
best encoder–decoder model by (1) computing the mean, which averages the probabilities
produced by each model; or (2) selecting the label with the highest probability, which
involves observing the probabilities associated with each model and selecting the one with
the highest probability.
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RESULTS AND ANALYSIS
In this section, we present and discuss the results obtained using the encoder-only and
encoder–decoder strategies and the feature integration techniques with the test split and
compared to the baseline.

Since our problem involves unbalanced classification, we evaluate the performance of
the classification models using both the macro average F1 score and the weighted average
F1 score. These metrics serve as indicators of the performance of a classification model in
terms of accuracy and recall, albeit with different computational methods and weighting
schemes. The macro average F1 score evaluates both the precision and recall of each class,
combining the results equally without regard to class imbalance. In this way, it allows
for the selection of the best model that performs equally well for all labels. The weighted
average F1 score is a widely used metric in classification problems, especially when dealing
with unbalanced datasets where some classes may have many more examples than others.
Unlike the macro average F1 score, this metric accounts for class imbalance by assigning a
different weight to each class based on its frequency in the dataset. Therefore, in our work,
we consider the macro average F1 score as the metric to determine the best model, but we
keep the weighted average F1 score to reflect the overall performance of the model.

Results of encoder-only models
First, we report the results of several fine-tuned encoder-type models mentioned in
‘Encoder-only classification model’. For each model, we added a dense sequential
classification layer with the same number of neurons as the output classes for fine tuning
and performed hyperparameter optimization to find the best training parameters for these
models using the validation split. The hyperparameters under consideration, along with
their respective interval ranges, are: (1) weight decay (ranging from 0 to 0.3); (2) training
lot size (ranging from 8 to 16); (3) number of training epochs (ranging from 1 to 6); and
(4) learning rate (ranging from 1e−5 to 5e−5).

Table 2 shows the best set of hyperparameters obtained for each encoder-only model. It
can be observed that most of the models, including ALBERT, BERTIN, Distilled mBERT,
TwHIN-BERT, and XLM-RoBERTa, performed better with a training batch size of 16 and
a lower learning rate. Most of these models also performed better with a warm-up step of
500, with the exception of BERTIN, BETO, and TwHIN-BERT, which performed better
with a value of 250, and Distilled mBERT and XLM-RoBERTa, which performed best with
a warm-up step of 0. In terms of weight decay, most of the models performed better with
a value lower than 0.2.

Table 3 shows the results obtained by the encoder-only models based on Transformers
and the baseline. As expected, all models outperformed the baseline in terms of M-F1.
In addition, the RoBERTa architecture consistently outperformed BERT. The top two
scores were achieved by MarIA (60.47% in M-F1 and 79.42% in W-F1) and the knowledge
integration model (58.70% in M-F1 and 78.91% in W-F1). In addition, XLM-RoBERTa
outperforms the multilingual BERT (58.27% vs. 56.23% inM-F1). Notably, the lightweight
versions of BETO, ALBETO and Distilled mBERT yielded limited results.
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Table 2 Best subset of hyperparameters for each encoder-only model based on Transformers.

Learning rate Epoch Batch size Warmup steps Weight decay

ALBETO 3.5e−05 5 16 500 0.0006
BERTIN 2e−05 5 16 250 0.19
BETO 2.6e−05 4 8 250 0.00089
Distilled BETO 3.8e−05 3 8 500 0.21
MarIA 1.4e−05 4 8 500 0.069
mBERT 2.1e−05 3 8 500 0.25
Distilled mBERT 3.6e−05 5 16 0 0.26
TwHIN-BERT 2.7e−05 4 16 250 0.00076
XLM 3.7e−05 2 16 0 0.098

Table 3 Benchmark of the different pre-trained models and linguistic feature-based model. The met-
rics reported for each model and dataset include macro precision (M-P), macro recall (M-R), macro F1
score (M-F1), and weighted F1 score (W-F1).

