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ABSTRACT
Background: This study introduced a novel approach for predicting occupational
injury severity by leveraging deep learning-based text classification techniques to
analyze unstructured narratives. Unlike conventional methods that rely on
structured data, our approach recognizes the richness of information within injury
narrative descriptions with the aim of extracting valuable insights for improved
occupational injury severity assessment.
Methods: Natural language processing (NLP) techniques were harnessed to
preprocess the occupational injury narratives obtained from the US Occupational
Safety and Health Administration (OSHA) from January 2015 to June 2023. The
methodology involved meticulous preprocessing of textual narratives to standardize
text and eliminate noise, followed by the innovative integration of Term Frequency-
Inverse Document Frequency (TF-IDF) and Global Vector (GloVe) word
embeddings for effective text representation. The proposed predictive model adopts a
novel Bidirectional Long Short-TermMemory (Bi-LSTM) architecture and is further
refined through model optimization, including random search hyperparameters and
in-depth feature importance analysis. The optimized Bi-LSTM model has been
compared and validated against other machine learning classifiers which are naïve
Bayes, support vector machine, random forest, decision trees, and K-nearest
neighbor.
Results: The proposed optimized Bi-LSTM models’ superior predictability, boasted
an accuracy of 0.95 for hospitalization and 0.98 for amputation cases with faster
model processing times. Interestingly, the feature importance analysis revealed
predictive keywords related to the causal factors of occupational injuries thereby
providing valuable insights to enhance model interpretability.
Conclusion: Our proposed optimized Bi-LSTM model offers safety and health
practitioners an effective tool to empower workplace safety proactive measures,
thereby contributing to business productivity and sustainability. This study lays the
foundation for further exploration of predictive analytics in the occupational safety
and health domain.
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INTRODUCTION
The prioritization of workplace safety and health is crucial for both employees and
employers. Ensuring a safe and healthy workplace is not only a legal and moral obligation
but also, an essential determinant in sustaining job productivity and optimizing staff
efficiency. Occupational injuries have the potential to result in substantial financial
ramifications for the organization (Debela, Azage & Begosaw, 2021; Kim & Park, 2021),
decreased employee morale as a consequence of protracted medical recuperation (Chin
et al., 2018; Kendrick et al., 2017), and adverse effects on the overall quality of life within
society (Tompa et al., 2021). Therefore, it is imperative to conduct a timely and precise
evaluation of the severity of occupational injuries to implement suitable and efficient
workplace safety intervention strategies. However, the evaluation of occupational injury
severity can present multifaceted challenges due to its dependence on the manual
assessment of occupational injury textual reports. This task is time-consuming and
requires specific expertise; thus, making it susceptible to human error (Kim & Chi, 2019).
As a result, most previous studies have focused on the use of structured categorical data for
the analysis of occupational accidents (Chadyiwa, Kagura & Stewart, 2022; Marucci-
Wellman, Corns & Lehto, 2017), whereas the examination of textual reports on industrial
injuries has been neglected (Abbasianjahromi & Aghakarimi, 2021). The rapid
development of big data technology has led to significant advancements in natural
language processing (NLP) and Artificial Intelligence (AI) techniques, resulting in
promising performance in text categorization tasks (Sarkar et al., 2019).

An NLP-based text mining technique is defined as the process of extracting and
deriving information from unstructured text data to generate feature representations for
classification and prediction analyses (Khattak et al., 2019). This is done through feature
engineering or text representation techniques, such as text vectorizers; Bag of Words
(BoW), and Term Frequency-Inverse Document Frequency (TF-IDF), as well as, the word
embeddings pre-trained model, such as Word2Vec and Global Vector (GloVe). Both text
vectorizers, BoW and TF-IDF are easily executed and compatible (Pan et al., 2020);
however, they do not define semantic relationships in context (Goldberg, 2022). To
overcome this limitation, the word embeddings approach is recommended as it is capable
of preserving the relationship of semantic and syntactic linguistics in text documents
(Young et al., 2018).

Most recent studies in the occupational injury domain have progressively executed this
NLP technique using a spectrum of machine learning (ML) and, more specifically, deep
learning (DL) algorithms to improve text classification tasks (Cheng, Kusoemo & Gosno,
2020).

Yedla, Kakhki & Jannesari (2020) extracted the occupational injury narratives of the
mining industry using Word2Vec, subsequently trained with several ML algorithms, and
the random forest (RF) model was revealed to be the best-performing model. Similarly,
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Goldberg (2022) compared several ML classifiers, trained with TF-IDF, Word2Vec, and
Global Vector (GloVe) word embeddings, respectively to predict the outcomes of
occupational injury, mainly from the construction industry. Although the ML classifiers,
such as support vector machine (SVM), K-nearest neighbors (KNN), decision tree (DT),
and RF were the preferred algorithms to train the occupational injury narratives (Baker,
Hallowell & Tixier, 2020b; Goh & Ubeynarayana, 2017; Sarkar et al., 2020), the NLP-based
DL techniques have been recommended to enhance text classification tasks (Khairuddin
et al., 2022; Zhong et al., 2020). This is because the architectures of neural networks are
better suited for capturing the complexity of language relationships due to their ability to
learn hierarchical features (Cheng, Kusoemo & Gosno, 2020; Young et al., 2018). For
example, Zhang (2022) implemented a simplified deep neural network trained with
Word2Vec to classify occupational injuries, whereas Jing et al. (2022) developed a word-
embedding DL model, namely LSTM-Word2Vec, to categorize the types of occupational
injuries in the chemical industry.

