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ABSTRACT
The execution of delay-aware applications can be effectively handled by various
computing paradigms, including the fog computing, edge computing, and cloudlets.
Cloud computing offers services in a centralized way through a cloud server. On the
contrary, the fog computing paradigm offers services in a dispersed manner providing
services and computational facilities near the end devices. Due to the distributed
provision of resources by the fog paradigm, this architecture is suitable for large-
scale implementation of applications. Furthermore, fog computing offers a reduction
in delay and network load as compared to cloud architecture. Resource distribution
and load balancing are always important tasks in deploying efficient systems. In this
research, we have proposed heuristic-based approach that achieves a reduction in
network consumption and delays by efficiently utilizing fog resources according to
the load generated by the clusters of edge nodes. The proposed algorithm considers
the magnitude of data produced at the edge clusters while allocating the fog resources.
The results of the evaluations performed on different scales confirm the efficacy of the
proposed approach in achieving optimal performance.

Subjects Algorithms and Analysis of Algorithms, Emerging Technologies, Internet of Things
Keywords Cloud computing, Fog computing, Load aware, Resource allocation

INTRODUCTION
The adaptation of Internet of Things (IoT) technology provides seamless connectivity
of devices under everyday use to the Internet. The IoT devices can sense and
transmit information over the Internet and are expected to reach one trillion by
2025 (Liang, Xing & Hu, 2023), creating a financial impact of 11% of the world’s economy

How to cite this article Hassan SR, Rehman AU, Alsharabi N, Arain S, Quddus A, Hamam H. 2024. Design of load-aware resource allo-
cation for heterogeneous fog computing systems. PeerJ Comput. Sci. 10:e1986 http://doi.org/10.7717/peerj-cs.1986

https://peerj.com/computer-science
mailto:202411144@gachon.ac.kr
mailto:202411144@gachon.ac.kr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1986
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1986


(Jarašūniene, Čižiūniene & Čereška, 2023). For the processing of the massive information
produced by these devices, high computational and storage resources are required.

The cloud-centric paradigm consumes resources available in a centralized way to
execute the processing tasks related to information detected by the IoT devices. The cloud
architecture provides resources for the execution of tasks through cloud servers. The
general cloud computing architecture employed for the implementation of applications
consists of sensor nodes and cloud servers. The sensor nodes residing at the border of
the network consist of sensors for the detection of the environment. The results achieved
after the processing of the detected information depend on the sensing frequency and
excellence of the information detected by the sensors. In a centralized arrangement, the
sensed information is transmitted to the cloud server for further processing. Due to the
presence of abundant resources at cloud servers, cloud computing architecture is the most
commonly employed architecture for the deployment of applications. The cloud paradigm
offers high latency due to its centralized provision of services which restricts the large-scale
arrangement of delay-aware applications on such a paradigm.

Fog computing architecture emerges as a paradigm shift that delivers resources in a
decentralized manner near the network edge. This provision of resources close to the
end devices provides several advantages over centralized provision. The fog computing
architecture comprises of multiple layers as depicted in Fig. 1. The sensor layer contains
devices that are used for the detection and transmission of information to the fog devices.
The resource constraint fog devices residing in the fog layer of the architecture provide
rapid execution of information processing tasks by providing services near the end nodes.
This provision of computational facilities close to the end devices reduces the latency and
network consumption. Moreover, such distributed provision of resources permits the
execution of delay-aware applications on a large scale (Mustafa et al., 2022). The cloud
layer contains the resourceful cloud server to which the information processed at the fog
layer is transmitted for further processing. Several applications are implemented using fog
computing architecture.

