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ABSTRACT
Social backgroundprofiling of speakers is heavily used in areas, such as, speech forensics,
and tuning speech recognition for accuracy improvement. This article provides a survey
of recent research in speaker background profiling in terms of accent classification
and analyses the datasets, speech features, and classification models used for the
classification tasks. The aim is to provide a comprehensive overview of recent research
related to speaker background profiling and to present a comparative analysis of the
achieved performance measures. Comprehensive descriptions of the datasets, speech
features, and classification models used in recent research for accent classification have
been presented, with a comparative analysis made on the performance measures of the
different methods. This analysis provides insights into the strengths and weaknesses of
the different methods for accent classification. Subsequently, research gaps have been
identified, which serve as a useful resource for researchers looking to advance the field.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and
Speech, Neural Networks
Keywords Speaker profiling, Accent classification

INTRODUCTION
Speaker profiling is the process of estimating the characteristics of an unknown speaker
using a classification model that has no prior instance of speeches from the speaker
to be profiled. Identification of a speaker’s social origin considering the speech accent
characteristics is termed as social background profiling of speakers. The social background
of speakers heavily influences their accents in pronouncing different phonemes and the
pattern of using them in their speech. These involuntary characteristics in human speech
can be used to identify the speaker’s social background without the need for the speaker
to reveal it explicitly (Kalluri, Vijayasenan & Ganapathy, 2020; Singh, Raj & Baker, 2016).
Speech accent classification considers various linguistic and prosodic features, such as
pronunciation, rhythm, intonation, and stress patterns, to determine the accent of a
speaker.

Social background profiling from speech has multiple applications, and much research
on speaker background profiling has been carried out by people from different disciplines
with different objectives. The most widely-used background profiling application is for
adapting automatic speech recognition (ASR) models. ASR models perform relatively
poorly for accented speech. However, speakers with different backgrounds commonly have
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a relatively large variation in their accents, especially when speaking a second language.
Hence, accent identification has been incorporated into ASR to reduce the error rate.
Multiple models are normally trained for different accents, and models trained particularly
for a particular accent in the test speech are used for ASR after the classification of the
speaker’s accent. Performance results of accent-specific ASR models can highlight the
accents that are difficult to recognise; hence acquiring more training data for such accents
can lead to more robust ASR (Najafian & Russell, 2020;Weninger et al., 2019).

Social background profiling is also used for the forensic investigation of criminals by
utilising a piece of speech evidence related to a crime (Jessen, 2007). As opposed to speaker
verification or identification, which is used as forensic evidence to match the identity of a
convict, speaker profiling can assist investigators in tracking down an unknown criminal by
locating him or her to belong to a specific geographical location or ethnic group. However,
the forensic application of speaker profiling has some particular challenges. The difference
between accents to be classified may be marginal, which makes it difficult to associate a
criminal with a precise geographical location within a country. Furthermore, speech data
available for forensic profiling from crime-related evidence are commonly, of very small
duration and low quality. More importantly, the margin of error and reliability of the
classification are of critical importance as the output of the classification model has legal
implications and can be used as a basis for conviction.

Forensic speaker profiling research has focused on the impact of proximate accents as
well as linguistic content on accent classification accuracy. Research has also focused on
identifying particular phonemes, which are more useful for the classification of particular
accents (Brown &Wormald, 2017). The quality and duration of the available samples for
forensic analysis are also critical, as mostly the evidence is from a telephone call, with
the telephone channel acting as a bandpass filter; shifting the formant frequencies for
vowels which are crucial for the classification task (Kunzel, 2001; Moreno & Stern, 1994).
Additionally, the commonly short duration of test samples results in the availability of fewer
vowels in the speech, which are also critical for the classification task (Brown, 2018). Social,
linguistics, forensic, and speech communities have emphasised the need for collaborative
research in forensic speech science to avoid innocent convictions and discrimination
towards a particular community during the course of criminal investigations or justice
processes (Hughes & Wormald, 2020).

Speaker social background profiling can also be used in automated customer services
and call centers for identifying the background of a speaker and serving them accordingly.
It can also be used for targeted marketing based on the speaker’s background. Finally, it
can be used in sociolinguistic and psycholinguistic research to analyze the differences in
accent across different societies and geographic regions.

Although significant research works have proposed speaker social background profiling
models, no review work has surveyed the state of the art in this area. Some surveys
have targeted speaker profiling in general, but none is dedicated specifically to the social
backgrounds of speakers. This work surveys recent research on automatic social background
profiling for English language speech. The survey covers various aspects of social profiling,
including accent classification, dialect identification, and native language identification.
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The survey examines the application scenarios targeted by the studies and the corresponding
challenges.

