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ABSTRACT
Recently, there have been notable advancements in video editing software. These
advancements have allowed novices or those without access to advanced computer
technology to generate videos that are visually indistinguishable to the human eye
from real ones to the human observer. Therefore, the application of deepfake
technology has the potential to expand the scope of identity theft, which poses a
significant risk and a formidable challenge to global security. The development of an
effective approach for detecting fake videos is necessary. Here, we introduce a novel
methodology that employs a convolutional neural network (CNN) and Gaussian
mixture model (GMM) to effectively differentiate between fake and real images or
videos. The proposed methodology presents a novel CNN-GMM architecture in
which the fully connected (FC) layer in the CNN is replaced with a customized
Gaussian mixture model (GMM) fully connected layer. The GMM layer utilizes a
weighted set of Gaussian probability density functions (PDFs) to represent the
distribution of data frequencies in both real and fake images. This representation
indicates there is a shift in the distribution of the manipulated images due to added
noise. The CNN-GMM model demonstrates the ability to accurately identify
variations resulting from different types of deepfakes within the probability
distribution. It achieves a high level of classification accuracy, reaching up to 100% in
training accuracy and up to 96% in validation accuracy. Notwithstanding the ratio of
the genuine class to the counterfeit class being 16.6% to 83.4%, the CNN-GMM
model exhibited high-performance metrics in terms of recall, accuracy, and F-score
when classifying the least genuine class.
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INTRODUCTION
The past few decades have seen the proliferation of deepfakes, which are fabricated media
content generated using deep learning techniques, that have emerged as a significant
concern. Deepfake technology facilitates the generation of visual content, including images
and videos, that possess a high degree of realism, making them indistinguishable from
genuine counterparts when assessed using conventional detection techniques. The
deepfake technique enables the overlaying of a face image of a target individual onto a

How to cite this article Alnafea RM, Nissirat L, Al-Samawi A. 2024. CNN-GMM approach to identifying data distribution shifts in
forgeries caused by noise: a step towards resolving the deepfake problem. PeerJ Comput. Sci. 10:e1991 DOI 10.7717/peerj-cs.1991

Submitted 24 November 2023
Accepted 25 March 2024
Published 17 April 2024

Corresponding author
Aida Al-Samawi,
aalsamawi@kfu.edu.sa

Academic editor
Khalid Raza

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1991

Copyright
2024 Alnafea et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1991
mailto:aalsamawi@�kfu.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1991
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


video or image of a source individual, thereby creating deceptive perceptions of the target
person’s presence and actions that lack veracity. Even though deepfake technology has
been used in positive applications, such as its utilization in generating digital avatars,
Snapchat filters, visual effects, or reconstructing missing segments in a film episode
without necessitating reshoots (Marr, 2019), it also presents significant risks. The potential
negative consequences of this phenomenon extend beyond the realms of personal harm
and organizational blackmail. It has the potential to serve as a shield for individuals
engaged in illegal activities by refusing to acknowledge video recordings that could be used
as incriminating evidence against them. Therefore, the expeditious development of
deepfake technology may significantly impact the value and authenticity of video evidence
used in legal proceedings (Maras & Alexandrou, 2018).

Contemporary society is characterized by the advent of digital transformation. The
emergence of deepfakes has the potential to significantly expand avenues for perpetrating
identity theft, thereby endangering governmental and banking transactions. Deepfake has
the potential to generate fabricated satellite imagery of the Earth by incorporating non-
existent objects with the intention of misleading military analysts. The utilization of
deepfake techniques to generate fabricated videos featuring world leaders delivering
counterfeit speeches presents a significant obstacle to global security. Consequently, the
utilization of deepfakes has the potential to incite political or religious discord among
nations. Moreover, the ability to generate deepfake images or videos has become accessible
to a wide range of individuals due to the emergence of advanced tools and mobile
applications such as DeepFaceLab (GitHub, 2020), Reface (Reface, 2024), and Zao (Jooste,
2023). These technological advancements possess significant capabilities that greatly
facilitate the deepfake process, rendering it more efficient and expeditious. Hence, the task
of identifying deepfakes has become progressively more difficult.

Deepfakes detection research brings up in addition moral challenges about
weaponization, bias, privacy, freedom of speech, responsibility, and openness. Bias against
specific demographic groups may be reinforced by biased data sets, in addition to privacy
concerns resulting from the analysis of facial features. When attempting to identify
deepfakes for malevolent intent, it is also critical to avoid inhibiting legitimate uses of
deepfakes. Furthermore, researchers must think about the possible ramifications of their
work and put safeguards in place against misuse because weapon detection technology has
the potential to suppress dissent, discredit individuals, and manipulate public opinion.
Transparency is necessary for public accountability and scrutiny to take place. It is vital to
look into how the discovery of deepfakes impacts public confidence in the media and
broadens public awareness through educational initiatives. A safer online environment can
be achieved by addressing these ethical issues.