In Hassan et al. (2020), authors have engaged fog computing architecture for the
implementation of an e-healthcare system. The authors also evaluated their fog-based
proposed approach with the cloud-based employment. For providing smart services to the
end-users, the researchers in Ammad et al. (2020) presented a multi-tier fog computing
approach. The information detected by the edge nodes is processed by the fog nodes by
using limited available resources. The size of data produced by an edge node depends on
the sensing frequency of the sensor placed on that edge node. For efficient implementation
of applications on the fog architecture, fog nodes need to have sufficient computational
resources available for processing the information generated by the connected edge
nodes. Therefore, resource allocation strategy plays an important part in the efficient
implementation of applications on the fog architecture. In this article, we have presented
a load-aware resource allocation strategy. The proposed strategy assigns resources to fog
nodes according to the load generated by the edge devices connected to them.

The load-aware resource allocation algorithm presented in this research confirms the
effective utilization of the available fog resources. Furthermore, the proposed algorithm
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Figure 1 Fog architecture.
Full-size DOI: 10.7717/peerjcs.1986/fig-1
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estimates the processing load per fog device and assigns computational resources to the fog
nodes accordingly. Several simulations have been executed onmultiple scales to validate the
effectiveness of the proposed approach as compared to the cloud-based implementation.
The network utilization and delay are the parameters observed during all the simulations.

This article is ordered as follows: the subsequent segment delivers a detailed review of
literature related to resource and load allocation policies. ‘Proposed paradigm and problem
formulation’ defines the organization of the scenario deployed and the problem statement.
‘Proposed Solution’ explains the proposed solution for the defined problem. ‘Results and
Discussion’ presents the outcomes of the simulations performed in this investigation and
the last segment concludes the research and describes future study directions.

RELATED WORK
This section reviews the work related to the design policies for efficient implementation of
applications on cloud and fog computing paradigms.

The fog paradigm offers services near the edge of the network thus providing a reduction
in latency. This delivery of services close to the network edge enhances the end-user
experience. However, still, the most important factor in the efficient deployment of
applications is the selection of a platform for service deployment. In Taneja & Davy (2016),
a resource-aware data analytics platform deployment approach for fog computing networks
is presented. The reduction in network cost is achieved by this approach by adaptively
deploying the analytics platform. Diverse applications are deployed using a fog computing
paradigm that involves heterogeneous devices demanding different amounts of resources
to maintain Quality of Service (QoS). A review of different techniques proposed in the
literature regarding the maintenance of QoS is presented in Haghi Kashani, Rahmani &
Jafari Navimipour (2020). The authors also presented the challenges related to the design
and implementation of QoS-aware policies for fog computing environments.

For the implementation of applications in cloud or fog computing environments, several
interdependent applicationmodules are executed on different nodes in a network. InTaneja
& Davy (2017), the authors presented a module assignment strategy for the Cloud-Fog
computing paradigm. This strategy assignsmodules to the suitable nodes by keeping in view
the resource availability at the node. This is a generic approach and is equally beneficial to
be adopted for the diverse applications. Fog devices are distributed throughout the network
to provide services on a large scale. Application modules are placed on multiple fog devices
to ensure the efficient implementation of applications. A delay-aware module assignment
strategy for fog computing networks is presented in Mahmud, Ramamohanarao & Buyya
(2018). To meet the rigorous delay necessities of applications, this algorithm assigns the
application modules to appropriate fog nodes that guarantee to meet the required service
delivery time. The outcomes of the evaluations performed between the proposed and
alternate algorithms confirm the effectiveness of the approach.

Fog devices existing in heterogeneous fog computing networks consist of different
processing capabilities and have to process diverse kinds of information collected by edge
devices. To efficiently execute the application using the fog paradigm, the authors inHassan
et al. (2022b) proposed an algorithm that dynamically assigns modules to suitable network
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nodes. Moreover, the algorithm takes into account the connection latencies between
the edge and fog nodes while assigning the modules. The presented policy is compared
with the cloud-based deployment on multiple scales using the iFogSim simulator. The
outcomes of the simulations confirm that the proposed algorithm is effective in achieving
reduced latency and reduced network utilization. Application placement tasks become a
complex managerial problem when dealing with heterogeneous fog environments. The
authors in Al-Tarawneh (2022) proposed a bi-objective module assignment strategy for
heterogeneous fog networks. The algorithm optimally places modules while considering
security requirements and criticality levels of application. The non-dominated sorting
genetic algorithm II (NSGA-II) is used by the algorithm to solve the formulated bi-objective
knapsack problem.