RATIONALE AND AUDIENCE
Automatic social background profiling of speakers has numerous practical applications,
such as in the development of multilingual speech recognition systems, the creation
of personalized speech technologies, and the analysis of speech data for sociolinguistic
research. Moreover, recent advancements in machine learning techniques such as deep
learning, have led to significant improvement in the accuracy and robustness of social
background classification systems.

Despite the significance and rapid advancements in speaker background or accent
profiling research, an exhaustive literature review is missing dedicated particularly to
speech accent classification. This literature review aims to fill that gap by comprehensively
examining recent research regarding speech accent profiling in the context of accents in
the English language. Given the diverse applications of speaker accent classification across
various domains, this review article caters to a broad audience, encompassing the speech
recognition research community, forensic science, and sociolinguistic communities.

This article presents an overview of the current state of research in speech accent
classification, including the datasets, speech features and classification models used, and
the performancemeasures achieved. The strengths and weaknesses of the different methods
were highlighted. A comparison between and evaluation of different studies, as well as the
research gaps that need to be addressed to advance the field, were also made.

This article reviews the recent research on speaker background profiling from speech
accents in the English language. The contributions of the article are as follows.
1. It formulates a detailed taxonomy for speaker accent profiling in terms of speech

features and the machine learning models used for classification.
2. It provides a detailed literature review of speaker profiling models proposed in recent

studies.
3. It provides a comparative analysis of the literature review to present the strengths and

weaknesses of the research.
4. It lists research challenges and future research directions to serve as a resource for

researchers looking to advance the research on speaker profiling.
The rest of the article is organised as follows. The survey methodology adopted in this

article is given in the next section. The following section presents the taxonomy of speech
features and machine learning models used for accent classification. The section next
reviews recent literature for accent profiling including the datasets designed, the features
used and classification models applied for the speaker background profiling tasks. Then
a comparative analysis section provides comparisons between state-of-the-art models
for speaker background profiling. The next section presents lays down future research
directions in the area and the last section presents the conclusion.
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SURVEY METHODOLOGY
This literature survey systematically evaluates the current state of research in this speech
accent classification. It identifies the key research issues and evaluates the effectiveness
of different methods. The survey highlights commonly used datasets and performance
metrics used for the evaluation of the proposed strategies. Finally, the survey points out
the opportunities for future research in the area.

The survey has focused on peer-reviewed journal articles and conference proceedings
published within the recent years. The search filtered English language publications
published after 2013. The keyword combination used for search was ‘‘automatic English
speech speaker profiling’’ OR ‘‘native language’’ OR dialect OR accent OR ‘‘social
background’’. The search targeted all papers containing each of the terms ‘automatic’,
‘English’ ‘speech’, and ‘speaker’ throughout the manuscript and required them to include
any of the following: profiling, native language, dialect, accent, or social background which
yielded 17,900 results. The results were then filtered, selecting datasets with at least 100
speakers, 2,000 speech samples, and five categories, except for the Accent and Identity
of Scottish English Border (AISEB) dataset, which was kept due to its significance for
forensic and sociolinguistic applications. The AISEB dataset records accent variations
across Scottish English border towns with similar accents. After filtering, nine datasets
were analyzed for their state-of-the-art methodologies and results, resulting in a detailed
analysis of 10 landmark studies that utilized the shortlisted datasets.

Speech accent classification models have used a variety of datasets for the English
language with speaker background annotations. Most models transform these speech
samples to derive suitable features for classification and then feed them to various classifiers
for the classification tasks. The following information was extracted from each article:
• Speech features
• Research methods and techniques
• Evaluation metrics and datasets
• Results and conclusions
• Limitations and future research opportunities
The extracted informationwas analyzed and organized to present the key trends in speech

accent classification research. The main strengths and limitations of current methods have
also been compared.

TAXONOMY
This section focuses on categorizing the speaker profiling research based on speech accent
features and classification models. Figure 1 summarizes the types of features extracted from
speech and classification models used for background profiling.

Features
The speech features can be generally divided into prosodic, short-term, long-term and
phonotactic features.
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Figure 1 Taxonomy of features andmodels for accent classification.
Full-size DOI: 10.7717/peerjcs.1984/fig-1

Prosodic features
The prosodic features are independent of speech content and include parameters such as
pitch, volume, stress levels, pauses, and tempo. These features are represented by parameters
such as fundamental frequency, average intensity and speed of variations in the acoustic
signal (Jiao et al., 2016a).