Another challenge in detecting deepfakes is that deepfake generators employ counter-
forensic techniques to avoid detection. Current detection strategies are unable to keep up
with deepfake generators because they rely on particular features and processing
requirements. Convolutional neural network (CNN) methodologies exhibit a reliance on
contextual factors, vulnerability to overfitting, and a dependence on extracting high-level
semantics from visual data.
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This study aims to present a resilient approach for identifying deepfake content through
the development and training of a CNN-GMM model that replaces the fully connected
layer in the convolutional neural network (CNN) with a custom Gaussian mixture model
(GMM) layer. The Gaussian mixture model (GMM) was used in the advanced topology to
depict the probability density function (PDF) of features. Hence, any alteration to the
image, including the utilization of deepfake techniques, will cause a shift in probability
towards the presence of noise, thereby facilitating the recognition of such alterations. The
CNN-GMMmodel takes advantage of the CNN’s ability to extract high-level features from
images and the GMM’s capability to model complex data distributions. The GMM layer
generates a collection of features, each accompanied by a probability value that indicates its
respective contribution and level of significance. Therefore, it compensates for the
uncertainty in the data to help overcome the overlaps in FaceForensics++ categories and to
enhance model generalization.

The subsequent sections of the article are organized in the following manner: the
Related Works section presents a comprehensive examination of various deepfake
detection techniques that are relevant to deepfake detection. The Methodology section
delineates the methodology used in this study, encompassing the pre-processing
procedures, the proposed topology, and the GMM layer. The Experimental Setup section
presents the experimental configuration, encompassing the hardware specifications
employed for model training, the training parameters utilized, and the optimization of
these parameters to attain the utmost accuracy. The Results section presents the outcomes,
encompassing the training and validation accuracy, as well as the testing results. In the
Conclusions section, a summary and conclusion of the study are provided.

Related works
Back in late 2017, Deep learning was first used by an anonymous Reddit user known as
“deepfakes” to swap celebrities’ faces into pornographic videos (Mirsky & Lee, 2021). Later,
in 2018, an alleged deepfake video of former president Barak Obama speaking on the
subject was released by BuzzFeed. The video was made using the Reddit user’s software:
FakeApp (Fake, 2016). Consequently, concerns were raised over the spread of
misinformation on social media and its impact. After that, it became obvious how such
technology may be misused when University of Washington academics published a
deepfake video of President Barack Obama and then spread it online. The researchers had
complete control over what was said in the video of President Obama. Imagine what may
happen if dishonest actors passed off a profound phony message from a world leader as the
real thing. The security of the entire globe may be at risk.

At the beginning of 2019, a video of Nancy Pelosi, a US Speaker was manipulated in a
“shallow fake” way to make her appear as if she was slurring her words and was inebriated
or confused. Shallow fakes mean that audio-visual manipulations are done with less
expensive and more easily accessible software. It involves basic video editing techniques
such as slowing down, speeding up, cropping, and selectively splicing unmodified existing
shots together, which can change the entire context of the information.
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Fake videos are rapidly spreading on social media and their impact on public opinion
highlights the significance of deepfakes and the reasons for the huge interest in them,
which have encouraged researchers to focus on methods of distinguishing between fake
and real media. A number of these detection methods rely on specific weaknesses that can
be found in deepfake images/video which are left by the deepfake generation technique,
while others use deep learning, and some researchers employ ensemble models to provide
a more robust method of detection.