In large-scale networks, the transmission and processing of the massive amount of
sensed information generated by the sensor nodes produce high latency and network
congestion. Fog architecture is a solution to provide resources in a distributed manner
near the sensor nodes. A data duplication placement policy based on the greedy algorithm
named MultiCopyStorage is presented in Huang et al. (2019), which provides a reduction
in latency. Several simulations are performed using the iFogSim simulator to evaluate the
proposed strategy with the CloudStorage strategy, Closest Node strategy, iFogStor strategy,
iFogStorZ strategy and iFogStorG strategy. The results of the simulations performed
confirm the efficacy of the designed strategy in attaining low latency as compared to the
other strategies.

A continuous pain monitoring application based on the cloud computing paradigm
is presented in GJ (2018) that provides constant supervision of patients in a persistent
vegetative state. The proposed application uses the mobile platform for the provision of
remote access to information related to patients. A fog computing based remote pain
monitoring application is presented in Shukla et al. (2019) that senses and processes the
pain-related indicators of patients in hospitals. The proposed approach utilizes the available
fog resources for the processing of the sensed information. For the provision of remote
access to patient information, a web platform is used. The proposed paradigm is compared
with the cloud-based implementation and authors performed several evaluations using
iFogSim simulator to confirm the effectiveness of the proposed approach. A fog computing
based efficient car parking system is presented inAwaisi et al. (2019) that provides less delay
and network utilization as compared to cloud-based design. An algorithm for the efficient
allocation of modules in fog environments containing heterogeneous devices is presented
in Hassan et al. (2022b). An algorithm presented in Taneja & Davy (2017) presents a job
assignment strategy that divides up the modules based on the processing power offered by
the system’s network devices. The proposed approach efficiently distributes the modules
across the fog devices while taking delay, processing capacity, and data size into account.
The authors also provide a comparison of the suggestedmethod with conventional systems.
Nandyala & Kim (2016) present a cloud-based methodology for the delivery of on-demand
health facilities. The cloud server acts as a backbone in the proposed design for resource
provision and delivery of facilities close to the edge utilizing resources of fog devices.
Table 1, compares the proposed strategy to the existing plans on a qualitative level.
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Table 1 Comparison of the proposed approach with existing strategies.

Reference Architecture Execution cost Network utilization Latency

Taneja & Davy (2016) Fog-Cloud Medium Medium Medium
Hassan et al. (2022b) Fog-Cloud Low Low Medium
GJ (2018) Cloud High High High
Shukla et al. (2019) Fog-Cloud Low Low Medium
Awaisi et al. (2019) Fog-Cloud Low Low Medium
Nandyala & Kim (2016) Fog-Cloud Medium Low High
Proposed Fog-Cloud Low Low Minimum

Integrating wireless power transfer (WPT) intomobile edge computing (MEC) enhances
its potential. Meeting the rising demand for intelligent computation offloading in dynamic
environments, we focus on real-time, optimal decisions for local or remote computation in
wireless fading channels. The authors inMustafa et al. (2023) proposed a binary offloading
decision system in a wireless-powered MEC, that utilizes a reinforcement learning-based
framework (RLIO) to achieve optimal performance. RLIO boasts an average execution
cost below 0.4 ms per channel, enabling real-time and optimal offloading in dynamic,
large-scale networks.

In Atiq et al. (2023), the authors introduced Reliable Resource Allocation and
Management (R2AM), a fog computing-based framework for efficient resource allocation
in IoT transportation, achieving a 10.3% latency reduction and a 21.85% decrease in
energy consumption compared to existing strategies. In Nadeem et al. (2023), the authors
presented a cloud setting, employing dynamic resource provisioning. Zaman et al. (2023)
introduced theDeadline-awareHeuristic Algorithm (DHA) for task offloading, considering
latency and computing capacity. The DHA significantly reduces total latency (12.67 ms)
and offloading failure probability (0.095), outperforming state-of-the-art techniques (19
ms and 0.38 probability).

