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ABSTRACT
Quality sleep plays a vital role in living beings as it contributes extensively to the
healing process and the removal of waste products from the body. Poor sleep may
lead to depression, memory deficits, heart, and metabolic problems, etc. Sleep usually
works in cycles and repeats itself by transitioning into different stages of sleep. This
study is unique in that it uses wearable devices to collect multiple parameters from
subjects and uses this information to predict sleep stages and sleep patterns. For the
multivariate multiclass sleep stage prediction problem, we have experimented with
both memoryless (ML) and memory-based models on seven database instances, that
is, five from the collected dataset and two from the existing datasets. The Random
Forest classifier outclassed the ML models that are LR, MLP, kNN, and SVM with
accuracy (ACC) of 0.96 and Cohen Kappa 0.96, and the memory-based model long
short-term memory (LSTM) performed well on all the datasets with the maximum
attained accuracy of 0.88 and Kappa 0.82. The proposed methodology was also
validated on a longitudinal dataset, the Multiethnic Study of Atherosclerosis (MESA),
with ACC and Kappa of 0.75 and 0.64 for ML models and 0.86 and 0.78 for memory-
based models, respectively, and from another benchmarked Apple Watch dataset
available on Physio-Net with ACC and Kappa of 0.93 and 0.93 for ML and 0.92 and
0.87 for memory-based models, respectively. The given methodology showed better
results than the original work and indicates that the memory-based method works
better to capture the sleep pattern.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning, Neural
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INTRODUCTION
Sleep is a crucial part of the human growth and healing process and typically takes one
third of our life (Colten, Altevogt & Institute of Medicine (US) Committee on Sleep
Medicine and Research, 2006). Scientists recommend 7 or more hours of sleep for adults,
and this range of brackets varies with age groups (Hirshkowitz et al., 2015). Sleep
deprivation has been found to result in the readjustment of a person’s sleep cycle and
biological clock and cause a compromised immune system, cardiovascular diseases,
metabolic disorders, diabetes, mental disorders, depression, anxiety, low impulse control,
hallucinations, slackening, reduced decision-making, thinking and memory capabilities
(He et al., 2017), death (Cappuccio et al., 2010), etc. Sleep deprivation could be the result of
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intentional delays or certain kinds of diseases like schizophrenia, Alzheimer’s, cancer,
stroke, stress, aging, sleep apnea, chronic pain syndrome, etc.

Quantity and quality contribute to the sleep assessment. Increasing the quantity does
not imply better quality. The quantity can be measured easily by tracking the number of
hours, but the quality measurement is not straightforward. It defines how early you fell
asleep after going to bed, how often you woke up at night, felt rested and energized
(Pilcher, Ginter & Sadowsky, 1997), and the transitioning and distribution of sleep,
stages, etc.

To monitor subjects with suspected sleep deprivation, it is important to accurately
classify sleep stages. In 2007, the sleep stages were reclassified into four stages (previously
five; Colten, Altevogt & Institute of Medicine (US) Committee on Sleep Medicine and
Research, 2006) according to the American Academy of Sleep Medicine (AASM) standard
(Novelli, Ferri & Bruni, 2010) which includes three stages in non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep with a normal length of 1–5, 10–60, 20–40
and 10–60 min, respectively. They alternate clinically during a sleep episode (Carskadon &
Dement, 2010). The former is associated with psychological activity and low muscle tone
(muscle tension), while in the latter EEG is asynchronous, muscles are atonic (loss of
muscle tension) and dreaming is common (Carskadon & Dement, 2010). In stage 1 (N1),
the body relaxes, the brain activity slows down, and the person can easily awake to noise.
Alpha waves are observed at this stage (Carskadon & Dement, 2010). These waves are seen
in the electroencephalogram (EEG) patterns when a person is in a wakeful state and is
quietly resting (Berry & Wagner, 2014). In stage 2 (N2), body temperature drops, eye
movements stop, and heart rate (HR) and breathing slow down. A short burst of activities
can be observed which helps resist external stimuli to avoid waking up. Half of the time in
sleep is spent at this stage. The K-complex and sleep spindles can be observed in the EEG
pattern (Carskadon & Dement, 2010). In stage 3 (N3), deep sleep prevails. A special pattern
of delta waves can be observed in this stage. This stage contributes to body healing,
recovery, growth, memory creation, organization, insightful thinking, etc. Stage 4 (N4) has
been merged with N3 in the AASM standard. They collectively create ‘slow wave sleep’.
These have the highest arousal threshold. Finally, in REM sleep, there is desynchronized
low-voltage brain activity that is comparable to that of an awake person and bursts of rapid
eye movements (Carskadon & Dement, 2010). Muscles (except for the eye and breathing)
are paralyzed to avoid any physical movement or fatal accident. Dreaming is identified
with an uptick in brain waves. This stage contributes to the development of cognitive skills,
learning, and memory functions (Crick & Mitchison, 1983). Difference in HR, brain
activity, temperature, sympathetic nervous systems, etc. in NREM and REM sleep are
discussed in (Madsen et al., 1991; Somers et al., 1993).

The analysis of these stages helps in the assessment of sleep quality. NREM and REM
sleep alternate cyclically during a sleep episode (Colten, Altevogt & Institute of Medicine
(US) Committee on Sleep Medicine and Research, 2006). There can be four to six sleep
episodes/cycles of possibly variable lengths with an average of 90 min each. The first cycle
is usually the shortest (Novelli, Ferri & Bruni, 2010). Patients who have sleep disorders may
have no sleep stages and irregular cycles, that is, they may enter REM sleep directly instead
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of NREM first (Keenan, Hirshkowitz & Casseres, 2013). Therefore, to measure the sleep
score, it is necessary to measure the cycle of sleep stages and their transition.