Classifiers based on certain artifacts. In deepfake detection, some of the methodologies
rely on certain vulnerabilities in the existing deepfakes. For example, an audiovisual
methodology is employed to identify inconsistencies between the visual movements of the
lips and the corresponding speech in an auditory context (Agarwal et al., 2020). The
classifier can identify deficiencies in the ability of the deepfakes to accurately imitate mouth
movements, synchronize lip movements, and reproduce corresponding speech. An
additional approach that may be used to identify deepfake videos is to detect the frequency
of blinking, as humans typically blink approximately once every 2 to 10 s (Bentivoglio et al.,
1997), with each blink lasting approximately half to a quarter of a second (Bartoshuk &
Schiffman, 1977). Deepfake videos exhibit a distinct characteristic of minimal blinking
among individuals, thereby enabling their differentiation from real videos (Li, Chang &
Lyu, 2019). Another proposed approach for detecting deepfakes involves analyzing eye
color variation in videos (Matern, Riess & Stamminger, 2019). This can be accomplished by
first segmenting facial regions from the images and then identifying iris pixels to assess the
corresponding eye colors. Yang, Li & Lyu (2019) observed that deepfakes are generated by
integrating artificially generated facial regions into an authentic image, which
consequently introduces inaccuracies that could be detected through inconsistent head
poses. Salvi et al. (2023) using an image decomposition module and multi-level feature
enhancement, proposes a network to detect deepfake videos by highlighting
inconsistencies in illumination. Zhu et al. (2024) suggested time-aware neural networks to
extract audio-visual features from the input video over time. In their study, the
inconsistencies between and within both video and audio modalities are exploited to
enhance the final detection performance. Moreover, Guarnera, Giudice & Battiato (2020)
study concentrate on creating a new forensics trace detection technique by analyzing
deepfakes of human faces and extracting local features using an Expectation Maximization
algorithm. Classifiers that rely on specific features demonstrate a high level of accuracy in
detection, however, these classifiers are based on features that are heavily reliant on their
statistical model. These approaches often encounter failures when the creation methods
are enhanced and the underlying hypotheses no longer hold (Verdoliva, 2020). In addition,
these approaches are not able to overcome improvements made to the new GANmodels to
make them undetectable. Deepfake variations are often unfamiliar in real-world scenarios,
necessitating the development of a model that can effectively generalize and identify
previously unseen instances of forgery.

Deep learning-based methods in which features can be directly learned from data like
CNN have been used frequently in deepfake detection (Verdoliva, 2020). Pan et al. (2020)
used two deep learning models: the Xception model, a deep CNN architecture, and
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MobileNets architecture which is suitable for mobile vision apps. Eight models were
trained based on these two architectures and the four manipulation techniques were used
in the FaceForensics++ dataset. These include Deepfakes, Face2Face, FaceSwap, and
NeuralTextures. The results showed high performance over these trained models with
accuracy ranging from 91% to 98%.

However, Hsu, Zhuang & Lee (2020) proposed a method based on a pairwise strategy in
which a real-fake image pair was created using the CelebA dataset through five different
states of art GANs: Deep convolutional GAN (Radford, 2016), Wasserstein GAN
(Arjovsky, Chintala & Bottou, 2017), WGAN with gradient penalty (Gulrajani et al., 2017),
least squares GAN (Mao et al., 2017) and PGGAN (Huang et al., 2017). Then, a two-stream
model was proposed to input fake and real pairs, and the proposed common fake feature
network (CFFN) was trained using pairwise learning. By aggregating the cross-layer
feature representations, CFFN enabled fake feature learning middle- and high-level
discriminative fake features. The trained fake image detector was then able to detect the
fake image produced by a new GAN, even if it was not included during the training phase.

Zhao et al. (2021) developed a multi-attentional deepfake detection network with spatial
attention heads, textural feature enhancement block, and aggregated low-level and high-
level semantic features. It also introduces regional independence loss and attention-guided
data augmentation strategy to address learning difficulties. Moreover, Ilyas, Javed & Malik
(2023) created a deep learning framework called AVFakeNet, which can identify deep fakes
in both visual and audio modalities. It is a Dense Swin Transformer Net (DST-Net) that
uses a customized Swin transformer module in the feature extraction block and dense
layers in the input and output block. This framework effectively identifies deepfakes in
videos by carefully investigating both the audio and visual streams. On the other hand,
Chen et al. (2023) proposed a Secure DeepFake Detection Network (SecDFDNet) that can
detect DeepFake faces without disclosing private input while preserving a high accuracy
level.

Model ensembling is widely used in the field of machine learning to enhance the
performance of detection tasks and mitigate the generalization error. This technique
involves the amalgamation of sub-models or base learners to construct an optimal
perceptual model. Bonettini et al. (2021) proposed the utilization of CNN architectures,
specifically EfficientNetB4, EfficientNetB4Att, EfficientNetB4ST, and
EfficientNetB4AttST, in conjunction with an attention mechanism and a Siamese triplet
training scheme to facilitate the extraction of deep features. The Deepfakestack framework,
developed by Rana & Sung (2020), integrated a collection of advanced deep learning
classifiers and was trained using the FaceForencis++ dataset. The DeepfakeStack Classifier,
which is a CNN-based classifier, was developed and integrated into a larger multi-headed
neural network. This integration was done to attain the most effective amalgamation of
predictions derived from each source base-learner. The accuracy rate of the proposed DFC
model, a larger stacking ensemble neural network, was found to be 99.65%. Moreover, the
ensemble hierarchical model proposed by Silva et al. (2022) incorporated human
involvement in the detection process by utilizing detection networks that employed both
standard and attention-based data augmentation techniques. Attention blocks were
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utilized to assess facial regions, while human analysis of the frequency and statistical
analyses of the region revealed by the explanation layer were used to ascertain the validity
of the frame. The model demonstrated a commendable accuracy rate of 92.4% when
evaluated on the DFDC dataset, which is known for its complexity. Furthermore, the
model’s performance remained consistent even when presented with previously unseen
data.