In large-scale computing systems (LSCSs), the NP-hard problem of load balancing is
addressed with the MinMin heuristic. However, MinMin can result in resource imbalance,
especially for tasks with lower computational requirements. Zaman et al. (2019) proposed
a task scheduling heuristic extended high to low load (ExH2LL), a dynamic task scheduling
heuristic that outperforms existing algorithms in terms of makespan and resource
utilization.

PROPOSED PARADIGM AND PROBLEM FORMULATION
The fog-cloud computing paradigm offers the benefits of both centralized and distributed
computing to the end-users. This paradigm includes a cloud server for the provision
of high computational services in a centralized manner and also for distributing the
resources near the sensor nodes through fog devices. The fog nodes provide on-demand
computational services near the source nodes by using their limited resources (Fereira et
al., 2023). The fog-cloud computing architecture also provides abundant computational
resources through cloud servers for the execution of complex computational tasks. The fog
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layer forwards the tasks demanding additional resources to the cloud layer, where these
are completed. For the implementation of latency-sensitive applications, this architecture
proved to be a better option (Songhorabadi et al., 2023) that provides mobility, reduced
network utilization and low delay for executing the applications.

Figure 1 presents a three-layer architecture of the fog computing architecture offering
distributed resources through fog devices near the edge devices. The cloud server is a
resourceful entity existing in the cloud layer of the architecture providing resources
for the execution of tasks forwarded by the fog nodes (Lin et al., 2024). The fog layer
contains fog devices and is responsible for providing a limited number of resources
for the execution of the tasks. The sensor layer consists of devices capable of detecting
and transmission of sensed information over the Internet. Each device in the system is
accountable for the implementation of some application modules (Hassan et al., 2020).
Different amounts of resources are available at fog devices existing in heterogeneous fog
computing environments (Sharifi, Hessabi & Rasaii, 2022). These fog nodes provide a
reduction in latency by processing information near the sensor nodes. Fog nodes also
reduce the processing load on the cloud server by providing preliminary processing using
their limited resources.

The heterogeneous nodes present in the network are comprised of dissimilar processing
capabilities. The random access memory (RAM) and central processing unit (CPU) are the
parameters defining the processing capability of a fog node. The processing capability of
the ith fog node (fi) is defined as:

Pc(fi)=<CPUi,RAMi > . (1)

There are total M fog devices present in the architecture and fog layer processing
capability is the totality of separate capabilities of all the fog devices present in the layer
and expressed as:

N =
M∑
i=1

Pc
{
fi
}
. (2)

The end devices residing at the edge of the network transmit the sensed information to
the parent fog devices. The fog devices process the received information using their limited
resources and transmit useful information to the end-users. The tasks demanding more
resources than those available at the fog nodes are transmitted to the cloud server by the
fog nodes for execution. The IoT devices are available at the user end for the detection and
transmission of sensed information. Different types of sensors are connected to these edge
devices. The information collected and transmitted by these end devices depends upon
the type of sensor. The size of data detected by an end device depends on the frequency of
the sensor involved. Different types and sizes of data are generated by the edge nodes in
heterogeneous fog networks.