To measure sleep quality/score/stages, different methods such as visual
polysomnography (PSG) (Yildirim, Baloglu & Acharya, 2019), EEG (Eldele et al., 2021;
Michielli, Acharya & Molinari, 2019), and wrist wearable devices (Moser et al., 2009) are
used. The former (PSG, EEG) is time-consuming, uncomfortable, and dependent on the
experimentation setup in the sleep labs and on the bias/subjectivity of the expert
measuring it. Additionally, a large set of EEG features (Zhu, Luo & Yu, 2020) and
automated feature calculation from convolutional neural network (CNN) models (Moser
et al., 2009) add complexity to the feature and modeling layers. A handful of studies exist
that use the latter approach using devices such as ActiGraph (Moser et al., 2009), Apple
Watch (Walch et al., 2019), etc. However, the results are not promising due to the increased
sensitivity of wearable devices to noise (Moser et al., 2009), the number of classes,
unbalanced data (Eldele et al., 2021), lack of validation, and, the temporal context.

The use of smartwatches has been well received by the public in the last decade.
Wearable devices provide information related to HR, activity, sleep stages, ECG patterns,
etc. These devices also assess the sleep quality of subjects. However, there is a stall among
the research community in their use due to the validity of the algorithms used to calculate
the healthcare parameters.

The need was felt to use noninvasive benchmarked devices (like Fitbit and Apple
Watch, etc.) and study the role of muscle movement, heart activity, and biological clock for
sleep stage classification, understand or predict sleep stage transition based on these
features and validate it using the PSG study. The results indicate that memory-based
models can be used to understand the temporal context of sleep stages and forecast sleep
patterns based on the information available from wearable devices. Random Forest (RF),
k-nearest neighbors (kNN), and long short-term memory (LSTM) showed better results
for multiclass sleep stage prediction problems than existing studies (Walch et al., 2019).

The study was carried out to understand the potential of consumer-based wearable
devices in the healthcare sector. The idea was to acquire as much information as possible
from the device and use it in the diagnosis of diseases and as an early prevention measure.
This study can be differentiated from the rest on the following merits:

� A data extraction and storage (Datalayer) model was created that extracted all the
information from the consumer-based wearable device (Fitbit Versa 3). This framework
is capable of extracting per-interval (second/minute) data from the Fitbit servers from
the provided subject ids. This includes heart rate, heart rate variability, elevation,
distance, steps, activity modes and levels, SPO2, temperature, sleep stages, food,
nutrition, etc. As per the literature, no data extraction layer (DAL) has been created for
sleep pattern analysis (other than Fitbit’s original database—private).

� This study illustrates the dependence of historical time series events on the current sleep
cycle. The episodic and repetitive nature of sleep is evident in a sleep pattern. This has
not been addressed in the literature.
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� The multivariate multiclass sleep stage classification problem has not generated
promising results for more classes using wearable devices. Other studies use ECG or
EEG etc. for collecting data. The results discussed in the study are better than the existing
ones.

� The current limited features set and the proposed model showed better results for four
and six classes.

� The proposed model is simple with few layers, thus reducing the complexity.

The document is distributed as follows: “Dataset, Preprocessing, and Feature
Extraction” discusses the datasets. “Methodology” addresses the models (and their results)
that are used for the prediction of sleep stages. Finally, the conclusion is addressed in
“Conclusion”.

LITERATURE SURVEY
Sleep has been analyzed by different authors for multiple contexts, that is, to avoid
accidents during sleepwalking (Damkliang et al., 2019) or on roads (Chowdhury et al.,
2019; Patrick et al., 2016) to understand sleep behavior and patterns (Budak et al., 2019;
Hunter et al., 2021; Zhang et al., 2022), to measure sleep quality (Hunter et al., 2021),
detection of sleep stages (Gaiduk et al., 2018), related diseases (Mitsukura et al., 2020;
Zhang et al., 2022), etc. For example, Damkliang et al. (2019) worked on the detection of
the sleepwalking algorithm with three classes (No, Slow, Quick) that were part of the awake
state of sleep. For this, they used Samsung Gear Fit smart watches to measure activity data
and information coming from the activity sensor. They assigned classes based on 2-min
activity. For verification, the authors generated multiple contradictory and actual scenarios
like moving oneself without walking, walking in practice, etc. These were corrected and
identified by the algorithm.

In another study, it was observed that cardiac rhythm can be used to assess sleep quality.
For example, Mitsukura et al. (2020) only used ECG readings to calculate Heart Rate
Variability (HRV) and predicted four and five stages of sleep with an accuracy of around
70% and 66%, respectively. The results were generated using Recurrent Neural Networks
(highest), hidden Markov model, and support vector machines, etc. Sridhar et al. (2020)
uses electrocardiogram (ECG) and extracts Instantaneous Heart Rate (IHR) time-series
data from over 10,000 nights of data from the Sleep Heart Health Study (SHHS) and the
Multi-Ethnic Study of Atherosclerosis (MESA) with an overall performance of 0.77
accuracy with four classes for every 30 s of sleep. Similarly, Penzel et al. (2016) uses cardiac
signals, that is, ECG and HR, for the classification of sleep stages, and Gaiduk et al. (2018)
used HR, activity, and an additional respiratory signal to classify sleep stages with Cohen
Kappa of 0.67 and 0.53 for three and four stages, respectively, while Gaiduk et al. (2019)
used the same sensors for the classification of sleep/wake stages with accuracy 84% and
Cohen Kappa of 0.44. They mathematically modeled the features (extracted from the
Charite Clinic in Berlin) and used them with multinomial linear regression (MLR)
modeling. The results showed that REM sleep was confused with the wake stage due to
similar breathing patterns and data imbalance (Gaiduk et al., 2018).
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For improving the results, recently the authors began to incline toward the use of neural
networks. For example, deep learning models, i.e., U-Net, were used to classify a total of
seven classes (five sleep stages, and apnea/arousal) using PSG recordings which were auto-
annotated using the model. The model was tested on PhysioNet (Goldberger et al., 2000)
and validated using the SHHS-1 dataset. The results were quite promising with an accuracy
AUROC of 0.9826–0.8913 (Zhang et al., 2022). However, the N1 stage was confused or
misclassified with the N2 stage. Convolution neural network (CNN) and long short-term
memory (LSTM) have also been considered in several studies to capture the history of
sleep cycles. PSG recordings were used for the detection of four and five sleep stages with
an accuracy of 55% and 40%, respectively (Stuburic, Gaiduk & Seepold, 2020).
Interestingly, a similar study was conducted with cows using neck muscle activity and
heart rate to understand their sleep patterns. Dataset collection was a challenge, and the
same data imbalance issue persisted. The results showed the classification accuracy of 82%
both for RF and neural network (Hunter et al., 2021).