CNN-based techniques have demonstrated promising outcomes; however, their
effectiveness is contingent upon the specific context in which they are applied. These
techniques are prone to overfitting and are reliant on the extraction of high-level semantics
from images (Hulzebosch, Ibrahimi &Worring, 2020). Furthermore, they are susceptible to
being deceived by adversarial examples. Based on a comprehensive review of relevant
literature and existing methodologies for detecting deepfakes, Gaussian mixture modeling
has not been extensively explored in the identification of deepfakes. To date, there has been
no research that has examined the combination of the GMM and the CNN for deepfake
detection. Therefore, the authors propose the integration of a GMM layer into a CNN
architecture, resulting in the proposed topology referred to as CNN-GMM. The rationale
behind integrating GMM into our model is to effectively capture the underlying
probability density function (PDF) of the features. Hence, any alteration made to the
image, including the application of deepfake techniques, would cause a shift in the
probability distribution towards the noise component, thereby facilitating the detection of
such modifications by the GMM.

METHODOLOGY
This section provides a detailed description of our methodology, including an overview of
the FaceForensics++ dataset, the pre-processing techniques used, the proposed topology,
and an explanation of the developed GMM layer.

Dataset overview
Selecting an appropriate forensics dataset is essential for developing robust deepfake
detection models. Important selection factors include the kind of manipulation, the
methods used, the quality and resolution of the videos, the size and diversity of the dataset,
and more. These factors have led to the selection of the FaceForensics++ dataset by Rossler
et al. (2019) which involved five distinct processing techniques, including the manipulation
of identity and expression. With varying quality levels and a variety of samples in terms of
gender, race, and appearance, the dataset was updated, and new processing techniques
were added. The FaceForensics++ includes a total of 6,000 videos, including 1,000 real
videos, 4,000 manipulated videos, and 1.8 million fake frames. The videos in this dataset
were created using five distinct processing techniques, namely Deepfakes, Face2Face,
FaceSwap, NeuralTextures, and Faceshifter. The FaceForensics++ dataset provides a
comprehensive set of techniques, enabling the model to effectively generalize to unfamiliar
data and complex deepfake techniques.
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Pre-processing
The primary objective of employing preprocessing techniques is to acquire precise,
comprehensive, and coherent data within the dataset before inputting it into the deep
learning model, thereby leading to improved classification performance (Fan et al., 2021).

In this work, the data underwent a series of transformations, including reduction, the
application of principal component analysis (PCA), cleaning, partitioning, and
augmentation. The preprocessing procedures employed in this study are depicted in Fig. 1.

The frame rate of the dataset videos was adjusted from 25 to 24 to ensure compatibility
with the MATLAB platform version 2022a (MathWorks, Natick, MA, USA). Subsequently,
the frame was extracted, and the face was detected through the Viola-Jones algorithm
(Viola & Jones, 2001), which is the pioneering real-time face detection algorithm utilizing
Haar-like features. The image was then resized to 224 × 224 pixels. Afterward, PCA was
employed on the image to address the issue of high correlation among the red (R), green
(G), and blue (B) matrices. PCA is a linear technique used for reducing the dimensionality
of a dataset. It accomplishes this by transforming a set of correlated variables into a smaller
set of uncorrelated variables, referred to as principal components (Jolliffe & Cadima, 2016).
The objective of PCA is to retain as much of the original data’s variability as possible
during this transformation process. Following PCA, the resulting images undergo a
manual inspection process to identify and remove any instances of improper detection.

A total of 70% of the data were allocated to the training set and 30% were used for
validation purposes (Nguyen et al., 2021). Furthermore, the validation data was
additionally subdivided, with 67% of the data assigned for validation and the remaining
portion assigned as the test data.

Data augmentation techniques were used to enhance the generalization capabilities of
the model to augment the training dataset, thereby increasing its size. The datasets were

Figure 1 Pipeline of preprocessing steps. Figure created in Canva. Full-size DOI: 10.7717/peerj-cs.1991/fig-1
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enriched with a variety of effects that would enhance the validation (Moradi, Berangi &
Minaei, 2020). The used dataset was augmented through the implementation of two
distinct types of transformations:

� Image reflection: Vertical or horizontal random reflection in the left-right and top-
bottom direction; each image is reflected with 50% probability.