In general fog-cloud computing networks, a group of edge devices connected to a fog
device is termed as a cluster of edge nodes. The set Ci denotes the cluster of edge devices
connected to fi. The total number of edge devices present in the system is defined by a set K
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(K = I1,I2,I3 ...Ik). Different types of edge devices with dissimilar sensing rates are present
in a cluster. The sensing frequency of the ith end node Ii is represented as Ri. The size of
information detected by an edge node depends on the frequency of the sensor devoted to
that edge device. The volume of information generated by the ith edge device Ii is denoted
by S(Ii) and is proportional to the sensing rate (Ri) of the sensor attached to the edge
device. The edge devices with different types and volumes of sensed information are part
of a cluster attached to a fog node. So, the volume of information generated by a cluster is
the sum of the individual sensed volume generated by each edge device present in a cluster
which can be calculated by:

L(Ci)=
∑
∀Ii∈Ci

S(Ii). (3)

The resources available at a fog node are used to process the information received
from the attached cluster of sensor nodes. Fog nodes are resource-constrained devices so
the tasks demanding additional resources are shifted to the resourceful cloud server for
execution. So, to efficiently deploy applications on the fog computing paradigm, resource
distribution according to the information to be processed is very important. The optimal
assignment of the clusters of edge nodes to suitable fog nodes plays an important part in
the optimum utilization of the fog resources.

In the conventional placement of applications on the fog architecture, the size of
information sensed by the edge clusters is not considered during the allocation of fog
resources which results in high utilization of resources and produces additional delay. In
such circumstances, the computational load received by the fog nodes from edge devices
is irrespective of the resources available at the fog nodes. When a fog node is linked with a
cluster of edge devices producing a high amount of data, the resource constraint fog node
transfers most of the tasks to the cloud server for execution. This concurrent connection
to the cloud server introduces an additional delay in the execution of tasks. Moreover, this
oblivious distribution of fog resources produces high network consumption. For efficient
deployment of latency-sensitive applications on the fog-cloud computing paradigm, we
have proposed a resource-aware task assignment algorithm. The proposed algorithm offers
optimum resource utilization and reduces latency by connecting appropriate fog devices
to edge clusters.

For evaluating the proposed strategy, the simulations are performed using the iFogSim
toolkit. The distributed camera-based application for surveillance using (Awaisi et al.,
2021) is redefined and executed on multiple scales in this research to evaluate the proposed
strategy. The Distributed Data Flow model (DDF) is used in this study for a better
understanding of the distributed computing components (Fang et al., 2021).

The directed acyclic graph (DAG) of the deployed application is shown in Fig. 2. The
vertices in this model represent the application modules and data flow between modules
is represented by the edges. The inclusion of a DAG is vital for orchestrating the complex
interplay of tasks within the system. This DAG captures the order in which the tasks like
image processing and motion detection, should occur, ensuring a logical sequence. For
instance, it helps distribute tasks efficiently across devices by considering their specific
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Figure 2 Directed acyclic graph of the deployed application.
Full-size DOI: 10.7717/peerjcs.1986/fig-2

capabilities, and optimizing the use of computational resources in a fog computing
environment. The DAG facilitates dynamic task allocation, particularly important in
surveillance scenarios where workloads can vary. In essence, the DAG is a crucial tool
for designing an effective, scalable, and adaptable distributed surveillance system in the
simulated iFogSim environment, optimizing task execution and resource management.

The DAG of the application contains several modules, namely Motion Detector, Object
Detector, Object Tracker, PTZ Control and User Interface. Cameras are attached to the
Motion Detection module to record video feeds for object motion detection. The Motion
Detection module sends this information to the Object Detector module when motion is
detected. The Object Detector module then locates the item and calculates its coordinates.
In order to effectively track the identified item, the Object Tracker module computes
the PTZ configurations for the camera using the data collected by the Object Detector
module. After receiving the PTZ configuration, the PTZ Control module adjusts the
cameras appropriately. Lastly, the User Interface module delivers filtered video streams
gathered from the Object Detector module to the user’s device for improved viewing of
the monitored item.

The basic unit of communication between the modules is termed as tuple. The tuple
is of different lengths encapsulating the data to be processed and information regarding
resources required for such processing. The circles of different colors are used in the DAG
model for describing the mapping of tuples. For example, the type of tuple M_V_S is
released by the Motion Detector module on the reception of a tuple of type R_V_S.