Although existing research has made significant strides in integrating NLP techniques
and ML algorithms into occupational injury severity prediction, there are notable gaps in
our understanding of the optimal utilization of these techniques. There has been limited
exploration of alternative methods for text representation, which could offer improved
performance or interpretability compared to exclusively utilizing one text representation
method (Kamyab, Liu & Adjeisah, 2021). Additionally, there is a tendency to focus on
traditional machine learning algorithms rather than advanced techniques that could
potentially enhance the predictive performance (Sarkar & Maiti, 2020). Therefore, this
study distinguishes itself from the existing literature through a novel and innovative
approach to text representation techniques. Unlike prior studies that have predominantly
relied on a single type of text representation method, either TF-IDF, Word2Vec, or GloVe
embeddings, this study proposed a comprehensive approach through fusion strategy by
integrating TF-IDF and GloVe. These combinations are equipped to extract more
comprehensive understanding and meaningful information, thus contributing to
improved predictive performance.

In addition, this study proposes a significant emphasis on advancing state-of-the-art DL
algorithms. A key differentiator is the incorporation of the Bidirectional-LSTM (Bi-LSTM)
architecture, unlike traditional ML algorithms, the application of the proposed Bi-LSTM
architecture in this study aligns with the nature of occupational injury narratives, in which
understanding the sequential context is essential. Consequently, the development of
innovative DL architectures is believed to significantly enhance text classification tasks by
enabling models to better capture and memorize sequential dependencies (Baker,
Hallowell & Tixier, 2020a; Yedla, Kakhki & Jannesari, 2020). In addition, by proposing an
innovative fusion of text representation methods with the advanced capabilities of Bi-
LSTM, this study provides a holistic and comprehensive approach for occupational injury
severity prediction. This contribution aims to contribute significantly to the literature, not
only by improving predictive performance, but also deepening the context of the temporal
and sequential dynamics inherent in occupational injury narratives.
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The primary objective of our study was to accomplish two noteworthy outcomes: First,
our objective was to enhance the overall performance of the classification model by
focusing on improving its predicted performance. Enhancing the dependability of
occupational injury severity estimates is crucial since it offers significant insights for
employers, healthcare providers, and the government. The ability to make precise forecasts
facilitates an enhanced comprehension of the potential hazards linked to various forms of
injuries. In addition, our research focuses on the analysis of text narratives that were
extracted from injury reports. The narratives provide numerous contextual details related
to each incident, encompassing particular concerning the conditions, origins, and
consequences of the injuries. Thus, a more profound comprehension of the factors that
contribute to the severity of injuries is attained, thereby enabling more informed decision-
making in practical applications. Employers can proactively resolve underlying safety
issues in the workplace, for instance, by identifying common themes or patterns in injury
narratives. Therefore, customizing treatment plans according to the precise characteristics
of injuries detailed in the reports, healthcare providers can enhance the quality of care
provided to the patients. Furthermore, by leveraging the insights gleaned from injury
narratives, government entities can formulate intervention programs that are specifically
designed to diminish the incidence of particular injury types within particular industries or
sectors. Subsequently, this knowledge can catalyze the implementation of more focused
safety efforts and preventive measures in occupational settings.

Furthermore, the objective of our work was to improve the comprehensibility of the
occupational injury severity categorization model. The interpretability of a model is of
utmost importance as it enables stakeholders to have a comprehensive understanding of
the key characteristics or traits that have a substantial impact on the prediction of injury
severity. These insights hold significant value in the context of decision-making and risk
assessment. By clearly identifying the important factors that contribute to the severity of
workplace injuries, employers and safety professionals can adopt targeted interventions,
training programs, or engineering controls to effectively minimize these specific risks.
This, in turn, contributes to the establishment of a safer work environment.

Therefore, the notable contributions of this study are summarized as follows:

1) This study pioneered a novel approach in fusion technique by integrating two distinct
text representation techniques: TF-IDF and GloVe embeddings. Unlike previous
studies, which often relied on a single method, the proposed fusion methods enhance
the capturing of both term importance and semantic relationships, thus improving the
depth and richness of feature representation in occupational injury narratives.

2) A significant focus of this study was the development and application of the proposed
Bi-LSTM architecture. Our deliberate choice of this modern DL algorithm represents a
notable advancement beyond other conventional ML models, addressing the inherent
limitations and improving our understanding of temporal dynamics within
occupational injury narratives.

3) While other studies have focused solely on either conventional ML algorithms or
modern DL models, this study conducts a comprehensive comparative analysis
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encompassing both. Through this comparative work, this study aimed to provide
valuable insights into the most effective technique for this specific predictive task.

4) This study also goes beyond the predictive performance by optimizing the models for
enhanced interpretability and practicality through in-depth feature importance analysis
and random search hyperparameter tuning. This emphasis on practical applicability
distinguishes our study, thereby making it relevant and valuable for occupational safety
practice. The priority of developing the optimized predictive model in this study was to
recognize the significance of actionable insights in real-world occupational safety
scenarios.

By integrating innovative text representation techniques, advancing deep learning
capabilities, conducting a thorough comparative analysis, and optimizing models for
practical applicability, this study contributes significantly to the existing literature and sets
the stage for more effective and comprehensive approaches in this critical occupational
safety domain.