Short-term features
Short-term (ST) features are extracted by small-sized quasi-stationary windows sliding
across the speech duration. There are usually spectral or cepstral components for short-
duration chunks of speech. Since speech is a time-varying signal produced by changing
shapes of the vocal tract as a system response to the glottal excitation signal, the quasi-
stationary time windows are usually only a few milliseconds long as humans cannot change
the vocal tract shape in time duration, less than that. Short-term features can be generally
divided into spectral and cepstral features. The spectral and cepstral features extracted
from the short-time windows are referred to as short-term spectral and cepstral features,
respectively.

Spectral features
The most well-known ST spectral representation used is the spectrogram, which is the
sequence of spectra in the small windows plotted across time. Figure 2 illustrates an audio
speech waveform with a corresponding spectrogram plotted against time.
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Figure 2 Speech waveform and its spectrogram.Upper plot shows waveform amplitude variations over
time while lower plot displays frequency content over time for the corresponding spectrogram.

Full-size DOI: 10.7717/peerjcs.1984/fig-2

The spectrogram is usually divided into a discrete bank of filters on the Mel scale, and
the energies within each filter are summed to get a sequence of Filter-Bank energies. The
human neurons respond to the intensity of sound on a logarithmic scale. Inspired by the
logarithmic response to sound amplitude, the magnitudes of Filter-Bank energies are also
converted to logarithmic representation to obtain the LOG Filter-Bank features (Humayun,
Yassin & Abas, 2023; Shon, Ali & Glass, 2018).

Cepstral features
Since speech is produced by the convolution of vocal tract response with glottal excitation,
the spectrogram represents the multiplication of both responses, which are changed
to additive by taking the logarithm of the spectra. The additive vocal tract and glottal
components in the log of spectra are segregated by inverse frequency transform, with
the resulting representation referred to as the Cepstrum. Hence, the lower Cepstrum can
extract the envelope of the spectrum. The cepstral coefficients capture the spectral envelope
of the speech in quasi-stationary short durations. These coefficients have significantly
lower dimensions as compared to the spectrum and have very little correlation between
themselves, making them suitable as input for the classification models. The most well-
known variant cepstral coefficients used in literature is Mel Frequency Cepstral Coefficients
(MFCC). MFCC are coefficients of cosine transform computed from energies within band
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pass filters applied to mel-scaled spectrogram of speech (Lalitha et al., 2015; Najnin &
Banerjee, 2019).

Linear prediction coefficients
Linear predictive coefficients (LPC) represent the coefficients of an all-pole autoregressive
model estimating the vocal tract response for a smaller time window (Vestman et al., 2018).
The coefficients are computed by minimising the mean square of difference between
actual and linearly predicted values for each sample using the coefficients. The coefficients
represent the vocal tract shape whilst the difference between prediction and the actual
sample values represents the glottal excitation component of speech.

Delta features
To capture the temporal structure in the short-term features, short term features are
usually appended with Delta features, where delta features for each time frame represent
the local slope of coefficients over a small number of neighbouring time frames found by
least-squares (Rajpal et al., 2016).

Long-term embeddings
Long-term embeddings are fix-sized representations for the complete speech utterances
obtained by temporal modelling of a sequence of short-term features. These long-term
embeddings are particularly useful for utterance level, paralinguistic classification tasks,
such as speaker identity, emotion, gender, language, accent, or dialect identification.

Long-term (LT) acoustic features contain information on the temporal structure within
the complete speech utterances and are a higher dimensional statistical description of ST
features across the complete speech utterance. It is particularly useful for paralinguistic
information processing as it does not account for the local acoustic variations, which are
more relevant for the speech-to-text translation, and hence, themain focus of paralinguistic
classification models is on the long-term embeddings of the speech utterance.

There are three main methods used in literature for the LT feature vector extraction:
(1) the functional description vector, (2) the parametric super vector, and (3) neural
network embeddings, which have recently become popular mainly for speech and speaker
recognition tasks.

Functional description vector
The functional descriptor vector is obtained by applying multiple statistical functions
across time for all the ST features and then concatenating the results. The concatenated
vector has dimensions equal to the number of ST features multiplied by the number of
statistical functions employed (Kalluri, Vijayasenan & Ganapathy, 2020).