Architecture Language M-P M-R W-F1 M-F1

LF (baseline) – Mono 37.6551 41.8719 56.2573 36.9939
ALBETO BERT Mono 56.2657 56.3588 76.5421 55.7226
BERTIN RoBERTa Mono 56.6446 56.6979 76.9988 55.9180
BETO RoBERTa Mono 58.3675 57.8535 78.2100 58.0378
Distilled BETO BETO Mono 57.2375 58.0291 77.1875 57.4865
MarIA RoBERTa Mono 61.9512 59.4110 79.4245 60.4771
mBERT RoBERTa Multi 56.5545 56.9628 75.8372 56.2317
Distilled mBERT BERT Multi 53.7665 56.3917 74.1021 54.0067
TwHIN-BERT BERT Multi 59.0658 57.8394 78.7239 58.2436
XLM RoBERTa Multi 56.6756 58.2797 77.5739 58.2797
KI – – 59.1886 59.3930 78.9181 58.7096

Notes.
Best results are in bold.

When comparing the results of transformers trained onmonolingual datasets with those
trained on multilingual datasets, a slight advantage is observed for the models trained only
in Spanish. This suggests that obtaining specific pre-trained models for the target language
is preferable to using multilingual variants.

Results of encoder–decoder models
In this study, we also evaluated different encoder–decoder models for text generation in
EA tasks due to the promising results reported in several studies (Plaza-del Arco, Nozza &
Hovy, 2023; Brown et al., 2020). Since these are Sequence-to-Sequence (Seq2Seq) models,
i.e., they take input text and produce output text, we added a linear layer to the pooled
output for fine-tuning to ensure that the output corresponds to one of the emotions.

Some of these text generation models, such as BLOOM and Llama-2, are multilingual
and pre-trained on a large corpus. The size of these models is quite large. BLOOM-3b has
three billion parameters and weighs about 6 GB, while Llama-2 has 7 billion parameters
and weighs about 13.5 GB. Therefore, we used the LoRA (Hu et al., 2021) approach to
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Table 4 Benchmark of the different encoder–decoder models.Metrics reported for each model and
dataset include macro precision (M-P), macro recall (M-R), macro F1 score (M-F1), and weighted F1
score (W-F1).

M-P M-R W-F1 M-F1

LF (baseline) 37.6551 41.8719 56.2573 36.9939
Spanish GPT-2 57.1349 57.1106 77.2334 57.0592
BLOOM-3b 49.2585 45.9486 65.1833 45.5222
Llama-2 52.0913 52.5977 73.8725 51.2868
mBART 52.4731 52.1906 73.8514 52.1617

Notes.
Best results are in bold.

speed up the fine-tuning process and reduce memory consumption. LoRA is based on
representing weight updates with two smaller matrices called update matrices by low-rank
decomposition. These new matrices can be trained to adapt to new data while keeping the
total number of changes small. The original weight matrix remains frozen and does not
receive any further adjustments. To produce the final results, both the original and the
adjusted weights are combined. Due to the size of the encoder–decoder models, we only
performed hyperparameter optimization with the validation split for the epoch parameter
within a range of 5 epochs. We kept other parameters constant: 0.01 for weight decay,
2e−5 for learning rate, and 500 warm-up steps.

Table 4 shows the results obtained with different encoder–decoder models. As can
be seen, the best results are obtained with the Spanish GPT-2 (57.06% in M-F1 and
77.23% in W-F1). In addition, the Spanish GPT-2 is the only monolingual model and the
lightest among the models compared. Therefore, we can draw the same conclusion as in
the previous case (see ‘Results of encoder-only models’): obtaining specific pre-trained
models for the target language is preferable to using multilingual variants. Regarding the
multilingual models, the best result was obtained with multilingual BART, with an M-F1
of 52.16%.

Results of ensemble learning
In this section, different ensemble learning techniques are evaluated using the best
encoder-type model (MarIA) and encoder–decoder-type model (Spanish GPT-2) for EA.
Table 5 shows the results obtained. As can be seen, both the mean-based and the highest
probability-based techniques have improved the weighted F1 score compared to MarIA,
with an improvement of 0.0556% and 0.0227%, respectively. For the Spanish GPT-2, the
ensemble learning techniques improved the weighted F1 score, with improvements of
2.25% for the mean-based approach and 2.21% for the highest likelihood-based approach.
However, ensemble learning did not improve the macro F1 score metrics because it did not
improve predictions in emotion classes with fewer instances in the test set, such as joy and
grief. In contrast, it did improve predictions in some cases, such as the depressed emotional
state, which has more instances in the test set.