� Image translation: The image is simply moved along the X or Y axes based on the given
interval. A uniform continuous distribution within the specified interval [−4 4] is used to
pick the vertical or horizontal translation distance.

Topology
The depicted topology is presented in Fig. 2. The model was designed to process image
input of dimensions 224 × 224 × 3 pixels. This input was then subjected to four consecutive
blocks of convolutional operations followed by pooling. A block is comprised of vertically
arranged layers, with each layer fulfilling a distinct purpose. The CNN-GMM architecture
is made up of multiple blocks, where each block is comprised of two grouped convolutions.
Following each convolution operation, rectified linear unit (ReLU) activation and batch
normalization were applied and a max pooling layer was employed. Then, a single fully

Figure 2 The proposed model (CNN-GMM) architecture.
Full-size DOI: 10.7717/peerj-cs.1991/fig-2
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connected layer was employed after the convolutional blocks, followed by three developed
GMM layers. The layer operations will be explained in detail in the next section. The first
layer of the Gaussian mixture model (GMM) consisted of 400 neurons, the second layer
contained 250 neurons, and the final layer of the GMMwas composed of two neurons, as it
is designed for binary classification.

There was a total of 38 layers in this network with 14 layers in the model, each of which
possessed learnable weights. Among the model layers, nine were convolutions, one was
fully connected, and three were GMM layers. In the CNN-GMM architecture, the
convolutional layers employed grouped convolutions with [3 3] filters and a stride value of
1. The initial pooling layer had [5 5] filters with a stride of 2, while the subsequent pooling

Table 1 Parameters of each layer in CNN-GMM.

Layer name Number of filters Size of feature map Size of kernel Stride

1. Grouped convolution 1 3 groups with 4 filters in each 222 * 222 * 12 [3 3] [1 1]

ReLU + Batch normalization

2. Grouped convolution 2 12 groups with 4 filters in each 220 * 220 * 48 [3 3] [1 1]

ReLU + Batch normalization

Max pooling 1 – 108 * 108 * 48 [5 5] [2 2]

3. Grouped convolution 3 48 groups with 4 filters in each 106 * 106 * 192 [3 3] [1 1]

Relu + Batch normalization

4. Grouped convolution 4 192 groups with 4 filters in each 104 * 104 * 768 [3 3] [1 1]

ReLU + Batch normalization

Max pooling 2 – 51 * 51 * 768 [3 3] [2 2]

5. Grouped convolution 5 786 groups with 2 filters in each 49 * 49 * 1,536 [3 3] [1 1]

ReLU + Batch normalization

6. Grouped convolution 6 1,536 groups with 2 filters in each 47 * 47 * 3,072 [3 3] [1 1]

ReLU + Batch normalization

Max pooling 3 – 23 * 23 * 3,072 [3 3] [2 2]

7. Grouped convolution 7 3,072 groups with 1 filter in each 21 * 21 * 3,072 [3 3] [1 1]

ReLU + Batch normalization

8. Grouped convolution 8 3,072 groups with 1 filter in each 19 * 19 * 3,072 [3 3] [1 1]

ReLU + Batch normalization

Max pooling 4 – 9 * 9 * 3,072 [3 3] [2 2]

9. Fully connected layer – 1 * 400 – –

Dropout (0.4) + Batch normalization

10. GMM fully connected layer – 1 * 400 – –

Batch normalization

11. GMM fully connected layer – 1 * 250 – –

Batch normalization

12. GMM fully connected layer – 1 * 2 – –

SoftMax layer

Classification layer
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layers used [3 3] filters. Table 1 depicts the configuration of the layers and their respective
parameters. The counting was restricted to layers that possess learnable weights.

GMM layer
Weight uncertainty in the context of deep learning pertains to the extent of variability
exhibited by a weight parameter, such that its values may be altered within a certain range
without causing a substantial impact on the overall performance of the model. This aids in
enhancing the generalization performance and precision of predictions on unfamiliar data.
A GMM layer was developed to estimate weight uncertainty by considering the network
weights as random variables. This enabled the neural network to acquire knowledge about
the probability distribution of weights, thereby facilitating the estimation of prediction
uncertainty.

The functionality of this layer was achieved through the utilization of a prior
distribution, which serves to represent the inherent uncertainty about the weights
associated with the layer. The prior distribution refers to a probability distribution that
characterizes the weights of a layer before its training. During the training process, the
prior distribution is updated by the layer, taking into consideration four distinct
parameters. The parameters under consideration include rho weights, rho biases, mean
weights, and mean biases. The posterior distribution represents the revised probability
distribution after incorporating new information that was initially represented by the prior
distribution. Predictions regarding the layer’s output can be made using the posterior
distribution.