Parametric super vector
The long-termvector can also be constituted fromparameters for the underlying probability
distribution. Gaussian mixture models (GMMs) are used to model the short-term features.
The parameters estimated using the short-term features for the utterance are concatenated
to obtain the long-term representation (Kinnunen & Li, 2010; Sethu et al., 2013).
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A long-term representation that has achieved state-of-the-art results in speaker, language,
and accent recognition models is the parametric I-vector. It is obtained by factor analysis
decomposition of the difference between the adapted model and Universal Background
model (UBM) for Gaussian Mixture model (GMM) parameters (Dehak et al., 2011).

Neural network embedding
More recently, long-term temporal modelling of ST features by neural networks has shown
promising results in replacing the i-vectors. Neural networks are hierarchial parametric
functions trained to minimise an optimisation loss function. The parameters of the specific
bottleneck layer can be used to represent the long-term representation for a sequence of
short-term features used to train a neural network for a relevant sentence classification
task.

Unsupervised representations
Auto-encoders can capture bottleneck representations of speech using unlabeled datasets.
The auto-encoder comprises an encoder and a decoder part. The encoder transforms
speech into the bottleneck representation (Renshaw, 2016). Many enhancements have been
proposed for the autoencoder architecture to learn the representations for customized
requirements (Goodfellow et al., 2020; Gregor et al., 2014; Kingma &Welling, 2013).

Phonotactic features
Phonotactic features refer to phoneme inventory and phoneme sequence used by a
speaker. Besides the phonotactic features, more complex linguistic features, including
lexical, semantic, and contextual features can also be used to identify speaker backgrounds
by spoken dialect in the case of spontaneous speech. The linguistic features are extracted
from the transcript of a speech, obtained by a speech recognition model. However, these
linguistic features are not applicable in the case of short-duration or scripted speech
samples, particularly relevant for forensic profiling.

Feature normalisation and data augmentation
Feature normalisation and input data augmentation are two well-known strategies to
make a classification model more robust to irrelevant variations. The former refers to the
pre-processing techniques applied to the input features to remove irrelevant variability
from the data. Feature normalisation techniques include spectral subtraction, cepstral
normalisation, and frequency warping. Spectral subtraction aims to remove the additive
noise from a speech. The simplest method for spectral subtraction is to subtract the
spectral mean of silence segments in a speech from the entire utterance (Vincent, Virtanen
& Gannot, 2018). On the other hand, cepstral normalisation is used to counter the response
of slow-changing linear channels, usually achieved by subtracting the temporal mean across
a small-duration speech utterance from each cepstral coefficient (Liu et al., 1993). Finally,
frequency warping is used to counter the speaker or corresponding vocal-tract variability.
This is achieved by compressing, expanding, or rescaling the frequency axis for the
spectrogram, with the warping factor estimated by training for each speaker (Pelecanos &
Sridharan, 2001).

Humayun et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1984 8/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1984


Contrastingly, data augmentation is the process of deliberately adding irrelevant
variability in the features to augment the input training data, with the addition of augmented
data for training with the same classification labels making the classification model
insensitive to the irrelevant variations. Many augmentation techniques have been proposed
and tested to be successful, mainly for speech and speaker recognition tasks. The most
well-known speech augmentation techniques are vocal tract length perturbation (VTLP),
reverberation, spectral augmentation, pitch-shifting, denoising, and speed modification.

VTLP is achieved by warping the frequency axis through multiplication with randomly
selected warping factors (Jaitly & Hinton, 2013), whilst reverberation is achieved by
convolution of the speech with recorded audio impulse response for a reverberant
environment (Snyder et al., 2018). Spectral augmentation has been recently proposed
for ASR and has been proven to be very effective (Park et al., 2019). It refers to randomly
masking or warping the spectrogram across time as well as frequency axes. Pitch shifting
simply rolls the fundamental frequency across the frequency axes. Denoising adds random
noise to speech, and finally, speed modification is achieved by resampling the speech
samples (Fukuda et al., 2018).

Classification models
Both shallow and deep machine learning architectures have been employed in recent
research as classifiers for accent profiling models. Shallow classifiers usually have a global
optimisation and are more effective for simpler patterns of handcrafted features with fewer
data. On the other hand, deep classifiers are hierarchical and are optimised iteratively based
on error gradient. Generally, deep classifiers are more useful for complex patterns in a huge
amount of data.