Table 6 shows the classification reports for the best single model, MarIA, and the best
ensemble-learning model, mean-based ensemble learning. The results show that both

Salmerón-Ríos et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1992 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1992


Table 5 Benchmark of the different ensemble learning techniques between the best pre-trained
(MarIA) and encoder–decoder (Spanish GPT-2) model. The reported metrics for each model and dataset
include macro precision (M-P), macro recall (M-R), macro F1 score (M-F1), and weighted F1 score
(W-F1).

M-P M-R W-F1 M-F1

LF (baseline) 37.6551 41.8719 56.2573 36.9939
MarIA 61.9512 59.4110 79.4245 60.4771
Spanish GPT-2 57.1349 57.1106 77.2334 57.0592
Mean 61.5379 58.9295 79.4801 60.0464
Highest probability 61.5675 58.8974 79.4472 60.0270

Notes.
Best results are in bold.

Table 6 Classification report of Precision (P), Recall (R), and F1 score (F1) of MarIA (left) and Ensemble based on the mean (right) with the test
set for each emotion.

Emotion P R F1 P R F1

MarIA Ensemble (mean)

Angry 77.5934 72.2008 74.8000 77.6860 72.5869 75.0499
Depressed 93.1330 92.4190 92.7746 93.4708 92.6746 93.0710
Disappointed 54.8295 61.5303 57.9869 56.9573 65.2497 60.8222
Disgusted 44.2516 47.2222 45.6887 45.4756 45.3704 45.4229
Embarrassed 34.2466 30.7377 32.3974 35.9813 31.5574 33.6245
Fearful 60.8911 57.6112 59.2058 60.6061 56.2061 58.3232
Grieved 41.0256 25.8064 31.6832 38.7755 30.6452 34.2342
Hopeless 86.2222 78.5425 82.2034 87.9630 76.9231 82.0734
Joyful 45.4545 39.4737 42.2535 38.4615 26.3158 31.2500
Lonely 96.0685 97.5435 96.8004 95.6871 97.6459 96.6565
Nervous 21.9780 16.6667 18.9573 22.2222 18.3333 20.0913
Neutral 93.6057 94.1071 93.8557 90.8457 93.0357 91.9277
Regretful 64.9425 56.7839 60.5898 62.3596 55.7789 58.8859
Sad 80.9091 83.1776 82.0276 81.4480 84.1121 82.7586
Suicidal 96.0692 96.7538 96.4102 96.6667 96.4371 96.5517
Surprised 0.0 0.0 0.0 0.0 0.0 0.0

strategies are similar for fine-grained EA. The big difference is observed in the joy emotion,
where MarIA achieves an F1 score of 42.2535%, while the mean-based ensemble learning
approach achieves only 31.250%. In terms of precision and recall, both strategies show
similar performance. However, ensemble learning based on the mean shows a larger
difference between precision and recall for the identification of texts labeled as joy. Also,
neither strategy was able to identify the only instance of surprise in the test split.

Regarding the identification of negative emotional states such as depressed, disappointed,
embarrassed, grieved, nervous, sad, and suicidal, we can see that the MarIA model performs
well in identifying the emotional states most directly related to mental disorders, such as
depressed, sad, and suicidal, exceeding 80% accuracy.
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Next, we analyze the limitations of these models in predicting emotions using the
confusion matrix to evaluate the misclassified examples. First, regarding the MarIA model
(see Fig. 4), it can be observed that MarIA performs very well in predicting certain
emotional states such as depressed, lonely, neutral, and suicidal, with an accuracy rate
of over 90%. However, for more confusing and difficult-to-identify emotions, such as
embarrassment, grief, joy, nervousness, and surprise, the model tends to confuse them with
other similar emotions, achieving less than 40% accuracy for these emotions. In most cases,
MarIA confuses these emotions with the emotion disappointment. Secondly, regarding the
Spanish GPT-2 (see Fig. 5), it can be observed that its performance is similar to that of
MarIA. The Spanish GPT-2 tends to make the same classification errors, except in the
case of surprise, where the model tends to confuse surprise with embarrassment. Third,
regarding the mean-based ensemble learning model (see Fig. 6), it can be observed that
ensemble learning has improved the predictions for the emotional states angry, depressed,
disappointed, disgusted, nervous, and sad by 1–3%, while it has worsened the predictions
for the other emotions in the same range. The only exception is grief, which is 5% worse
off. For this reason, the weighted F1 score of the ensemble learning is higher than that of
MarIA, but not the macro F1 score. Moreover, we can see that the ensemble learning has
improved for the same emotions that MarIA has improved over the Spanish GPT-2 model,
but to a greater extent (between 1% and 8%).