Ultimately, all existing studies faced a few common problems: (1) Data imbalance which
caused misclassification in higher transitional stages such as REM and N3/N2, etc. (2) As a
consequence of (1), misclassification of one or two stages as the other stage, causing a
decrease in accuracy. Another observation is that the literature is inclined toward (1) the
use of PSG recordings or data which is a physical inconvenience for the patient/subject.
(2) Dependence on ECG on EEG multilead recordings for feature extraction. (3) Use of
complex models due to multilayer networks or a large set of features.

In our study, we have tried to alleviate the above-mentioned issues by using the smart
wearable device (Fitbit Versa 3) to collect features and reduce physical inconvenience. Data
was collected using minute intervals and 30 s for the MESA dataset. We have augmented or
interpolated the data for fewer entries with more subintervals rather than one big interval
(increasing the data/data augmentation). The collected data contained heart rate, Heart
Rate Variability (HRV), activity, oxygen saturation, etc. as features. The activity is also
added using the burned calories. We also used the natural class imbalance to capture the
time-series pattern in the data stream using a memory-based multivariate model. A
simpler context-aware LSTM model was used to capture the historical sleep pattern. The
results of Fitbit for the sleep stage prediction problem should be compared with some
standard or medical device (Liang & Chapa-Martell, 2019). It was noted that the device
performance is satisfactory in measuring sleep efficiency, total sleep time (TST), transition
probabilities from light to REM, deep to wake, and staying in REM. All other transition
probabilities deviated from those collected from the medical device (Liang & Chapa-
Martell, 2019). For this, we validated our results with the MESA and PhysioNet dataset.

DATASET, PREPROCESSING, AND FEATURE EXTRACTION
In our study, we utilized the MESA and Apple Watch datasets as validation datasets to
assess the generalizability of proposed methdology. These datasets were chosen for their
broad demographic coverage and richness in sleep-related data. Complementing them, we
collected a detailed dataset in a controlled environment, focusing specifically on local
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demographic. Subsequent sections explains the process of custom dataset along with
preprocessing and usage of exisiting dataset for the methodology.

The collected dataset
The device collects different parameters such as activity, nutrition, HR, steps, oxygen
saturation (SPO2), respiration rate (RR), HRV, etc. Some of these are based on time-series
data, while others are measured singularly per day. Subjects were asked to wear the device
for up to three months so that sufficient reliable information could be collected. HR, sleep
stages, and steps were collected per minute while SPO2, RR, temperature, and other
parameters were collected according to the availability of the data. The reception of the
data may be affected by the level of battery life and the wearing state of the device. Users
were asked to keep the battery of Fitbit at stable levels and sync the data on Fitbit servers
regularly. A data framework was developed that sends requests to FitBit servers using APIs
1.1 and 1.2 (provided by Fitbit), receives the response, parses it, and saves it to relational
databases using the library pyodbc and MS SQL SERVER 2018. Given the variety of data
types provided by the wearable device, a data model was created for the time series dataset.
A client secret, API key, date of start of data collection, age, and other parameters were
recorded in the databases to keep track of multiple patients.

This sampling rate of per minute for sleep stages is considered sufficient to accurately
track the various stages of sleep, including light, deep, and REM sleep, which are critical for
a comprehensive analysis of sleep patterns. Human sleep cycles, which last approximately
90 min (Suni, 2023;Medical News Today, 2023; Penzel, 1999), do not exhibit rapid changes
minute-to-minute, thus making a 1-min sampling interval appropriate for capturing
significant transitions without unnecessary detail. Furthermore, this rate is a balanced
tradeoff that considers device limitations such as battery life and data storage capacity.
Sampling more frequently would yield more granular data but at the cost of increased
power consumption and data overload, which could be impractical for continuous
overnight monitoring. Additionally, it ensures that the data processing remains within the
capabilities of wearable devices, which often have limited processing power. Hence, the
60-s sampling rate is deemed a well-considered approach that balances the need for
detailed and accurate sleep analysis with the practical limitations and user-friendliness of
sleep tracking devices.

Features

Heart rate was collected per minute. Information related to HRV and heart zones were also
collected. The zone provides min and max HR, and the calories burned for a particular
type of heart activity such as cardio, fat burn, peak, etc.

Activity data is based on the accelerometer and gyroscope sensor readings, etc.
However, Fitbit does not provide raw acceleration in three dimensions. Instead, it provides
time-series data for steps, elevation, distance, calories, and sedentary, light, fair-active, and
very active per minute classes.

Sleep: Fitbit provides two APIs for the extraction of sleep data. API 1.1 provides
time-series data for three stages, i.e., awake, restless, and sleep, while API 1.2 provides
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time-series data for four stages, i.e., wake, light, deep, and REM sleep. Both types of data
were collected using a data framework. All the entries were collected using 60 s intervals.
However, Fitbit provides long and short sleep cycles. Short cycles are also stored using 30 s
intervals. Therefore, after data collection, the Sleep Stage Tables contained entries for both
30 s and per-minute intervals (causing duplicate entries). All were later interpolated and
set to one interval.

Temperature: Fitbit also provides temperature per minute. This was also captured and
saved.

Other than all the above-mentioned items, information related to the food journal, body
BMI, weight, water intake, age, gender, medical conditions, allergies, snore, RR, etc. was
also collected.