Shallow machine learning models
Shallow classifiers include naïve Bayes, decision trees, K-nearest neighbours (KNN),
support vector machines (SVM), and extreme learning machines (ELM), amongst many
others. Inputs for the shallow models are manually crafted features that present the data
as a compact representation and maximise the segregation between different classes. For
speech classification tasks, the inputs are usually the statistically modelled acoustic feature
vectors representing complete utterance, while for language classification tasks, the inputs
are dense vector representations for sentences.

The naïve Bayes classifier estimates the posterior probability of the target class
conditioned on the observed features using the Bayes rule for conditional probability.
It is termed naïve as it assumes the feature probability densities conditioned for the classes
to be independent of each other and hence computes their joint probability as products of
their individual conditional probabilities. However, the naïve Bayes model may not be the
most accurate or suitable for complex speech datasets. Other machine learning models,
such as support vector machines or deep neural networks, may provide better but may also
require more computational resources and longer training times. Decision trees comprise
hierarchical decisions for classes based on threshold values for input features thresholds.
Multiple decision trees merged for a single problem enhance the results and are called
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random forests (Schonlau & Zou, 2020). KNN is a nonparametric classifier that stores the
complete training data and decides the class for the test sample by majority voting amongst
classes for k-nearest neighbours for the test sample in the training data.

Probabilistic linear discriminant analysis (PLDA) models the training data to be
generated from a mixture of Gaussian distributions and classifies the samples based
on latent distance from distribution centres. SVM estimates a linear hyper-plane in the
feature space separating the data points from both categories; the hyper-plane is found
by trying to maximise the distance between the points from each category which are the
closest to the opposing category. These data points are referred to as the margin points
or the supporting vector. Moreover, if the data features are not linearly separable in their
original dimensions, a kernel function is used over the feature vectors to append the result
as a new dimension to each vector. Consequently, the features are projected to higher
dimensions which makes them linearly separable for the hyper-plane. Finally, ELM is a
single-layer feed-forward neural network with randomly assigned sizes and input weights
on the hidden layer. Only the output weights for the hidden layer are found using training
data by linear optimisation.

Deep learning models
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are usually
employed as deep architectures for modelling speech sequences (Chung & Glass, 2018;
Kim et al., 2023; Wang et al., 2019). RNNs are designed specifically for time-series data,
whereby input to each RNN unit is the input feature for that time step concatenated with
the weighted output by the same RNN unit from the previous time steps. The final output
of the RNN can be the output by the units at the last time step as well as the sequence of
outputs for the entire time series. Attention is a mechanism proposed for the RNNs and is
state-of-the-art for classification in most speech processing tasks (Qian et al., 2019; Ubale
et al., 2019). To employ attention in RNNs, outputs for all-time steps by a single RNN unit
are collapsed by weighted averaging while the weights are learned automatically during
training. Consequently, critical segments in the input series are highlighted.

On the other hand, CNNs slide multiple matrices (filters), with different weights and
fixed-width (kernel size), across the input series. Each convolutional layer is usually
followed by a pooling layer, which locally samples by a fixed ratio from the sequence of
filter outputs. Finally, global average pooling averages the output sequence from each filter
to a single value. Recently, a variant of global average pooling, i.e., attentive pooling, has
been proposed for speech accent classification tasks (Ubale et al., 2019). Attentive pooling
is a weighted global average with weights learned by training, with the weights for attentive
pooling highlighting important input segments. Figure 3 depicts a convolution operation
with two filters sliding across time for a speech spectrogram.

Convolutional layers are often followed by activation functions that transform the
result of the convolution into a non-linear representation. Activation functions introduce
non-linearity into the network and enable it to learn complex representations. Common
activation functions used in CNNs include rectified linear unit (ReLU), sigmoid, and tanh.
Max pooling and average pooling are two common types of pooling operations that reduce
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Figure 3 Single dimensional convolutional neural network with convolutional kernel sliding across
the time axis of time-frequency features.

Full-size DOI: 10.7717/peerjcs.1984/fig-3

the spatial size of the feature maps produced by the convolutional layer; Max pooling
selects the maximum value from a set of adjacent activations, while average pooling takes
the average of the same set of activations. These pooling operations help to make the
network more robust to translation and scale variations in the input data, as well as reduce
computational complexity.

In recent years, speech processing models have used transformer-based models.
Transformers are capable of modelling longer dependencies between speech frames,
allowing them to better capture the context of speech signals (Vaswani et al., 2017). It
utilizes the self-attentionmechanisms and originally uses an encoder–decoder architecture,
to differentially weight the significance of different parts of the input data.