MATERIALS AND METHODS
Dataset
The dataset used in this study was acquired from the United States Occupational Safety
and Health Administration (US OSHA) database between January 2015 and June 2023
(https://www.osha.gov/severeinjury). An injury narrative column was selected as the
primary text dataset. Each entry in this column represents a textual description of a specific
workplace injury event; the circumstances, events, and factors that led to the workplace
injury, providing valuable contextual information for predictive analysis in this study. Each
row consists of injury narratives and their corresponding injury severity labels assigned by
the trained experts, which were the safety and health personnel with the assistance of the
occupational health doctor. The severity labels provided in the dataset were hospitalization
and amputation.

The dataset initially consisted of 83,821 rows of textual data. Following a rigorous data-
cleaning process to ensure data completeness and reliability, the dataset was refined to
83,294 rows. Data completeness was ensured by confirming that each record in the dataset
contained essential information, including injury narratives and assigned occupational
injury severity labels. This involved checking whether each row had an assigned severity
label or not. Additionally, records lacking injury narratives were identified as incomplete
and removed from the dataset. As a result, approximately 0.63% of the total records were
removed because of incompleteness, resulting in a refined dataset for analysis.

Text-preprocessing
In this study, the injury narratives underwent a series of text preprocessing steps using
NLP for text standardization and to remove irrelevant information for further analysis.
These procedures aimed to standardize the text and eliminate any extraneous material that
could hinder subsequent analysis. The process included in this study encompassed the
elimination of non-alphabetic characters, such as symbols, arithmetic digits, and
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punctuation marks, to reduce extraneous information and emphasize the significant
textual content (Sankarasubramanian & Ganesh, 2020). To preserve consistency in the
text, all additional spaces, including trailing spaces and tabs, were eliminated (Pahwa,
Taruna & Kasliwal, 2018). Moreover, stop words in the text, for example, “a” and “the”
were also eliminated to reduce the dimensionality issue (Lourdusamy & Abraham, 2018).
The text that had been cleaned was then tokenized and afterward processed through the
processes of text representation. Figure 1 illustrates the sample of text dataset before and
after the text preprocessing techniques.

Text representation
The purpose of this step is to transform the tokenized text into a vectorized representation,
which can then be utilized for training purposes in the ML and DL algorithms. The text
representation techniques employed were Term Frequency-Inverse Document Frequency
(TF-IDF) and the Global Vector (GloVe) word-embedding model.

TF-IDF is made up of two parts: the ‘term frequency’ (TF) and the ‘inverse document
frequency’ (IDF). TF is determined by the frequencies of the terms in each report, whereas
IDF is measured by how often the word or term appears in the overall text data. The
formula of TF is fi;w, where i is a specific term in each document and w is the number of
documents. In this experiment, the data consists of D documents, with dfi representing the

Figure 1 The sample of text dataset before and after the text preprocessing.
Full-size DOI: 10.7717/peerj-cs.1985/fig-1
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frequencies of a term across the documents. The logarithmic inverse of a keyword, idfi, is
used to determine its IDF, as indicated in the following formula:

idfi ¼ log
1þ D
1þ dfi

� �
þ 1:

The final TF-IDF score is then calculated using this equation:

tfidfi;w ¼ tfi;w � idfi:

Following the vectorized word, a GloVe word embedding was performed. In this study,
a pre-trained GloVe model named “Glove.6B” was applied to construct the word vector
representation. This pre-trained model is a 100-dimensional vector that was trained on six
billion tokens fromWikipedia articles and the Gigaword dataset. It is freely available under
the terms of a Public Domain Dedication and License (Yu et al., 2018).

In the initial phase, this study adhered to conventional practices in unstructured text
learning by executing TF-IDF for training ML models and a word embedding model for
DL models. It has been stated that text vectorization, such as TF-IDF performs better in
ML models (Bharti et al., 2022), whereas the word-embedding model, for example GloVe
works well in DL models (Kilimci & Akyokus, 2018). This standard approach served as the
baseline for the text representation experiment.

Subsequently, an innovative technique called TFIDF-GloVe was proposed to train all
classifiers. This study introduced an innovative approach to text representation by
integrating two techniques, which were TF-IDF and the GloVe word embedding model
(TFIDF-GloVe). This combination is anticipated to enhance the text representation, thus
producing a prediction model that is more precise and accurate (Kamyab, Liu & Adjeisah,
2021). The TFIDF-GloVe vector representation was used as input features to learn
unstructured injury narratives for predictive analysis. A simplified pseudocode for this
proposed text representation method is presented in Table 1.

The proposed model
This study emphasizes the Bidirectional LSTM (Bi-LSTM) model as a revolutionary
technique for enhancing occupational injury categorization based on injury narratives. The
motivation behind employing Bi-LSTM architectures lies in their inherent ability to
capture contextual dependencies from both the past and future contexts of each word in a
sequence (Wu et al., 2021).

In the first stage of the model, the vectorized text representation is provided as input
features to Bi-LSTM. Once the vector representations were obtained, they were channeled
into an embedding layer to map each vector into a continuous space that preserves the
semantic meaning. As the input sequences pass through the Bi-LSTM layers, they undergo
feature extraction and representation learning. Bi-LSTM units distill the semantics and
context of each word, transforming text vectors into a higher-dimensional feature space
that encapsulates the underlying patterns of the narrative. This feature-rich representation
captures not only linguistic characteristics but also contextual cues that are critical for
discerning the severity of occupational injuries. The transformed features are then directed
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through a dense layer, which further refines the learned representation. This layer
aggregates information from the sequential context and transforms it into a format
conducive to making predictions. Ultimately, a final dense layer with a sigmoid activation
function generates probability scores, indicating the predicted occupational injury severity
level for each narrative.