Table 2 below explains the symbols and formulas used in equations and algorithms,
making it easier for readers.
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PROPOSED SOLUTION
In this research, we have proposed a load-aware resource assignment model that efficiently
accomplishes the links between the edge node clusters and the fog nodes. The proposed
strategy calculates the size of sensed data by the edge clusters. Subsequently, the approach
assigns appropriate fog resources to the clusters by assigning suitable fog nodes having
sufficient resources to process the cluster-generated information. The size of data to be
processed generated by the clusters is calculated by accumulating the size of information
produced by individual edge nodes contained within the cluster. The proposed algorithm
is given below.

Algorithm 1 Algorithm: Load-aware resource assignment algorithm for fog-cloud
paradigm
Input: Fog devices fi ∈ Layer2, Clusters of edge devices Ci ∈ Layer 3
Output: Allocation of suitable edge devices to fog nodes
1: AC←{};
2: UC←{C1,C2,C3 ...CN };

3: CS←{};
4: for each Ci ∈UC do
5: for each fi do
6: if (Pc(fi)≥ L(Ci))
7: Assign Cito fi;
8: Pc(fi)= Pc(fi)−L(Ci);
9: AC←Ci;

10: end
11: end for
12: end for
13: for each Ci ∈UC do
14: if (Ci /∈AC)
15: CS←{Ci};

16: AC←Ci;

17: end
18: end for

RESULTS AND DISCUSSION
For evaluating the proposed design, several scenarios are created on multiple scales using
the iFogSim Simulator. The distributed camera-based monitoring application is deployed
using the proposed approach. In all the simulation scenarios, eight areas are under
observation. Each area is monitored while using a single fog node. All the fog nodes are
linked to the cloud server through a proxy server. The cameras are connected to fog nodes
to consume fog resources for the processing of the information stream captured by these
cameras. The cameras attached per fog node are varied in each setup for the evaluation of
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Table 2 Network metrics used in evaluations.

Symbol Definition

fi ith fog node.
Pc (fi)=<CPUi,RAMi > Processing capability of the ith fog node.
M Total fog devices present in the architecture.
N =

∑M
i=1Pc

{
fi
}

Processing capability of fog layer.
Ci The cluster of edge devices connected to fi.
K = I1,I2,I3 ...Ik Set defining total number of edge devices present in the

system.
Ii ith end node.
Ri Sensing frequency of Ii.
S(Ii) The volume of information generated by the Ii.
L(Ci)=

∑
∀Ii∈CiS(Ii) The volume of information generated by a Ci.

Figure 3 IFogSim topology of the fog-based implementation.
Full-size DOI: 10.7717/peerjcs.1986/fig-3

the proposed strategy. Two cameras are initially attached per fog device which is increased
in each succeeding scenario. The sensors installed in our evaluations are according to the
strategy of Sharifi, Hessabi & Rasaii (2022). The simulation model of one of each setup
created in iFogSim for the evaluation of the fog paradigm and cloud computing paradigm
is shown in Figs. 3 and 4 respectively. Initially, the cluster attached to the fog device
consists of three cameras. The size of the cluster is increased in each subsequent scenario
to evaluate the proposed algorithm. The parameters observed during all the assessments
are latency, network utilization and cost of execution at the cloud. Tables 3 and 4 describe
different network configurations and parameters used in our simulations. The sensor rate
of the sensors installed in our simulations is between 5 ms to 20 ms. The simulations are
executed on multiple scales for evaluating our proposed cluster assignment strategy with
the traditional cloud and fog computing deployments.

Network utilization, execution cost and delay are the metrics observed during the
evaluation of the proposed policy with the conventional paradigms. A comparison of
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Figure 4 One of the setups created for simulating the cloud-based approach.
Full-size DOI: 10.7717/peerjcs.1986/fig-4

Table 3 Types of tuples.