Figure 3 demonstrates how the process in this layer commences by receiving the
weighted input (X) from the preceding layer. Subsequently, the process involves

Figure 3 Illustration of GMM layer. Full-size DOI: 10.7717/peerj-cs.1991/fig-3
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establishing initial values for the standard deviation of the weights (Sigma1) and the
standard deviation of the biases (Sigma2), which serve as indicators of the variances within
the mixture of Gaussian distributions that characterize the prior distribution. Furthermore,
the initial values are assigned to the weights and biases corresponding to the mean and rho.
The weights and biases, which can be modified through learning, are updated and
subjected to a random epsilon. Subsequently, the learnable parameters are subjected to a
fully connected function, wherein the input is multiplied by the weights matrix and
subsequently augmented by the bias term.

The prior probability was computed, and the posterior probability was estimated
based on the updated weights and biases. The calculation of prior probability involved
the utilization of the natural logarithm and the Gaussian mixture model, which
incorporates mean weights and mean biases. Equation (1) is utilized to estimate the
weights and biases, while Eqs. (2) and (3) are employed for the computation of the prior
probability.

logPDFWeights ¼ scale �0:5� xn�1
w � ln�1

w

� �
r1n�1

� 0:5� log 2pð Þ � log r1
n�1

� �� �

þ 1� scaleð Þ �0:5� xn�1
w � ln�1

w

� �
r2n�1

� 0:5� log 2pð Þ � log r2
n�1

� �� �
:

(1)

The above equation is repeated for bias, for weights, xn�1
w is the sampled weights, and for

biases it is the sampled biases.

logMixturePrior ¼ logPDFWeightsþ logPDFBias (2)

logPrior ¼
Xnumber of wieght matrix elements

i¼1

logMixturePriori: (3)

In contrast, the estimation of the posterior probability relies on the utilization of
updated rho weights and rho biases, employing the Glorot initialization technique
(Glorot & Bengio, 2010). The Glorot initialization method ensures that the weights of a
neural network are not excessively amplified or suppressed during training, thereby
facilitating ease of training. This is achieved by independently sampling the weights from a
uniform distribution. The subsequent equations provide a means of estimating the
posterior probability. Equations (4), and (5) used to estimate the logPosterior weights and
Eqs. (6) and (7) for logPosterior biases (Blundell et al., 2015):

logRhoweights
n ¼ log 1þ erhoweights

n� �
(4)

logProbabilityPosteriorWeights ¼
Xnumber of weight matrix elements

i¼1

�0:5� xwn � lw
nð Þ

logRhoweightsn
� �2

� 0:5� log 2pð Þ � log logRhoweights
n

� � (5)

logRhobias
n ¼ log 1þ erhobias

n
� �

: (6)
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logProbabilityPosteriorBias ¼
Xnumber of bias matrix elements

i¼1

�0:5� xbn � lb
nð Þ

logRhobiasnð Þ2 � 0:5

� log 2pð Þ � log logRhobias
nð Þ

: (7)

To estimate logPosterior:

logPosterior ¼ logProbabilityPosteriorWeightsþ logProbabilityPosteriorBias: (8)

The trainable parameters, namely weights and biases are used to create uncertainty in
the features. In contrast to a conventional fully connected layer that generates a static
feature, a GMM yields a collection of features, each accompanied by a probability that
indicates its respective contribution and significance. Consequently, the incorporation of
compensation for data uncertainty will prove beneficial in effectively addressing the issue
of category overlaps and biases.

CNN-GMM utilizes the GMM fully connected layer as a substitute for the conventional
fully connected layer. It was not necessary to use the dropout after the GMM layer due to
its inherent capability to mitigate the adverse effects of overfitting.

Experimental setup
This section provides an overview of the experimental configuration, including the
hardware specifications used for model training, the training parameters employed, and
the optimization of these parameters to achieve the highest level of accuracy.

Development platform
MATLAB (MathWorks, Natick, MA, USA) was used to conduct these experiments.

Hardware specification
The model was trained on a PC with the following specifications:

• 11th generation Intel(R), Core (TM) i7-1165G7 @ 2.80 GHz.
• 16 GB RAM.
It took approximately 54 h to train the model using in the local CPU.

Training options

The adaptive moment estimation (Adam) optimizer was used (Table 2) (Kingma & Ba,
2014) due to its computational efficiency, low memory requirements, and invariance to
diagonal rescaling of gradients.

Epsilon is a very small number used to prevent any division by zero in the
implementation while updating the variable when the gradient is almost zero. The default

Table 2 Adam optimizer parameters.