Data preprocessing
Interval mapping: For data preparation, all tables were naturally joined based on the same
time. The information in the HR and Sleep Interpolated tables had 190,688 (m) and
approximately 67,944 (n) entries. After joining, minðm; nÞ rows were produced. This was
because sleep was measured during the night only while other activities (HR, distance,
steps, etc.) were measured during daylight as well. Therefore, entries containing both sleep
and activity information during night hours were considered (67;944).

Moreover, some of the HR and sleep entries have different measurement time instances.
For example, HR was measured at 6:00:00, while sleep activity was at 6:00:30. Such a row
will not appear in the natural join. It was resolved by taking the floor of the sleep time
instants. It was done carefully assuming that during 30 s intervals, the sleep stage will not
change.

Interpolation/data filling: As explained earlier, Fitbit provides two types of data in API
1.2 for sleep stages i.e., short, and long sleep cycles. It provides the start time of the sleep
stage, name, type (short and long), and total time spent in that stage. These entries could
not be joined with the existing time series tables that contained per-minute entries.
Therefore, we converted the summarized information to expanded time-based data. The
minimum interval of the sleep entries was 30 s for both long and short cycles. To avoid loss
of data, the sleep tables were updated for 30 s intervals. For example, for an entry of a
subject’s sleep at 6:30:00 in deep sleep for the 1,200 s (1;200=60 ¼ 20min), 40 new entries
(with 30 s interval: 20 � 2) were created with the class as the deep sleep stage and the time
from 6:30:00 to 6:50:00. Furthermore, data from short sleep cycles were merged with long
sleep cycles by placing them in their proper location (sorted by time). For conflict times
(duplicate data) between short and long sleep cycles, as shown in Table 1, intervals were
replaced with the short interval data. After this, the dataset was prepared and merged with
the other per-minute data tables and stored in the SQL database. A total of n records were
created from 31,867 records. Some samples have been shown in Table 1.

Data for sleep stages from API 1.2 was unbalanced. For a total of n rows, the wake class
consisted of 12.2%, light class 50.1%, deep class 18.1%, and REM class 19.6%. This data
imbalance is natural because humans, as described above, spend more time in light sleep
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than in the other stages of sleep. This distribution of stages, along with all other instances,
is shown in Fig. 1.

Dataset creation: Finally, all tables were merged to create the following database
instances as shown in Table 2. The high-level attributes also contain the patientId, and the
class attribute (sleep stage). Different instances were created to observe the impact of each
parameter on the prediction of the sleep stage. It should be noted here that the extracted
information depends on the Fitbit wearable device. So, some tables contained fewer entries
than others.

Validation dataset
To validate our results, we have used both expert predictions from the Fitbit device and
tested our methodology on another benchmark study and a longitudinal study of the
Multi-Ethnic Study of Atherosclerosis (MESA).

Table 1 Time series sleep stage data with duplicates.

Timestamp Interval Stage Type

2021-12-16 06:37:00 30 Light Long

2021-12-16 06:37:30 30 Light Long

2021-12-16 06:38:00 60 Wake Short

2021-12-16 06:38:00 30 Light Long

2021-12-16 06:38:30 30 Light Long

2021-12-16 06:38:30 30 Wake Short

Figure 1 Sleep stage class distribution. Full-size DOI: 10.7717/peerj-cs.1988/fig-1
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Apple Watch PhysioBank dataset
In this dataset HR, raw acceleration, steps, and circadian rhythm were collected from 39
subjects using the Apple Watch for some days. In the end, they spent the night in a sleep
lab for polysomnography (PSG) for an 8-h sleep. The readings were recorded and their
sleep stages were labeled by the experts, tagged, and saved (Goldberger et al., 2000; Walch
et al., 2019).

The Multi-Ethnic Study of Atherosclerosis dataset (MESA)
It is a longitudinal study for the investigation of subclinical to clinical cardiovascular
disease (CVD) in a multi-ethnic community. Subjects enrolled in the study had four
follow-up exams from 2003 to 2011. In 2010, 2,237 participants were recruited for the
Sleep Exam, i.e., full unattended PSG overnight and 7-day actigraphy to understand sleep
and its disorders among different ethnic groups and related to subclinical atherosclerosis
(Chen et al., 2015; Zhang et al., 2018). Multiple studies have used this dataset to validate
their work (Perez-Pozuelo et al., 2022; Tang et al., 2022; Walch et al., 2019) for the
classification of the sleep stage. Using Walch et al. (2019), the same method was used to
extract the features from MESA as of the Apple Watch dataset to make it comparable.

Data preparation
An identical set of features was extracted from both the Apple Watch and MESA datasets
using the same technique.

Feature preparation

� The raw acceleration ðx; y; zÞ was converted to activity counts using the technique by
Lindert (Te Lindert & Van Someren, 2013) and convolved with Guassian (r ¼ 50)
(Walch et al., 2019).

� The heart rate was augmented for a 1-s interval and smoothened. Later, it was convolved
with a difference of the Gaussian filter (r ¼ 120 s; r ¼ 600 s) to highlight the periods
with change.

Table 2 Database instances.

Name High level attributes Entries Features Interval

I1act PatientId, Time, Activity (Levels, Mets, Calories, Distance, Elevation, Floors, FairActive, LightActive,
veryActive, Sedentary, Steps), and Sleep Stages

33,971 14 60

I2hr Features of I1act , HR, and HRVcalc 33,971 16 60

I3hrv Features of I2hr , HRV (rmssd, coverage, fhigh, and flow) 33,739 19 60

I4temp Features of I3hrv and Temperature 33,739 20 60

I5spo2 Features of I4temp and Oxygen (SpO2) 10,890 21 60

AW PatientId, Activity (steps), Time (Time, Circadian, Cosine), HR, and Sleep Stages 25,482 7 30

MESA PatientId, Activity (steps), Time (Time, Circadian, Cosine), HR, and Sleep Stages 942,012 7 15
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� Heart rate was also normalized by taking the absolute difference of consecutive heart
rate divided by the mean of the feature over a sleep period (Walch et al., 2019). This gives
the variation in heart rate.