In terms of computation complexity, CNNs and RNNs are more computationally
complex compared to SVM and ELM, as they involve multiple layers and require more
computation for each layer. LDA, being a linear classifier, is computationally least complex,
but it may not perform well on complex datasets.

Ensemble of models
Utilising an ensemble of multiple classifiers has also been used to enhance the overall
classification performance. Ensembling of multiple classifiers refers to the fusion of
multiple classifiers for a particular task. Training multiple classifiers on the same dataset
and averaging their outputs for prediction increase the classification accuracy due to the
randomness in neural network training.Moreover, carefully designed variations in classifier
design can add diversity to the ensemble-based model, significantly improving the model’s
generalisation capability (Dong et al., 2020).
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Besides simple ensemble methods like majority voting and output averaging, advanced
techniques, such as bagging, boosting, and stacking, have also been used to merge multiple
individual classifiers (Dong et al., 2020;Pintelas & Livieris, 2020). Bagging is an abbreviation
for bootstrapping and aggregation. Bootstrapping refers to the training of individual
classifiers using multiple subsets of the dataset, where a different subset of input features
might be used for each training subset. Aggregation is the process of combining the output
of individual trained classifiers. On the other hand, boosting methods train the individual
classifiers sequentially so that the data misclassified by the earlier classifiers is emphasised
in succeeding classifiers. Data points that produce training errors in initial classifiers
are identified, and the following classifiers are adjusted to minimise the training error
for the misclassified data. Stacking refers to the merging of individual classifiers using a
meta-learner or a meta-classifier. The meta-classifier is stacked on top of the individual
classifiers to be fused such that the outputs from individual classifiers are treated as inputs
for the meta-classifier. The meta-classifier fusing the individual classifiers is trained by
end-to-end training.

LITERATURE REVIEW
Datasets
Numerous speech datasets have been compiled for research related to multiple speech-
processing tasks. However, only the datasets comprising speakers from diverse backgrounds
and their corresponding labelling can be used for social background classification. The
datasets used in accent classification literature have speech samples labelled with the
speaker’s accents, in terms of their dialect, native language, or even geographic origin.
These datasets can have various sizes in terms of speakers and their speech samples. The
spread of accents of these datasets can also vary from global accents to regional accents
within countries such as Great Britain, America, and India. Moreover, the quality of
datasets can also vary, with some in a controlled setting and some crowd-sourced. Some of
them are available publicly, while access to others is restricted.

The Accent and Identity on Scottish English Border (AISEB) dataset consists of English
speech in four different accents from Scottish-English Border towns. Social science
researchers collected the data from British Borders (BB). The Accents of British Isles
(ABI) dataset contains 14 different accents of British English, whilst the Test of English
as a Foreign Language (TOEFL) dataset comprises English speech samples by TOEFL
speaking test candidates from across the globe and has been compiled by Education
Testing Service (ETS) for the Native Language Sub-Challenge (NLSC) (Schuller et al.,
2016). The Texas Instruments, Massachusetts Institute of Technology (TIMIT) dataset
contains eight different American English accents. Common Voice is a crowd sourced (CS)
dataset by Mozilla. The dataset has speech samples in 96 different languages, and English
samples have been labelled with the native language of speakers from across the world.

Speech Accents Archive (SAA) is an open-source speech dataset for analysing accent
variations within speeches. The dataset comprises a single sentence spoken from the written
transcript by volunteer speakers spread across the world (Weinberger & Kunath, 2011).
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Table 1 English speech accent datasets.

Reference Dataset Accents Spread Speakers Samples Quality Availability Owner

Garofolo et al. (1992) TIMIT 8 US 630 6,300 Controlled Public MIT
Weinberger & Kunath (2011) SAA 200 Globe 2,138 2,138 Crowd-sourced Public GMU
Schuller et al. (2016) TOEFL 11 Globe 11,000 11,000 Controlled Private ETS
Ge (2015) FAE 23 Globe 4,925 4,925 Controlled Private CSLU
Ardila et al. (2019) CV 16 Globe 66,173 66,173 Crowd sourced Public Mozilla
West (2013) AISEB 4 BB 160 160 Controlled Private York
Ferragne & Pellegrino (2010) ABI 14 Britain 285 57 hrs Controlled Private UoB
Kalluri, Vijayasenan & Ganapathy (2020) NISP 5 India 345 15,000 Controlled Public N-I
Demirsahin et al. (2020) OBI 5 Britain 120 17,877 Crowd sourced Public ELRA

Two rather new datasets: NITK-IISc (NI) Speaker Profiling (NISP) (Kalluri, Vijayasenan
& Ganapathy, 2020) and Open British Isles OBI (Demirsahin et al., 2020), have still not
been tested for accent classification, although they have a considerable number of samples,
background diversity, and accent annotations. NISP has English and regional languages
by speakers from India, whilst the OBI dataset has samples with various English accents.
Table 1 summarises the English datasets with accent annotations mostly used by the
state-of-the-art models.