Before the model development, stratified sampling was used to divide the data into two
sets, with 80% acting as the training set and the remaining 20% serving as the testing set.
All of these models were developed using Python programming language, leveraging its
extensive libraries and packages for ML, DL, and NLP tasks. The prediction models were
developed on a laptop equipped with the following specifications: AMD Ryzen 7 3700U @
2.30 GHz with 12 GB RAM (CPU) and RadeonTM RX Vega 10 Graphics running at 1,400
MHz (GPU).

Hyperparameter tuning
Moreover, this study employed a meticulous process of model refinement and
optimization to ensure the optimum efficiency of our developed Bi-LSTM model. A key
step is hyperparameter tuning. Hyperparameters serve as configuration settings that guide

Table 1 Pseudocode of text experiment.

Unstructured text analysis

Begin

Input: Occupational injury narratives (text)

Output: text representations (vector)

1 Text Preprocessing

2 def preprocess_text(text):

3 text = remove_non_alphabetic_characters(text)

4 text = remove_punctuation(text)

5 text = remove_extra_spaces(text)

6 text = remove_stop_words(text)

7 text = convert_to_lowercase(text)

8 return text

6 Text Representation

7 def generate_tfidf_glove_representation(text):

8 tfidf_vector = calculate_tfidf_vector(text)

9 glove_embedding = generate_glove_embedding(text)

10 tfidf_glove_representation = concatenate (tfidf_vector, glove_embedding)

11 return tfidf_glove_representation

12 Classifier Training

13 def train_classifier(X, y):

14 classifier = initialize_classifier()

15 classifier.fit(X, y)

16 return classifier

End
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how the model learns from the data and generalizes its findings. In our approach, we
leverage a rigorous method known as random search cross-validation (CV) with a fold size
of k = 10. This technique systematically explores various combinations of hyperparameters
within predefined ranges, thereby enabling us to identify the configurations that yield the
best results. The hyperparameters of our proposed deep learning predictive model include
the number of LSTM units, batch size, activation function, dropout, epoch unit, and
optimizers. The ranges and optimal values of the hyperparameters are presented in
Table 2.

Feature importance analysis
In addition to hyperparameter tuning, this study explored the importance of the features
within our predictive model. We incorporated feature importance analysis using a
Random Forest (RF) feature importance algorithm. This algorithm can be effectively
adapted and applied to textual data to reveal the significance of various words in
influencing occupational injury severity classification outcomes. In addition, this feature
importance algorithm based on RF is recommended because the tree-ensemble model can
provide information on the contribution of each feature utilized in the prediction task,
including its ability to handle numerous text features (Hwang et al., 2023; Wang, Yang &
Luo, 2016).

After training the RF classifier, feature importance scores were computed based on the
impact of each feature on the predictive performance of the classifier. This calculation was
derived from the decrease in Gini impurity (Moore, Lyons & Gallacher, 2019). The
computed feature importance scores provide a ranking of the features in terms of their
influence on the classification outcomes. Higher scores indicated greater importance. This
step was performed independently from the Bi-LSTMmodel. Then, the important features
served as input features to redevelop the Bi-LSTM model. The Bi-LSTM model was
retrained using the selected features as the input and the corresponding target labels. In
this context, the Bi-LSTM model utilizes selected features to learn the sequential patterns
and dependencies within the data. By incorporating these important features identified by
RF, the Bi-LSTM model aims to leverage the most relevant information for the prediction

Table 2 Optimal hyperparameters of the Bi-LSTM model.

Hyperparameters Range Optimal values

LSTM 128, 256, 512 128

Dense unit 10, 20, 30 10

Dropout 0.2, 0.3, 0.4 0.2

Batch size 32, 64, 128 64

Epochs 20, 25, 30 25

Activation ReLu, tanh, sigmoid tanh

Optimizer Adam, SGD, RMSprop Adam

Output layer Sigmoid

Loss function Binary cross-entropy
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task and potentially achieve better predictive performance compared with using the entire
feature set. To summarize, RF and Bi-LSTM serve different purposes in the predictive
modeling process. RF is used for feature analysis and extraction, whereas Bi-LSTM is
employed to learn sequential patterns and make predictions. The important features
identified by RF serve as inputs for optimizing the Bi-LSTMmodel. Furthermore, this type
of pipeline represents a novel exploration in predictive modeling and has been gaining
traction in related studies. Such approaches have been widely adopted across various
domains including clinical data classification (Kong & Yu, 2018;Wu et al., 2020), financial
analysis (Ma, Han & Fu, 2019; Pai & Ilango, 2020), and solar power prediction
(Wang et al., 2023). All these related studies acknowledge the effectiveness of combining
RF for feature importance and LSTM networks for sequence modeling.

Therefore, our proposed occupational injury severity prediction model highlights the
synergy between the refined Bi-LSTM architecture and model optimization steps, which
harnessed the power of random search cross-validation and RF feature importance
analysis. The proposed framework for the optimized Bi-LSTM is shown in Fig. 2.