Parameter Epsilon Mini batch size Gradient decay factor Initial learn rate shuffle

Value 1e−8 80 0.9 0.001 ‘every-epoch’
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value for epsilon in the Adam optimizer (1e−8) typically works well for most cases. A mini
batch is a portion of the training set used to assess the gradient of the loss function and
modify the weights. Smaller batches may converge more quickly than larger ones. Also,
due to its high variance, a small batch size might have a considerable regularization effect
(Wilson & Martinez, 2003). Considering this concept, and the constraints imposed by the
limited RAM capacity of both the PC and AWS GPU, a modest mini-batch size of 80 was
used. The default value of 0.9 was used for gradient moving average decay rate in the Adam
optimizer. The learning rate controls the step size at each iteration of an optimization
algorithm as it advances toward a minimum of a loss function. It reflects the rate at which a
neural network model learns since it determines the extent to which newly acquired
information overcomes old ones. Training may take a while if the learning rate is too low
(Kim, 2017) The training process may diverge or produce less than ideal results if the
learning rate is too high. The initial learning rate was set in this work at 0.001, which is the
default for the Adam optimizer. To avoid dismissing the same data repeatedly, training
data was shuffled before every epoch.

Parameter optimization
The goal of parameter optimization is to find a set of parameters that maximizes the
algorithm’s performance on a specific problem instance (Huang et al., 2019). The
parameters were manually adjusted to improve accuracy.

The mini-batch size was tuned from 300 to 80 to regularize and enhance training
performance. Reducing the size of the minibatch affects the generalizability of the model
(Kandel & Castelli, 2020) and enables more efficient training with limited memory
resources. Furthermore, through repeated experiments to optimize the system, it was
noticed that changing the initial learning rate from 0.0001 to 0.001 increased the accuracy
of the proposed topologies by approximately 3%. Moreover, the FC layer neuron should be
proportional to the output vector from the previous layer. If a high number of neurons is
used, it would result in an unmanageably large network, and if a small number is used, this
will negatively affect the performance of the network. Therefore, FC neurons were adjusted
until a value that balances performance and network size was reached. Further, increasing
the epochs number gives the network enough time to be trained as the algorithm is
exposed to the same data multiple times, which leads to a higher accuracy. Fifty epochs
were sufficient for the proposed topology to be learned without overfitting.

RESULTS
Training results
The CNN-GMM model was trained for approximately 54 h on a personal computer CPU
using the FaceForensics++ dataset. The model achieved a training accuracy of 100% and a
validation accuracy of 96%, as depicted in Fig. 4. The training process is shown with a blue
solid line representing training and a dashed red line representing smooth training. The
red solid line in the figure represents the accuracy of validation. Figure 5 illustrates a loss
function that exhibits a gradual decrease from a value of 3 to approximately 0.5.
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Evaluating the model using the test set
The system underwent testing by classifying a test set that had been previously isolated
from the FaceForensics++ dataset. Consequently, this test set was regarded as new data for
the system. The recorded classification accuracy of the test was 96.2%.

This work comprises two distinct classes, namely Real (R) and Fake (F). As depicted in
the first table of Fig. 6, the True Fake (TF) values, representing the correctly classified fake
samples, account for 465 out of the total 484 fake samples (96.1%). The category of False
Fakes (FF) encompasses 19 instances out of a total of 484 counterfeit samples, resulting in
an erroneous classification rate of 3.9%. Out of a total of 97 samples, 94 (96.9%) True Real
(TR) samples accurately represent the real values, while 3 (3.1%) False Real (FR) samples
inaccurately represent the real values.

Figure 4 Training accuracy of the CNN-GMM model. Full-size DOI: 10.7717/peerj-cs.1991/fig-4

Figure 5 Training loss of the CNN-GMM model. Full-size DOI: 10.7717/peerj-cs.1991/fig-5
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The confusion parameters of this model are shown in Table 3. The test results
demonstrate that the system exhibits strong generalization capabilities and effectively
applies learned knowledge to new data without solely relying on memorization or
overfitting to the trained data. The classification accuracy of the test data was 96.2%, which
closely aligns with the training accuracy of 96%. Moreover, to determine the proportion of
accurate true classifications within each class, the recall or true positive rate was computed.
The recall value for the fake class (RecallFake) was 0.994 with a confidence level of 99.4%
indicating a high probability of correctly classifying a fake video as fake. In contrast, the
recall value for the real class (RecallReal) was 0.832 with a confidence level of 83.2%,
indicating a lower probability of correctly classifying a real video as real. The precision, also
known as the predicted positive value, was determined by dividing the count of accurate
predictions by the sum of false predictions and accurate predictions. The value of
PrecisionFake was 96.07, while the value of PrecisionReal was 96.9. The concept of
specificity pertains to the model’s capacity to accurately detect and classify negative
outcomes. The level of specificity exhibited by the model in the Fake class was 83.2%, while
in the Real class, it reached 99.4%. The calculation of the false positive rate (FPR) or fall-
out involves dividing the count of negative events that have been incorrectly classified as
positive by the total count of negative events. The false positive rate for the fake condition
was 16.8%, while the false positive rate for the real condition was 0.6%. The F score, which
quantifies the accuracy of the model, is calculated by taking the harmonic mean of the

Table 3 Confusion parameters of the testing result.