� The clock C was modeled using the cosine wave that rises and falls overnight with
respect to time t as given by Eq. (1).

C ¼ cosðtÞ (1)

� Circadian drive refers to the biological clock that drives the need for sleep and
awakening. It is modelled using the circadian clock model given by the following Eqs. (2)
and (3) proposed in Forger, Jewett & Kronauer (1999) where B is the effect of light, sx is
the oscillator period, kB is used to adjust the direct effect of light, x is the initial
condition, and l ¼ 0:23 (best fit). This model captures the effect of light on the
generation of the circadian rhythm of the human body. Inherently, it uses the classic van
der Pol oscillator (model with cubic nonlinearity) with Process L and Jewwet and
Kronauer’s model of Aschoff’s rule. This model (Forger, Jewett & Kronauer, 1999) is
simpler than the rest (non-linearity with degree 7).

dx
dt

¼ p
12

ðxc þ BÞ (2)

dxc
dt

¼ p
12

l xc � 4x3c
3

� �
� x

24
0:99669sx

� �2

þ kB

" #
(3)

Wearable devices do not provide light information. Therefore, the activity data were
transformed into light information with the notion that activity is usually carried out
under light conditions, as suggested inWalch et al. (2019). It is important to note that light

Figure 2 Context preparation for time series data. Full-size DOI: 10.7717/peerj-cs.1988/fig-2
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information serves as the context for the activities being carried out. This context is
maintained in the self-collected dataset, while to have consistent data across the datasets,
this measure serves as empirical approximation to infer the light information from the
activities.

Sequence generation
After feature calculation, the sliding window method (SWM) was used to prepare the final
data. The sliding window technique is crucial for preparing time series data, ensuring
consistent input dimensions by enhancing the model’s ability to generalize from training
on overlapping data segments. This method is adaptable to different data intervals,
facilitates real-time learning, and optimizes the use of data, thereby markedly enhancing
the efficacy and precision of predictive models.

This additional step is required for memory-based models only for all database
instances. For context or history learning, we need to readjust the previous rows
(containing features at the time i) of the data to row0 which contains information of
previous n time instants, that is, if n ¼ 2 (two steps back), then all rows of the new dataset
will contain entries as given by the following sequence: rowi�2; rowi�1; rowi; class as shown
in Fig. 2. For memory-based models, each database instance was regenerated 1�40 times
(n) using SWM. Thus, depending on the value of n, that is, k ¼ instances � n, datasets were
created for experimentation purposes. The larger the n, the more complex the model
becomes and requires a tremendous amount of memory and time resources. The Results
section only illustrates the result of the best-fit n steps that achieved meticulous results. The
results for all other history steps and datasets are discussed in the Supplemental Material.

METHODOLOGY
The study was approved as referred to in letter No. ORIC/110-ASRB/1647 issued by the
Advanced Studies and Research Board, Office of Research, Innovation and
Commercialization, University of Engineering and Technology Lahore, Pakistan. The
dataset for this research activity was collected using the Fitbit Versa 3 wearable device in
two subjects (one male and one female) with their written informed consent. The problem
at hand is time-series data. As sleep progresses through the night, certain patterns repeat
themselves. Usually, each cycle is around 90 min long. This indicates that the data has
certain kind of information which is dependent on past events, i.e., if a subject at time t
with HR 68, and 0 muscle tone is in stage 2, then he may transition to another stage at time
t þ 1 with the same or different parameters. The idea is to capture this pattern that
remembers the history before the prediction.

For this particular study, we have used both machine learning (memory-less) and time-
series models to see the effect of history on sleep stage prediction and forecasting. This idea
was further extended to generate a sleep pattern and compared with the original sleep
pattern. Overall methodlogy is shown in Fig. 3.
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Machine learning (ML) models
For four sleep stages prediction, we have tested all DB instances as represented in Table 2
with logistic regression (LR), Random Forest (RF), k-nearest neighbors (kNN), support
vector machine (SVM, kernel ¼ rbf ) and multi-layer perceptron (MLP) and observed the
effect of each additional feature on the prediction performance. GridSearchCV was used to
test 10–1,000 models, and most optimal parameters were used to report the results. The
subject-independent stratified train and test sets were divided with 0.75 and 0.25 ratios,
respectively. The characteristics of each instance are illustrated in Table 2.

Results
Comparison of the proposed technique is along with results is shown in Table 3 while the
results of the models are shown in Tables 4 and 5 for four and six classes, respectively, and
are also presented in Fig. 4. It is important to note here that due to the imbalance of dataset
classes, the weighted evaluation metrics are used. As in a balanced dataset, each class

Figure 3 Overall methodology for sleep stage prediction.
Full-size DOI: 10.7717/peerj-cs.1988/fig-3
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contributes equally to the overall precision and recall. However, in an imbalanced dataset,
where some classes have more samples than others, using standard measures can give a
skewed view of the model’s performance.

Table 3 The comparison of the results with the previous work.

Reference Type Sensor Model Results (ACC) Dataset Comments

Cho et al. (2019) 2-stage Accelerometer
(accl)

CNN-LSTM 88.77 Self Tested accl for 2-classes only

Altini & Kinnunen
(2021)

2-stage PSG, accl, circadian Light gradient
boosting

96 Self Data validity

Gargees et al. (2019) 3-stage Hydraulic bed
sensor

CNN-LSTM Avg. = 90 Self –

Reimer et al. (2018) 3-stage Accl RF 86–90 Self N1 confused

Reimer et al. (2017) 3-stage Accl RF 90–91 (Multi-class) Self N1 and N2 confused

Zhai et al. (2020) 3-stage HR/HRV CNN-LSTM 78.3, F1 = 69.8 MESA The dataset used is collected
in lab settings

Yoon et al. (2020) 4-stage Microwave sensor,
infrared sensor

kNN 98.65 Self No data available. Difficult to
reproduce the results

Reimer et al. (2018) 4-stage Two accl(s) RF 86–90 (Multi-class) Self Too many features

Hsieh et al. (2021) 4-stage EEG and EOG DL 86.72 Self Less number of adults in the
acquired dataset.