Model comparison
To comprehensively assess the efficacy of the proposed Bi-LSTM model, a thorough
comparative analysis using a spectrum of established classifiers was conducted. This
analytical approach provides a holistic view of the performance of the proposed model

Predictive keywords, U

Feature Importance, RF

k = 10

High
Performance

U = 20

Yes

No

Feature Importance

Hyperparameter Tuning

Final Model

Figure 2 The proposed framework for the optimized Bi-LSTM model. Full-size DOI: 10.7717/peerj-cs.1985/fig-2
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relative to other commonly used methods. We incorporated a set of five widely used
models, namely naive Bayes (NB), K-nearest neighbors (KNN), decision trees (DT),
support vector machine (SVM), and random forest (RF), including long short-term
memory (LSTM) and Bidirectional LSTM (Bi-LSTM).

Evaluation metrics
In this study, standard model evaluation metrics like accuracy, precision, recall, F1-score,
and AUC, were used based on a confusion matrix. The number of positive sentences that
are correctly classified into the injury severity class is specified as true positive (TP),
whereas, the number of negative sentences, correctly classified as negative into the injury
severity class is designated as true negative (TN). The frequency of negative sentences
categorized as positive is specified as false positive (FP), while the frequency of positive
sentences wrongly indicated as negative in the injury severity class is classified as false
negative (FN). Therefore, the aforementioned metrics were calculated based on the
following equations:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F1� score ¼ 2� Recall � Precision
Recall þ Precision

:

Additionally, the AUCmetric was employed to provide a comprehensive measure of the
model’s ability to distinguish between different severity classes. This metric quantifies
the area under the Receiver Operating Characteristic (ROC) curve. The ROC curve plots
the true positive rate (TPR) against the false positive rate (FPR) across the various
classification thresholds. A higher AUC value indicated better discriminatory ability.

Furthermore, the model processing times (in seconds, s) were recorded as part of the
model evaluation process. This information is beneficial because it provides insights into
the practicality of the model that is efficient for real-field deployment, as it requires a
timely prediction capability. By incorporating a wide range of evaluation metrics and
model processing times, this study provides a comprehensive comparative assessment for
choosing the best-performing occupational injury severity model.

RESULTS
This section outlines the findings of our model experimentation on text classification for
predicting the severity of occupational injuries. Our analysis encompassed a binary
classification task, with occupational injury severity outcomes categorized as either
‘hospitalization’ or ‘amputation’. The prediction performances of the models were
evaluated using established metrics, including accuracy, precision, recall, F1-score, AUC,
and model processing times. Additionally, we present an assessment of the text
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representation techniques and interpretation of the feature importance analysis employed
in this study.

Comparison of text representation
As elaborated in the Text Representation section, five ML models were trained with TF-
IDF, whereas both LSTM and Bi-LSTMmodels were trained with GloVe embedding to set
the baseline, before the assessment proceeded with the integration of TFIDF-GloVe
trained in all models. Table 3 compares the prediction performance using the accuracy and
F1-score, of each ML model trained with TF-IDF alone and TFIDF-GloVe as text
representation. The findings revealed that all the ML models trained with TFIDF-GloVe
performed better than TF-IDF alone. Table 4 presents the performance of LSTM and Bi-
LSTM using GloVe alone and TFIDF-GloVe. Based on Table 4, the findings also revealed
that the integration of TFIDF-GloVe improved the prediction performance for both LSTM
and Bi-LSTM.

This findings were in agreement with the previous studies done by Kamyab, Liu &
Adjeisah (2021) and Kilimci & Akyokus (2018) that combined both TF-IDF and pre-
trained word embedding methods to generate more accurate predictive models. They

Table 3 Comparison of text representation methods for ML models.

Models Metrics Text representation techniques

TF-IDF TFIDF-GloVe

NB Accuracy H: 0.53 H: 0.88

A: 0.53 A: 0.95

F1-score H: 0.57 H: 0.92

A: 0.55 A: 0.93

KNN Accuracy H: 0.91 H: 0.90

A: 0.97 A: 0.98

F1-score H: 0.92 H: 0.94

A: 0.98 A: 0.96

DT Accuracy H: 0.91 H: 0.92

A: 0.97 A: 0.97

F1-score H: 0.92 H: 0.95

A: 0.96 A: 0.96

RF Accuracy H: 0.90 H: 0.92

A: 0.95 A: 0.97

F1-score H: 0.90 H: 0.95

A: 0.95 A: 0.97

SVM Accuracy H: 0.92 H: 0.92

A: 0.98 A: 0.98

F1-score H: 0.94 H: 0.95

A: 0.96 A: 0.97

Notes:
The bold values mark the best performance regarding different metrics.
H, hospitalization; A, amputation.
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concluded that incorporating word embeddings into TF-IDF weighted vectors not only
augments the feature set, but also leads to a notable enhancement in text classification
tasks. This improvement stems from the capacity of the pre-trained word embedding
model to capture contextual, semantic, and syntactic data within the text narratives,
thereby refining the overall text representation. Next, the combination is expected to
possess the ability to capture both local and global context information, including
enhancing the semantic representation of occupational injury narratives (Dogra et al.,
2022). Consequently, the integration of these two methods allows the predictive model to
obtain advantages from a feature space that is both more concise and informative.
Moreover, this integration effectively mitigates the problem of overfitting and enhances
computational efficiency (Lu, Ehwerhemuepha & Rakovski, 2022) and exhibits superior
performance, particularly when handling large corpora, as highlighted by Dogra et al.
(2022).