Parameter Cloud Proxy Fog device Edge node

Level 0 1 2 3
Rate per MIPS 0.01 0 0 0
Random access memory (GB) 40 4 2–4 1
Downlink bandwidth (MB) 10,000 10,000 10,000 10,000
CPU power (MIPS) 44,800 2,800 2,000–4,000 500
Uplink bandwidth (MB) 100 10,000 10,000 10,000

Table 4 Types of tuples.

Tuple type Tuple CPU length (MIPS) Network length

CAMERA 1,000 20,000
M_V_S 2,000 2,000
D_O 500 2,000
O_L 1,000 100
P_P 100 28

network utilization during the implementation of an intelligent surveillance application
on multiple scales using the cloud, fog and proposed design is presented in Fig. 5. The
proposed policy provides a significant reduction in network consumption by assigning
appropriate fog resources to clusters of cameras. The size of the information sensed by
the edge nodes is calculated using the sensing rate of the sensors (Hassan et al., 2022a).
The proposed algorithm assigns a cluster of edge devices to a suitable fog node to get the
optimum performance of the paradigm. This optimum allocation of fog resources to edge
nodes according to the size of information to be processed successfully minimizes the total
network consumption. The network utilization observed in the traditional fog architecture
is due to the disproportionate provision of fog resources. In the cloud architecture, all the
detected information is handled by the cloud server resulting in high network consumption.

A significant reduction in delay is realized by using the proposed algorithm as compared
to the cloud and fog paradigm as shown in Fig. 6. The cloud paradigm offers resources in

Hassan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1986 12/18

https://peerj.com
https://doi.org/10.7717/peerjcs.1986/fig-4
http://dx.doi.org/10.7717/peerj-cs.1986


Figure 5 Comparison of network utilization.
Full-size DOI: 10.7717/peerjcs.1986/fig-5

Figure 6 Latency comparison.
Full-size DOI: 10.7717/peerjcs.1986/fig-6

a centralized manner producing high communication delay. The delay in the cloud-based
paradigm rises with a rise in the number of edge devices (Liu et al., 2022). However, fog
computing provides resources near the sensor nodes for the processing of the sensed
information. This provision of computational resources adjacent to edge nodes reduces
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Figure 7 Execution cost at cloud.
Full-size DOI: 10.7717/peerjcs.1986/fig-7

the latency. The proposed algorithm provides resources rendering to the requirement of
the edge nodes which further reduces the offered delay. The designed algorithm cuts the
processing load to be handled by the cloud server by offering appropriate fog resources
which minimizes the execution cost at the cloud as shown in Fig. 7. This allocation of
suitable fog resources according to the demand of edge clusters is not obtainable in existing
fog deployments.

CONCLUSIONS
In this study, we developed a resource allocation strategy for fog nodes that efficiently
caters to the information size generated by connected end nodes. This tailored scheme
optimizes fog resource utilization, ensuring smooth task completion at fog nodes. Through
calculating the size of sensed data from clusters of edge nodes and intelligently assigning
fog nodes to end device clusters, our algorithm demonstrates a sophisticated approach.
The resulting optimal allocation and management of fog resources lead to a significant
reduction in network consumption and latency. Simulations on multiple scales using the
iFogSim toolkit validate the efficacy of our designed approach in diminishing latency,
network utilization, and processing costs at the cloud.

However, it is crucial to recognize certain limitations within our proposed algorithm.
Notably, the current framework lacks the capability to address node failure issues,
presenting an area for future improvement. Furthermore, the reliance on the sensing
rate factor as the primary parameter for resource allocation suggests a need for a more
nuanced approach. To enhance the algorithm’s robustness, future iterations must consider
additional parameters in the allocation process.

Looking forward, our future work entails the deployment of multiple applications using
the established approach. A strategic focus will be placed on addressing the identified
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limitations, particularly the integration of an artificial intelligence-based framework
into the resource allocation process. This forward-thinking approach aims to not only
overcome current constraints but also to advance the adaptability and effectiveness of our
strategy within fog-cloud computing paradigms. This continuous refinement reflects our
commitment to pushing the boundaries of research and innovation in this field.
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