Accuracy True positive/Recall/
SENSITIVITY

Predicted positive/
PRECISION

Actual negative/
SPECIFICITY

False positive/
fall-out

F-score

Fake 96.2 99.4 96.07 83.2 16.8 96.63157895

Real 96.2 83.2 96.9 99.4 0.6 84.90566038

Figure 6 Confusion matrix of the testing results. Full-size DOI: 10.7717/peerj-cs.1991/fig-6
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precision and recall. In this case, the F score for the Fake classification was 98.1 and 89.5 for
the Real class. As can be observed, the Fake class’s precision, recall, and F score were all
higher than those of the Real class, indicating that the system was biased in favor of the
Fake class because of its size.

Figure 8 Mean weights probability of the first GMM layer.
Full-size DOI: 10.7717/peerj-cs.1991/fig-8

Figure 7 Rho weights probability in the first GMM layer.
Full-size DOI: 10.7717/peerj-cs.1991/fig-7
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Distribution of GMM layers
The GMM layer was designed with learnable rho weight and mean weight parameters.
Figure 7 illustrates the distribution of rho weight values for the initial GMM layer. The
weight values in question exhibit a uniform distribution, with an approximate probability
of 0.01 assigned to each value. The weight values in the model are bounded within the
range of −2 to 1, representing the weight uncertainties or the permissible range of values

Figure 9 Rho weight probability of the second GMM layer.
Full-size DOI: 10.7717/peerj-cs.1991/fig-9

Figure 10 Mean weight probability of the second GMM layer.
Full-size DOI: 10.7717/peerj-cs.1991/fig-10
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that a weight can assume without causing a substantial impact on the model’s
performance. The imposition of a uniform weight distribution compels the neural network
to allocate equal attention to the features extracted from the activation maps of preceding
layers. This enhances the model’s capacity for generalization and mitigates its bias. Figure 8
illustrates the probability distribution of the mean weight values within the first GMM
layer, spanning a range of −0.04 to 0.04, and following a uniform distribution. Figure 9
illustrates the distribution of rho weights in the second GMM layer, spanning from −2 to 1.
Figure 10 depicts a uniform distribution of mean weights in the same GMM layer, ranging
from −0.06 to 0.06. It is worth noting that this range is slightly wider compared to the
mean weights observed in the preceding GMM layer.

CONCLUSIONS
Tools for manipulating videos have become increasingly more sophisticated, thereby
facilitating the production of fake videos that are virtually indistinguishable from
legitimate ones. These circumstances give rise to the possibility of exploiting deepfakes for
nefarious objectives such as identity theft and political manipulation. Great efforts are
being made by both creators and detectors of deepfakes, which increases the difficulty of
producing undetectable deepfakes. Nevertheless, creators are continuously discovering
novel methods to evade detection. The present study introduces an innovative deep
learning model, namely the CNN-GMMmodel, for deepfake detection. The FaceForensics
++ database, encompassing five distinct manipulation methods, was used to train the
CNN-GMM. The videos within this dataset have undergone a series of preprocessing steps,
including transformation, reduction, PCA application, cleaning, splitting, and subsequent
augmentation. The CNN-GMM model demonstrated a notable capability in identifying
uncertainties arising from various categories of deepfakes within the probability
distribution, achieving a commendable level of accuracy in classification. Specifically, the
model attained a training accuracy of 100% and a validation accuracy of 96%. The CNN-
GMM model demonstrated effectiveness in addressing the issue of imbalanced class
distribution through rescaling. It also exhibited a high level of classification performance
during testing, increasing its potential for generalizability. However, it may not be immune
to biases present in the FaceForensics++ dataset such as demographic imbalance, a high
proportion of male faces, limited representation of faces of European descent, age bias,
quality disparity, and context bias. Consequently, to overcome this bias, it is suggested to
train the model on more datasets in the future and feed it random samples from recent
deepfake generation tools. In addition, lightweight models should be developed for real-
time detection on resource-constrained devices, such as smartphones and tablets. The
constant change in the landscape of deepfake detection necessitates scalable and resilient
models. Existing detection methods are susceptible to new developments, necessitating
robustness and scalability enhancements.
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