Hospitalization
Table 5 provides a comprehensive overview of the performance metrics for predicting
hospitalization across all models. The Optimized Bi-LSTM model achieved the highest
accuracy of 0.93, whereas all the models demonstrated an impressive F1-score of 0.95, with
the exception of the NB and KNN models. Moreover, the Optimized Bi-LSTM model
outperformed the others in terms of AUC, with a notable score of 0.94. Our analysis also
revealed that although each DL model required longer training and testing times for text
representation learning, the processing times of the Optimized Bi-LSTM model were
significantly improved.

Amputation
Table 6 presents the model performance metrics for predicting the amputation. Based on
the findings, the highest accuracy achieved by several models, including KNN, SVM, Bi-
LSTM, and Optimized Bi-LSTM, was 0.98. However, the Optimized Bi-LSTM
outperformed the other models in terms of the F1-score (0.98) and AUC (0.99). Similarly,

Table 4 Comparison of text representation methods for DL models.

Models Metrics Text representation techniques

GloVe TFIDF-GloVe

LSTM Accuracy H: 0.91 H: 0.91

A: 0.96 A: 0.97

F1-score H: 0.94 H: 0.92

A: 0.94 A: 0.95

Bi-LSTM Accuracy H: 0.91 H: 0.93

A: 0.96 A: 0.98

F1-score H: 0.92 H: 0.93

A: 0.95 A: 0.98

Notes:
H, hospitalization; A, amputation.
The bold values mark the best performance regarding different metrics.
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the Optimized Bi-LSTM model generated more efficient computational time than the
other DL models.

In both prediction tasks, the Optimized Bi-LSTM models were superior to the other
classifiers. They not only achieved the highest accuracy and F1-score but also exhibited
exceptional discriminatory ability between prediction classes, as evidenced by the AUC.
Furthermore, the optimized models showcased significant enhancements in both training
and testing times, thereby highlights the efficiency gains achieved through model
optimization, underscoring the practical applicability of our approach.

Feature importance interpretation
This study identified the top 20 important keywords for both prediction tasks, as illustrated
in Figs. 3 and 4. Based on Fig. 3, the presence of terms, such as “hospitalized”, “fell”,
“caught”, “machine”, “blade”, and “saw” suggests a focus on injuries resulting from
workplace accidents involving machinery or equipment, which often lead to severe trauma
requiring medical attention. References to specific body parts such as “fingertip”, “finger”,
“thumb”, “hand”, and “knuckle” indicate the potential sites of occupational injury, with
injuries to these affected body parts being more likely to require hospitalization due to
their sensitivity and importance for functionality. Additionally, terms like “amputated”,

Table 5 Model performance metrics for hospitalization prediction.

Models Accuracy Precision Recall F1-score AUC Training (s) Testing (s)

Optimized Bi-LSTM 0.95 0.98 0.94 0.95 0.94 997 62

Bi-LSTM 0.93 0.98 0.92 0.95 0.93 1117 134

LSTM 0.91 0.97 0.93 0.95 0.92 964 46

NB 0.88 0.96 0.87 0.92 0.90 0.013 0.08

KNN 0.90 0.94 0.94 0.94 0.84 0.16 3.01

DT 0.92 0.98 0.92 0.95 0.92 0.15 0.04

SVM 0.92 0.99 0.92 0.95 0.93 45 26

RF 0.92 0.98 0.92 0.95 0.92 3.12 0.12

Note:
The bold values mark the best performance regarding different metrics.

Table 6 Model performance metrics for amputation prediction.

Models Accuracy Precision Recall F1-score AUC Training (s) Testing (s)

Optimized Bi-LSTM 0.98 0.97 0.98 0.98 0.99 925 58

Bi-LSTM 0.98 0.97 0.98 0.97 0.98 1019 95

LSTM 0.97 0.97 0.90 0.93 0.95 399 70

NB 0.95 0.88 0.98 0.93 0.96 0.021 0.01

KNN 0.98 0.97 0.96 0.96 0.97 0.15 3.13

DT 0.97 0.98 0.95 0.96 0.97 0.13 0.04

SVM 0.98 0.98 0.95 0.97 0.97 114 6.25

RF 0.97 0.98 0.95 0.97 0.97 2.46 0.13

Note:
The bold values mark the best performance regarding different metrics.
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“pinched”, “broken”, and “partial” suggest the severity of injuries, with amputations,
fractures, and severe trauma increasing the likelihood of hospitalization for urgent medical
care and treatment. Meanwhile, for amputation task, terms of “amputated” and
“amputation” directly signify the outcome of interest, in which these keywords are crucial
indicators of the injury severities being considered in the prediction model. The potential
mechanism of injury lead to amputation was machinery accidents, where terms such as
“machine”, “blade”, and “pinched” suggest the likelihood of amputation due to the high
force and shard edges involved. Moreover, the inclusion of “trapped” suggests situations
where body parts are confined, possibly in machinery or equipment, which can lead to
severe injuries that may necessitate amputation. Based on the interpretability analysis, it is
evident that the occupational injury narratives contained keywords that delineated the
accident’s type or causes (Sarkar et al., 2022), as well as the affected body parts, along with

Figure 3 Importance of keywords for hospitalization. Full-size DOI: 10.7717/peerj-cs.1985/fig-3
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the nature of the injury or outcomes (Davoudi Kakhki, Freeman & Mosher, 2019; Kang,
Koo & Ryu, 2022; Yedla, Kakhki & Jannesari, 2020). These findings align with those of
similar studies in the field, providing comparable insights into the predictors and
consequences of occupational injuries.