Zhang & Guan
(2017)

4-stage EEG DL 85.5 Self Classes confused.

Zhai et al. (2020) 4-stage ECG, HR, accl LSTM 80.75 – Poor accuracy in deep stages

Yildirim, Baloglu &
Acharya (2019)

4 stage PSG/EEG CNN Max (EDF) 92.6, EDFx:
92.33

SleepEDF and
SleepEDFx

N1 was misclassified

Moser et al. (2009) 4-stage Accl, ECG/EKG,
SkinTemp

Bagging with
DT

0.71 Self –

Altini & Kinnunen
(2021)

4-stage PSG, accl, circadian Light gradient
boosting

79 Self Variations in data collection

Ours 4-stage Act, hr,.., circadian ML and LSTM Max. = 93, F1 = 93 Self, AW, and
MESA

Better F1-score

Zhang & Wu (2018) 5-stage PSG/EEG CNN 87 UCD and
MIT-BIH

N1-confused

Nakamura et al.
(2020)

5-stage EEG – 74.1 Self N1-confused

Koushik, Amores &
Maes (2019)

5-stage EEG CNN ACC = − – –

Zhu, Luo & Yu
(2020)

5-stage PSG/EEG CNN EDF overall ACC = 93.7,
EDFx ACC = 82.8

SleepEDF and
SleepEDFx

N1 was misclassified

Jadhav et al. (2020) 5-stage EEG Transfer
learning with
CNN

Max ACC = 83.34 SleepEDFx –

Yildirim, Baloglu &
Acharya (2019)

6 stage PSG/EEG CNN Max EDF ACC = 91,
EDFx: ACC = 89.54

SleepEDF and
SleepEDFx

N1 was misclassified

Ours 6-stage Act, hr,.., circadian ML and LSTM Max. ACC = 88, F1 = 88 Self, AW, and
MESA

Better F1-score

Waqar and Ghani Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1988 13/27

http://dx.doi.org/10.7717/peerj-cs.1988
https://peerj.com/computer-science/


It is evident that RF and kNN at k ¼ 3 performed more adequately than all other
classifiers. RF performed best in I1act and better in I3hrv; I4temp; I5spo2; and AW while kNN
performed best in I1act and adequate in I3hrv; I4temp; and AW. This gives rise to the notion
that activity or muscle movement plays a vital role in the classification of sleep stages. HR
alone does not help in this process because all stages contain approximately all possible HR

Table 4 Results for machine learning models on database instances with the four classes.

Model Instance ACC PRC Recall Kappa F-score MC

LR I1act 50.3 100 50.3 0.0 67 0.0

I2hr 51 98 51 0.0 67 0.1

I3hrv 53 80 53 14 62 18

I4temp 53 79 53 15 61 19

I5spo2 57 76 57 25 63 29

AW 57 86 57 12 67 16

MESA 52 80 53 24 61 28

MLP I1act 50 25 50 0.0 34 0.0

I2hr 54 78 54 18 61 22

I3hrv 62 70 62 40 64 39

I4temp 63 70 63 40 65 41

I5spo2 66 72 66 44 67 45

AW 69 74 69 44 70 45

MESA 54 79 54 28 63 31

kNN I1act 88 89 88 81 88 81

I2hr 61 62 61 41 62 41

I3hrv 78 79 78 67 78 67

I4temp 81 82 81 71 81 71

I5spo2 69 69 69 52 69 52

AW 87 87 87 79 87 79

MESA 73 73 73 62 73 63

SVM I1act 52 92 53 1.0 66 2.0

I2hr 53 89 54 12 65 19

I3hrv 62 76 61 34 65 38

I4temp 63 75 63 37 66 40

I5spo2 67 73 67 45 68 47

AW 66 75 66 38 69 40

MESA – – – – – –

RF I1act 96 96 96 100 96 94

I2hr 73 74 73 58 73 58

I3hrv 88 88 88 82 88 82

I4temp 88 88 88 81 88 82

I5spo2 89 89 89 84 89 84

AW 93 93 93 88 93 88

MESA 75 78 75 64 76 64
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values in a particular normal range of a subject. However, HRV served as a better feature to
measure the transition of the sleep stage, as evidenced by an increase in the accuracy in
I3hrv from I2hr and a decrease from I1act to I2hr for both RF and kNN. This can also be
validated from AW and MESA instances.

Comparison with existing studies
Comparing the study with existing work is not straightforward since there is no agreement
on how to report the results (Djanian, Bruun & Nielsen, 2022).

� Several studies have used accuracy as an evaluation measure. However, with inherent
uneven data and multivariate multiclass prediction problems, the accuracy (ACC) does

Table 5 Results for the ML models on DB instances with six classes.

Model Instance ACC PRC Recall Kappa F-Score MC

LR AW 51 78 51 14 60 17

MESA 52 80 53 24 61 28

MLP AW 65 68 65 47 66 47

MESA 54 79 54 28 63 31

kNN AW 83 83 83 74 83 74

MESA 73 73 73 62 73 63

SVM AW 63 71 62 40 65 41

MESA – – – – – –

RF AW 88 89 88 82 88 82

MESA 75 78 75 64 76 64

Figure 4 Results of machine learning based models with the four classes.
Full-size DOI: 10.7717/peerj-cs.1988/fig-4
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not serve as a good measure. Mostly F1 score, Cohen Kappa, sensitivity, precision, and
confusion matrix have been used.

� Another challenge is the variation in the selection of the training and testing process of
the studies. Some of the existing studies are using K-fold cross validation, while others
are using leave one out cross validation (LOOCV) (Djanian, Bruun & Nielsen, 2022).
Some of the studies test their methodologies on different datasets.

� Additionally, some have worked on two-stage, some three-stage, and four-stage while
others have on five-stage sleep classification problem.

� There also exists a variation in sensing techniques, i.e., EEG, ECG, PPG, PSG, etc.