Features
Short term Filter-Bank energies have been proven effective for several speech accent
classification tasks (Rajpal et al., 2016; Sailor & Patil, 2016; Shon, Ali & Glass, 2018).
Besides, MFCC coefficients have little correlation, which makes them suitable as input for
classification models. It has been shown that MFCC features perform well for segregating
accent-related information (Singh, Pillay & Jembere, 2020).

Based on the architecture, supervised neural network embeddings have been named
according to the proposed models, such as bottle neck features (BNFs) or x-vectors (Snyder
et al., 2018). The BNF is the representation from the penultimate layer of a neural network
trained for ASR, whilst the x-vector is the representation of the intermediate layers of a
neural network trained for speaker recognition. X-vectors (Snyder et al., 2018) are obtained
by temporal pooling across the short-term features within a neural network trained for
speaker discrimination.

The distance matrix between the pronunciations of different phonemes in terms of
their acoustic pronunciations (Brown &Wormald, 2017) has proved effective for accent
classification. Accent-Distance (ACC-DIST) based model utilises the distance matrix
amongst the acoustic features for different spoken phonemes and has been successfully
applied to identify spoken accents with slight geographic separation (Brown, 2018).
Similarly, Parallel Phone Recognition and Language Modeling (PPRLM)models effectively
recognise the spoken phonemes anduse the sequence and frequency of phonemes to identify
spoken accents or language dialects (Najafian & Russell, 2020). Table 2 summarises the
speech features used in recent literature for accent classification with their types and brief
descriptions.
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Table 2 Speech features for accent classification.

Reference Feature Type Description

Rajpal et al. (2016) Filter-Bank Short-term spectral Total energies in spectral filter applied on mel-scale
Shon, Ali & Glass (2018) Log Filter-Bank Short-term spectral Logarithmic magnitude of Filter-Bank energies
Singh, Pillay & Jembere (2020) MFCC Short-term cepstral Discrete cosine transform of Log Filter-Bank
Rajpal et al. (2016) PLPC Short-term cepstral All-pole autoregressive modelling of Log Filter-Bank
Babu Kalluri et al (2020) Functional vector Long-term statistical Statistical functions for short-term features
Campbell et al. (2006) GMM super vector Long-term parametric Parameters of UB-GMMmodel for short-term features
Dehak et al. (2011) I-vector Long-term parametric Factorization of GMM supervector
Snyder et al. (2018) X-vectors Neural network Neural network bottleneck representation
Shon et al. (2017) AE embedding Neural network Unsupervised representation learning
Brown &Wormald (2017) ACC-DIST Phonotactic Distance matrix between phoneme acoustics
Najafian & Russell (2020) PPRLM Phonotactic Sequence and frequency of phoneme usage

Classification models
Accent classification models developed in literature from speech can be broadly categorised
as utterance-based or phoneme-based models.

Utterance-based classification
Utterance-based or text-independentmodels use the complete audio frame for classification
and rely on long-term temporal information in the acoustic features. The frame or utterance
level acoustic characteristics of speech are then captured by machine learning models
(Soorajkumar et al., 2017; Weninger et al., 2019) for the classification task. However, the
choice of machine learning model would depend on the specific task and dataset, and
may need to be evaluated using multiple performance metrics and multiple classification
scenarios.

PLDA classifiers have been particularly successful for accent and language classification
tasks (Abdurrahman & Zahra, 2021). SVM has been successfully applied to classify spoken
accents from acoustic features of isolated words (Rizwan & Anderson, 2018). ELM has
been found to be more effective than SVM for the same spoken accent classification from
acoustic features of individual spoken words (Rizwan & Anderson, 2018).

RNNs are well suited for speech classification tasks due to their feedback catering to the
sequential nature of speech (Adeeba & Hussain, 2019). CNNs capture the diagonal patterns
from the temporal spectrum or Cepstrum. The diagonal patterns represent the transition
of frequency characteristics with time and are useful indicators for phoneme articulation
as well as speaker characteristics (Tripathi et al., 2019).