By determining which features have the most significant impact on predicting
occupational injury severity, the safety and health practitioner can prioritize these factors
for further investigation, intervention, or preventive measures. It aids in understanding the
underlying mechanisms or factors contributing to the occurrence of workplace accidents
and injuries. This knowledge can significantly enhance workplace safety protocols,
including the development of comprehensive job safety training programs and the
implementation of rigorous occupational risk assessments in industrial settings. By doing
so, it aims to effectively prevent or mitigate severe injuries that could result in

Figure 4 Importance of keywords for amputation. Full-size DOI: 10.7717/peerj-cs.1985/fig-4

Khairuddin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1985 16/25

http://dx.doi.org/10.7717/peerj-cs.1985/fig-4
http://dx.doi.org/10.7717/peerj-cs.1985
https://peerj.com/computer-science/


hospitalization or amputation. In summary, incorporating feature importance into the
analysis of text injury narratives revealed the significance of individual features in the
predictive model (Tjoa & Guan, 2021). It transforms the model’s predictions into
actionable insights and guides workplace safety initiatives and decision-making processes
to effectively mitigate and prevent workplace accidents and injuries.

In terms of improving the approach, feature importance analysis helps refine predictive
models by focusing on the most influential variables, thereby improving their accuracy and
reliability of the predictive model. By removing less relevant or redundant features and
focusing on the key predictors identified through feature importance analysis, more
efficient and targeted predictive models can be developed for identifying individuals at the
highest risk of occupational injuries (Chowdhury & Turin, 2020; Maharana, Mondal &
Nemade, 2022).

DISCUSSION
Strength of the optimized Bi-LSTM model
Our findings support the Bi-LSTMmodel as the best classifier for text classification and are
consistent with previous related studies in this field (Girgis, Amer & Gadallah, 2018; Jing
et al., 2022; Onan, 2021; Yang, Yu & Zhou, 2020). In principle, the advanced structure of
the proposed optimized Bi-LSTM permits a more effective flow of information in the
sequential data. It contains an additional layer that can capture contextual information
from both past and future sequences of words. This bidirectional nature works well with
text interpretation as it enables the model to analyze dependencies that span a wider
context (Lu, Ehwerhemuepha & Rakovski, 2022). This is beneficial for understanding
complex linguistic relationships in text data. Additionally, by considering the “forward-
backward” direction of context, Bi-LSTM comprehends more comprehensive text
representations, thereby, playing a crucial role in making accurate predictions (Tavakoli,
2019).

Nevertheless, the bidirectional nature also resulted in computational demands,
especially increased processing time, compared to unidirectional and simpler models
(Dogra et al., 2022). ‘Double LSTM’ units themselves involve complex operations,
including additional gates and layers, which require larger memory and storage capacities,
thus leading to additional computational load. However, the trade-off often lies in their
ability to capture more intricate relationships and context within the text data effectively.

In comparison to the unidirectional LSTM and other conventional ML techniques
executed in this study, the Bi-LSTM has emerged as a robust and effective prediction
model owing to its strength in providing holistic semantic representation and adaptability
to diverse linguistic contexts; therefore, Bi-LSTM is an asset for enhancing superior
performance in text classification. Furthermore, this comparison justifies the necessity of
model optimization to improve the predictive performance of the model, including
assisting in faster convergence throughout model training, thereby enabling the model to
attain its optimum efficiency in a timely manner (Ali et al., 2023).
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Practical implications
The practical implications of our optimized predictive model extend far beyond algorithm
sophistication. This model bridges the gap between applied data science and real-world
industrial safety concerns. The optimized predictive model offers safety and health
professionals a potent tool to foresee potential workplace incidents and injuries with
higher accuracy. By analyzing historical occupational injury narratives, temporal patterns,
and influential factors, the model can identify risk-prone situations and predict the
likelihood of future workplace injuries. This insight empowers proactive measures,
allowing organizations to implement targeted workplace safety protocols and
interventions to prevent future workplace accidents.

Furthermore, the faster prediction time of the optimized model translates into quicker
insights and occupational injury predictions. In industries where split-second decisions are
crucial, the ability to obtain accurate predictions promptly is invaluable. In addition, a
faster predictive model effectively empowers resource allocation. This is applied to
deploying personal protective equipment (PPE) and engineered facilities precisely where
they are most needed, thereby optimizing the utilization of resources for workplace safety
preparedness.

A notable implication of our optimized Bi-LSTM predictive model lies in the cost
reduction. By minimizing the severity of workplace injuries, industries can reduce their
healthcare expenses, worker compensation claims, and equipment repair costs. Moreover,
improved workplace safety contributes to sustained workforce productivity, thereby
increasing business sustainability.