By analyzing the results and errors, we can see that pre-trained encoder models
have achieved better performance than encoder–decoder models for text generation.
Furthermore, it has been shown that the knowledge integration strategy improves the
performance of most models, but it does not manage to improve MarIA separately.
Regarding the ensemble learning techniques, we can observe that combining the outputs by
taking themean ofMarIA and SpanishGPT-2 improves the performance of SpanishGPT-2,
both in terms of weighted and macro F1 scores. It has also improved the performance of
predicting some of the more common emotions in the test set for MarIA, resulting in an
improvement in the weighted F1 score metric but not in the macro F1 score. Thus, using
the macro average F1 score as the reference metric, the MarIA model has achieved the best
result at 60.48%.

Finally, Table 7 shows examples of some common misclassifications made by the MarIA
model. It is noticeable that the model often confuses emotions such as embarrassment, grief,
and nervousness with the emotion of disappointment, as shown in Fig. 4. This is because
distinguishing between these emotions based on text alone is a challenging task, as shown
in Table 7. Also, the emotion of disappointment entails more examples in the training set
as compared to other emotions.

Evaluation with the EmoEvalES 2021 dataset
To measure the robustness of our pipeline, we have evaluated the performance of both
strategies (encoder-only and encoder–decoder) with the EmoEvalEs 2021 dataset. Table 8
shows the results obtained. According to Plaza-Del-Arco et al. (2021), the reference metric
used for the evaluation is accuracy. Our best results indicate that the fine-tuning approach of
MarIA and BLOOM-3b have surpassed the best previous result for this task (GSI-UPMwith
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Figure 4 Confusionmatrix of the MarIAmodel.
Full-size DOI: 10.7717/peerjcs.1992/fig-4

an accuracy of 72.77%), achieving an accuracy of 73.5507% and 73.1280%, respectively. It
draws our attention that in the EmoEvalES 2021 shared task, the GSI-UPM team achieved
their best result by fine-tuning XLM-RoBERTa, but our results with this architecture are
very limited (both in test and in custom validation). After reviewing the working notes
of the GSI-UPM team, we learned that they used a version of XLM, but pre-trained with
millions of tweets (Barbieri, Espinosa Anke & Camacho-Collados, 2022). It is possible that
the limited results are related to the complexity of the model, as it contains 16 layers,
16 attention heads, and 1,280 hidden states, but further research should be conducted to
identify the real cause of the limited results of this model with the EmoEvalES 2021 dataset.

After this analysis, we obtained the following results regarding the posed RQs. Regarding
RQ1 about measuring the reliability of identifying negative fine-grained emotions, the
results indicate that both precision and recall are usually good for some negative emotions
(all the emotional states in the dataset except for neutral, joyful and surprised). However, the
developed EA models often fail to classify documents labeled as disappointment, confusing
these emotions with others such as disgust, embarrassment, our nervousness. Regarding
RQ2, to determine the best approach to face EA using the text, the best macro average F1
score is achieved with the fine-tuning of MarIA, a monolingual Spanish LLM based on
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Figure 5 Confusionmatrix of the Spanish GPT-2 model.
Full-size DOI: 10.7717/peerjcs.1992/fig-5

the RoBERTa architecture. This strategy slightly outperformed other approaches based on
fine-tuning generative language models. However, the ensemble learning strategy showed
better results than MarIA in the negative emotional states: (1) depressed, (2) disappointed,
(3) embarrassed, (4) grieved, (5) nervous, (6) sad, and (7) suicidal. In this sense, we also
posed RQ3, which asked whether generative models are effective for EA, since they showed
similar performance as the fine-tuned models. However, the combination of the results
outperforms the ones obtained by the individual models, as compared to our experiment
where we combined all the fine-tuned LLMs using a knowledge integration strategy, in
which we observed a degradation of performance compared to MarIA.