� There also exists variation in sensing devices for the same sensing type, i.e., PPG from
Fitbit device, PPG from Apple Watch, etc.

� There exists a variation of the validation dataset. Some have used their own datasets that
are not public while others have used PSG datasets that are not validated (Djanian,
Bruun & Nielsen, 2022).

With the facts listed above, we have tried our best to compare the F1 scores or Cohen
Kappa for four and six-class sleep stage studies. Table 6 compares the results with the
proposed solution.

In the original work (Walch et al., 2019), the best accuracy achieved with the prediction
of three sleep stages, namely wake, REM, and NREM, is 0.69 with LR, 0.721 with kNN,
0.686 with RF, and 0.723 with Neural Net as shown in Table 6. Similarly, they validated
with MESA and the best-attained accuracy was 0.686 for three class problems. The results
achieved in this study were for four and six class problems and better than in the original
work. The comparison is shown in Table 6.

Memory efficient models
The human brain remembers the context and weighs the importance of certain events and
ignores irrelevant information accordingly. It is established that sleep usually behaves
systematically, is episodic, and is carried out in cycles. Therefore, before making any
prediction, it is important to consider the information in the previous time instants i.e., in
which stage the subject was present earlier, what was his activity level, or what was the level
of the heart activity, etc. For this reason, we considered neural networks with a memory
like LSTM that have more memory than recurrent neural networks (RNNs). The RNN
saves information about the previous state only, while LSTM can remember beyond the
recent state. It is also interesting to note the effect of how far to look in the past (steps)

Table 6 The comparison of the results with the original work for the Apple Watch dataset.

Reference LR kNN RF Neural Net LSTM Train-AW-Test-MESA

Three class (Walch et al., 2019) 0.699 0.721 0.686 0.723 – 0.686

Four class proposed 0.57 0.87 0.93 0.69 0.918 0.741

Six class proposed 0.51 0.83 0.88 0.65 0.842 0.617
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before making a decision. With extensive experiments on all possible database instances,
we observed that for a certain k, results are more optimal than the other, i.e.,
…; k� 2; k� 1; kþ 1; kþ 2; . . ..

Long short term memory (LSTM)
LSTM has an input gate (i) and an internal cell state (c), output gate (o), input modulation
gate (g), and forget gate (f ). Input and output gates take care of the incoming and outgoing
while the modulation gate contributes to fineness, and forget gate discards the irrelevant
information. Wq and Uq in Eqs. (4)–(7) represents weights of the inputs and recurrent
connections, respectively, subscript q the gates, rg the sigmoid activation function, rh the
hyperbolic tangent function, and b represents the bias.

An internal state can be calculated by the summation of the Hadamard product of the
input and modulation gate and the Hadamard product of the previous internal cell state
and the forget gate, as shown in the Eq. (8). The current hidden state is (ht) is calculated by
the Hadamard product of the output and ct as shown in Eq. (9). Similarly, using
Eqs. (4)–(7) we can calculate the value of the forget state, input, output, and internal cell
state at the time t.

ft ¼ rgðWf xt þ Uf ht�1 þ bf Þ (4)

it ¼ rgðWixt þ Uiht�1 þ biÞ (5)

ot ¼ rgðWoxt þ Uoht�1 þ boÞ (6)

�ct ¼ rgðWcxt þ Ucht�1 þ bcÞ (7)

ct ¼ i� g þ f � ct�1 (8)

ht ¼ ot � rhðctÞ (9)

Finally, if �yt is the predicted output at time t and yt is the actual output then the error
function for the LSTM is given by the Eq. (10).

Et ¼ �ytlogð�ytÞ (10)

Considering the importance of the forget gate, we experimented with a certain range of
memory steps ns, starting from 1 to 39 and epochs ¼ 50 with sequential LSTM with dense
layer, Adam algorithm, and tanh operation. All features were converted to float, min-max
scaled, or normalized, where required. Negative values were converted to positive scales
using the Eq. (11) where y is a column vector. Rows for null cell values were removed. The
resultant set was inputted to LSTM. The final architecture used to predict the next sleep
stage is shown in Fig. 5.

y ¼ log2ðy þ 1�minðyÞÞ: (11)

LSTM was further tested on multiple variants of the database instances. AW and MESA
were tested with four (AW4 and MESA4), and six (AW6 and MESA6) classes, training on
AW and testing with MEFA (TAW4TMESA4;TAW6TMESA6), AW and MESA
(Activity þ Circadian) without heart rate (AW4Act, AW6Act,MESA4Act, andMESA6Act,
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and TAW4ActTMESAAct), etc. The results for six classes were omitted to limit the scope of
the document.

Results
The number ns indicates how far to look back in history and extract a pattern. Instances
from I1act to I5spo2 were collected in minute intervals, while AW and MESA were collected
in 30 and 15 s, respectively. An interesting fact was noted that all instances had their first
maximum optimal results below ns ¼ 15spo2, as shown in Fig. 6 for Fitbit databases and the
validation databases (AW and MESA).

This gives rise to a hypothesis that the next sleep stage can be predicted based on the
information of the prior few minutes of activity.

We evaluated all instances using root mean square error (RMSE), Accuracy (ACC),
Precision (PRE), Recall (REC), F1 score (F1), Cohen Kappa (CK) and Matthew’s constant
(MC). The top three results for both the Fitbit and the validation databases are shown in
Figs. 7 and 8. It is evident from Fig. 8 that the AppleWatch dataset (AW4) with four classes
(wake, light, deep, and REM) had a maximum score for all evaluation parameters, that is,
ACC ¼ 0:918 and Cohen ¼ 0:867, etc. The training and test loss of this dataset is shown in
Fig. 9. This dataset contained information related to circadian rhythm, HRV, and activity.
The second best scorer is again AW4 but without HRV, that is, ACC ¼ 0:902 and

Figure 5 Sleep stage prediction using LSTM. Full-size DOI: 10.7717/peerj-cs.1988/fig-5
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Cohen ¼ 0:83, etc. The results of both of these instances are comparable and defend the
results obtained from the ML algorithms, i.e., activity alone contributes to the prediction of
sleep stages and activity with HRV serves as a better measure in sleep stage classification. It
is also interesting to note that the same LSTM model was trained on AW and tested on
MESA and the results obtained (ACC ¼ 0:783, Cohen ¼ 0:668) were better than the
original study used to create this dataset (Walch et al., 2019).