Comparison with state-of-the-art techniques
A thorough comparison with other similar techniques utilizing data from the US
Occupational Safety and Health Administration was conducted to provide insights into the
relative performance and advantages of our proposed approach. In a study by Goh &
Ubeynarayana (2017), six ML models (NB, SVM, DT, KNN, LR, and RF) were employed
to classify occupational injury outcomes, in terms of predicting the causal factors of the
accident and revealed the SVM as the best performing model. Subsequently, Zhang et al.
(2019) introduced an ensemble method that can potentially perform better than a single
learning algorithm. In their study, SVM, DT, KNN, NB, and logistic regression were
combined to form an ensemble model and outperformed each single algorithm in
predicting the causes of the accident. Model stacking of XGBoost-RF was later introduced
by Baker, Hallowell & Tixier (2020a) to validate the performance of the SVM and RF
models in their predictive analysis. All these analyses focused only on construction
injuries. Our study was in agreement that the most common state-of-the-art techniques
used in text classification for occupational injury prediction were NB, SVM, DT, KNN, and
RF. Although our study shares similarities with previous research in terms of the ML
models employed, we contribute to the literature by providing a detailed analysis of each
individual model’s performance in predicting occupational injury outcomes across diverse
industrial categories.
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In an advanced study by Cheng, Kusoemo & Gosno (2020), a deep learning approach
based on NLP and gated recurrent units (GRU) was proposed. This approach utilized the
GRU as the primary deep learning predictive model to predict occupational injury
outcomes. The development of the model includes several similar NLP tasks, such as the
removal of special characters and stop words. In terms of text representation, they
exclusively employed GloVe embedding. By contrast, our approach extends beyond the
utilization of GRU and GloVe embedding by comparing a wider range of ML models and
text representation techniques. In addition, the setting up of the architecture in their study
executed similar parameters, such as Adam activation, batch size, and dropout rate.
However, the hyperparameter tuning method was not explicitly mentioned, potentially
limiting the performance of their predictive model, compared to our approach that
incorporated comprehensive hyperparameter tuning to optimize the performance of our
proposed model. In addition to the differences outlined above, our approach aligns with
Cheng, Kusoemo & Gosno (2020)’s suggestion to explore the use of advanced ML methods
in sequential learning models such as RNN variants. This study expanded this exploration
by developing other RNN variants, LSTM and Bi-LSTM with promising prediction
performances.

This study builds upon the recent work by Goldberg (2022), which utilized the latest and
revised format of the US OSHA dataset to classify occupational injury outcomes, including
predicting the likelihood of amputation and hospitalization severity. A range of MLmodels
was similarly employed including DT, RF, SVM, NB, and Bi-LSTM for sequence modeling.
Our study agrees with Goldberg (2022) regarding the performance of predictive models, as
both studies found that the Bi-LSTM model achieved the highest performance in
predicting the likelihood of amputation and hospitalization. Despite this similarity, there
were notable differences in the methodologies and contributions of our study. One key
difference lies in our approach to textual representation. Goldberg explored multiple word
embeddings such as Word2Vec, GloVe, and BERT, whereas this study introduced the
novel integration of TF-IDF-GloVe embeddings. Compared to using text representation
methods alone, our study demonstrates that the novel integration of TF-IDF-GloVe
embeddings yields superior performance in both prediction tasks. This hybrid approach
leverages the strengths of both text representation methods to generate a more
comprehensive representation of text data. Furthermore, this study goes beyond model
performance evaluation to include model interpretation through feature importance
analysis, a component absents in Goldberg’s study. This analysis provides insights into the
factors that play a crucial role in the model’s predictions, enhancing the transparency,
explainability and practicality of the proposed predictive models.

Therefore, this study contributes to the growing body of research on predictive
modeling of occupational injury severity outcomes by incorporating workplace injury
reports from a broad range of industrial sectors. Through comparisons with previous
similar studies, the unique contributions and insights provided by our approach have been
highlighted. In the following, we identified potential areas for future research and
development based on the limitations and challenges observed in the existing techniques.
By addressing these gaps, we believe that our approach, in line with previous similar
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studies, can further contribute to advancing the state-of-the-art in occupational injury
domain.

Limitations and future research
Despite the promising insights and contributions provided by this study, it is essential to
acknowledge certain limitations to guide future research in this domain. Although the
integration of TF-IDF and GloVe embeddings offers improved text representations, other
advanced techniques of language models, such as contextual embeddings, namely BERT,
were not explored in this study. It is recommended that this advanced embedding model
be explored, as it has been shown to achieve better performance in a wide range of NLP
tasks (Goldberg, 2022). Next, this study primarily focused on the analysis of textual injury
narratives; thus, the model’s generalization to other types of data from occupational injury
reports has not been explored in this context. Expanding the analysis to incorporate
additional modalities such as occupational injury images or audio data from accident
investigations could contribute to a more comprehensive knowledge of the severity of
occupational injuries. Multimodal approaches have the potential to capture richer
contextual information and improve the prediction performance (Sarkar et al., 2022).

Moreover, while the dataset may have limitations in terms of the number of severity
levels, the availability of ‘hospitalization’ and ‘amputation’ labels still allows for meaningful
analysis and insights into occupational injury severity. In practice, both hospitalization and
amputation represent serious workplace accident outcomes that require immediate
attention and intervention. However, this study acknowledges the limitations imposed by
the binary nature of severity labels. Therefore, future research endeavors will aim to
address this constraint by exploring datasets with a broader range of severity classification.
Collaboration with other institutions or access to larger databases may provide
opportunities to obtain datasets encompassing intermediate severity levels. An
investigation of alternative data collection methods to capture a more comprehensive
spectrum of occupational injury severity is proposed.

CONCLUSION
In conclusion, our study provides valuable insights into the potential of text classification
models for predicting occupational injury severity. By comprehensively comparing diverse
NLP-based classification algorithms, this study makes significant contributions to
enhancing workplace safety and offers a promising avenue for a precise and timely
occupational injury severity prediction system. The incorporation of deep learning models,
specifically our proposed Optimized Bi-LSTM models, underscores the role of advanced
techniques in achieving high-performing occupational injury severity classification.
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