CONCLUSIONS AND FURTHER WORK
Mental health issues are a major global public health concern. Social media platforms
are often one of the means by which users or individuals express their difficulties and
find emotional support. Previous computational studies have consistently shown that
individuals with mental disorders exhibit changes in their language and behavior, including
a higher prevalence of negative emotions and a more intense self-focus. Therefore, clues
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Figure 6 Confusionmatrix of the ensemble learning mean-based model.
Full-size DOI: 10.7717/peerjcs.1992/fig-6

to an individual’s altered mental state may be evident in their online posts, which often
convey negativity.

This work presents two significant contributions to the field of EA for the detection of
mental disorders in Spanish. To this end, we have created a novel corpus of 16 different
emotions and performed an in-depth evaluation of several feature sets including linguistic
features and transformer-based models based on encoders and encoder–decoder. We have
also tested different techniques for feature integration, such as knowledge integration and
ensemble learning, to see if they improve the performance of the models. Our results show
that the fine-tuning approach of the encoder-only MarIA model has achieved the best
result, with a macro F1 score of 60.48%.

As a limitation, statistical tests should be conducted to perform a better comparison
of the models, since using a fixed validation split can bias some decisions about the
best performing models. In this sense, we propose to extend this work using nested
cross-validation for a better comparison. Moreover, as commented during the corpus
compilation and annotation process, we split long documents because of the maximum
length limitations of Transformers. In this sense, we will evaluate other strategies to handle
long documents, such as pooling sentence embeddings or using Longformers.
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Table 7 Error analysis with some examples of misclassifications done byMarIA. The original text and
a literal translation into English using the Google Translate service are shown.

# Text Truth Prediction

1 ¡Gracias por explicarlo! No estoy seguro de por qué mi
comentario fue rechazado Sin contexto, no tiene sentido
(Thanks for explaining it! Not sure why my comment was
downvoted Without context, it doesn’t make sense.)

embarrassment disappointment

2 Maldita sea, realmente necesitas una novia, amigo (Damn,
you really need a girlfriend, dude)

embarrassment disappointment

3 Maldita sea, [NOMBRE] se dejó llevar (Damn, [NAME] got
carried away)

grief disappointment

4 Qué pobre mujer que solo quería decirle a alguien qué hacer
(What a poor woman who just wanted to tell someone what
to do.)

grief disappointment

5 No tengo confianza para impulsar (I don’t have the
confidence to push)

nervousness disappointment

6 Pero en serio, probablemente te vas a sentir muy mal (But
seriously, you’re probably going to feel really bad.)

nervousness disappointment

7 Pero eventualmente ese mismo amigo más cercano apareció
en mi puerta y se negó a irse ( But eventually that same
closest friend showed up at my door and refused to leave.)

joy disappointment

Table 8 Benchmark of different encoder–decoder models for the EmoEvalEs dataset compared to the
best approach in the official leaderboard.Metrics reported for each model and dataset include accuracy.

Strategy Approach Accuracy %Difference

GSI-UPM XLM 72.7657 –
ALBETO 70.8333 −1.9324
BERTIN 68.4179 −4.3478
BETO 70.3502 −2.4155
Distilled BETO 70.5314 −2.2343
MarIA 73.5507 +0.7850
mBERT 66.4251 −6.3406
Distilled mBERT 64.1908 −8.5749
TwHIN 71.6787 −1.0870

Encoder-
only

XLM 18.5990 −54.1667
Spanish GPT-2 69.6256 −3.1401
BLOOM-3b 73.1280 +0.3623
Llama-2 70.1087 −2.657
mBART 64.4968 −8.2689

Notes.
Best results are in bold.

As for future research, we plan to expand the dataset to include less common emotions
such as surprise, grief, and nervousness in texts from different platforms, and to reduce
the bias towards negative emotions. In addition, we plan to explore different data
augmentation techniques and investigate how emotions are expressed within entities
and their relationships in order to discover the emotions expressed by users.
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