Visualization: LSTM predicts the complete sequence s as given by:

s ¼ circadian; cosine; steps; hr; time; stage½ �:

To visually understand the sequence prediction of the proposed LSTM model, we used
the Apple Watch’s (AW4) testing dataset and used a sleep sequence s to predict the sleep

Figure 7 Results for the fitbit instances using the LSTM model.
Full-size DOI: 10.7717/peerj-cs.1988/fig-7

Figure 6 The boxplot of first three best results (ACC) attained among memory steps 1 to 39 for (A) Fitbit instances and (B) validation
instances. Full-size DOI: 10.7717/peerj-cs.1988/fig-6
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pattern. Figure 10 shows the actual circadian rhythm, HR, step, sleep pattern, and the
predicted sleep pattern. It can be observed that the proposed model is quite successful in
predicting the sleep pattern of the original subject which is comparable with the actual
predicted sleep pattern (also validated by the results presented in Fig. 8).

DISCUSSION
Memory Models: The validation datasets AW4 and MESA4 both attained their first two
maximumACC at ns ¼ 1 or 2 and ns ¼ 10 or 11. The best results were obtained for ns ¼ 8
for AW4Act (without HR), for ns ¼ 7 for I2hr , I5spo2, AW6Act, and MESA6Act and the
second best results forMESA4Act at ns ¼ 7 while TAW4TMEFA4 showed the best results
at steps ¼ 13. The results indicate that there may be some relation between the history
units and the prediction or forecast. However, more research is required to verify this. The

Figure 9 The training and test RMSE loss for the Apple Watch dataset (AW4).
Full-size DOI: 10.7717/peerj-cs.1988/fig-9

Figure 8 The results for the validation instances using the LSTM model.
Full-size DOI: 10.7717/peerj-cs.1988/fig-8
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Fitbit, MESA, and AW datasets are collected with different physical and environmental
conditions. Therefore, there is the possibility that the deviation and variance in time units
could be the result of this difference. It was also noted that after adding HRV and HR
feature to I1act (¼ I3hrv) only (ns ¼ 1) was enough to achieve the first maximum accuracy
(the same as AW4 and MESA4Act). It was also interesting to note that I1act had a 60 s
interval and the highest accuracy was achieved at ns ¼ 15, for AW at ns ¼ 8, andMESA at
ns ¼ 1 (seven unit difference each).

Machine learning models: We used weighted evaluation measures for our multiclass
problem. Consequently, it can be observed in certain rows of the results that PRE is much
larger than ACC. The reason is that if the algorithm successfully classifies Class 1, and Class
2 but fails to predict Class 3, and Class 4, then ACC of the model will be lower, but
weighted precision will still be high. However, its macro precision will be less. We have
used weighted scores for the evaluation measures.

We have ranked the models according to CK and MC. Algorithms with better CK and
MC performed well in predicting all classes. RF outclassed all other algorithms in all
instances. SVM did not work for the MESA instance, as the dataset was too large and had
multiple classes. We experimented with different kernels, standardization, and
normalization techniques, and C scores. However, results could not be generated.

Figure 10 The comparison of the actual and the predicted sleep pattern for the Apple Watch dataset
(AW4). Full-size DOI: 10.7717/peerj-cs.1988/fig-10
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CONCLUSION
In conclusion, this study has made significant strides in leveraging wearable technology for
the analysis and prediction of sleep stages and patterns. By employing both memoryless
and memory-based models, the research offers insightful findings into the effectiveness of
various computational approaches in sleep study.

The Random Forest classifier, representing the memoryless models, emerged as notably
proficient, achieving an impressive accuracy (ACC) of 0.96 and a Cohen Kappa score of
0.96. This highlights its superior ability to handle the multifaceted nature of sleep data,
outshining other models such as logistic regression, multi-layer perceptron, k-nearest
neighbors, and support vector machine. The long short-term memory (LSTM) model, a
memory-based model, also demonstrated robust performance, attaining a maximum
accuracy of 0.88 and a Kappa score of 0.82 across different datasets. This underscores the
significance of incorporating memory elements in models to accurately capture the
complexities of sleep patterns. The methodology’s efficacy was further validated on diverse
datasets, including the Multi-Ethnic Study of Atherosclerosis (MESA) and an Apple
Watch dataset from Physio-Net. In the MESA dataset, memoryless models achieved an
ACC of 0.75 and Kappa of 0.64, while memory-based models scored 0.86 and 0.78,
respectively. For the Apple Watch dataset, the memoryless models recorded an ACC of
0.93 and Kappa of 0.93, compared to 0.92 (ACC) and 0.87 (Kappa) for memory-based
models.

These results not only confirm the potential applicability of the proposed models in
different sleep data scenarios but also suggest their usefulness in clinical settings for sleep
monitoring and analysis. The high accuracy and reliability of these models could assist in
the diagnosis and treatment of sleep disorders. Additionally, the study’s methodology
surpassed existing methods in sleep stage prediction, indicating a significant advancement
in the field. This opens new possibilities for the development of sophisticated tools for
sleep analysis.

In summary, the integration of advanced computational models with wearable
technology is a promising development for understanding sleep and its health
implications. Future research should focus on refining these models and exploring their
practical applications, ultimately contributing to the field of sleep medicine and
enhancing overall health and well-being. The results indicate that a pattern exists within
classes as evident from the best models, i.e., RF and kNN where the former works with
rule-based classifiers and the latter labels the class with respect to closeness. Similarly,
memory-based models indicated the presence of a possible pattern within the transition of
sleep stages. This study could be further extended in the classification of abnormal sleep
patterns.
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