Phoneme-based classification
Phoneme-based accent classification models extract only the speech segments representing
particular phonemes and then use those particular phonemes and their acoustic features to
classify the speech. Both automatic speech recognition and forced alignment using speech
transcription are used to segment speech into phonemes (McAuliffe et al., 2017).

The phonemes are divided into two major categories: consonants and vowels.
Consonants usually have a short duration and are produced by restricting the airflow
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Table 3 Models used for accent classification.

Reference Classifier Type Description

Brown &Wormald (2017) SVM Shallow model Finds a hyperplane to segregate the data classes
Rizwan & Anderson (2018) ELM Shallow model Single-layer neural network with only output weights

tunable
Abdurrahman & Zahra (2021) PLDA Shallow model Models data as a mixture of Gaussians
Adeeba & Hussain (2019) RNN Deep learning Neural network with feedback
Najafian & Russell (2020) CNN Deep learning A small kernel of neural network sliding across the input

of the excitation signal within the mouth and are attributed to the place and manner of the
restriction. On the other hand, vowels are of longer duration and are formed in the open
mouth by creating resonant cavities in the vocal tract by tongue position. This position of
the tongue represents the articulatory attributes of the vowel. The resonant cavities in the
mouth and the glottis cause suppression of most frequencies and high magnitude for two
particular frequencies based on the shape of both resonant cavities. These high-magnitude
frequencies of the vowel are also called the formant frequencies and play a major role in
accent classification (Johnson, 2004). Since vowels and their pronunciations have more
significant differences between accents, as compared to consonants, most works have
focused on only vowel pronunciations for phoneme-specific classifiers (Suzuki et al.,
2009).

The twomost well-known techniques for phoneme-based accent classification are accent
distance (ACCDIST) and parallel phone recognition and language modeling (PPRLM).
PPRLM classifiers are based on the hypothesis that speakers from different backgrounds
use different sequences and frequencies for phonemes in their speech. Hence, classifiers
such as support vector machines (SVMs) use phoneme frequency and sequences to classify
the accents (Chen et al., 2021).

On the other hand, ACCDIST techniques are based on the hypothesis that people from
different backgrounds articulate the vowels differently, and consequently, their vowels
have different acoustics. The model classifies spatial distance matrix between the acoustic
features for all the vowel instances within the utterance. Mostly, the midpoint MFCC
vectors for vowel segments are used as their acoustic features (Brown &Wormald, 2017).

Table 3 summarizes the types of machine learning classifiers mostly used in speech
accent classification literature.

COMPARATIVE ANALYSIS
The most common performance measure for evaluating speaker profiling models is
accuracy (Rizwan & Anderson, 2018; Singh, Pillay & Jembere, 2020). Accuracy indicates the
ratio of correctly predicted speech samples to the total number of speech samples. However,
other performancemeasures, including precision, recall, and f-score have also been reported
and compared for many speaker profiling tasks. Precision for each speaker category in the
dataset represents the ratio of true predictions to the number of total predictions for
the category. On the other hand, recall indicates the ratio of true predictions to the total
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number of samples for each category. F-score encompasses both precision and recall and is
computed as the harmonic mean of precision and recall (Humayun, Yassin & Abas, 2022).
All the category-wise metrics including precision, recall, and f-score can be averaged across
all categories to indicate an overall performance measure for the complete dataset. The
averaging across categories can be simple or weighted with the number of samples in each
class, with weighted averaging capable of highlighting if the classifier is biased towards
a particular category. Besides these performance measures, a confusion matrix is usually
used to illustrate the number of predictions corresponding to the true samples for the
categories. The confusion matrix effectively highlights the common misidentifications
between specific categories.

Brown &Wormald (2017) has used the AISEB dataset to test forensic accent profiling
over similar accents. The dataset consists of speech samples from proximate towns near
the Scottish-English border. Experiments were conducted using the ACCDIST-based SVM
classifier, with the classifier achieving an accuracy of 86.7% in identifying the four different
accents. To test the classification performance for telephone-quality speech, the speech has
been degraded by down-sampling and bandpass filtering to mimic the telephone channel.
This drops the classification accuracy to 64.4%.

Weninger et al. (2019) use a bi-directional long short term memory (LSTM) based
deep learning model for text-independent accent classification to improve Mandarin
speech recognition. Acoustic features, which have been extracted by sliding windows over a
complete audio frame, are used as input to the bi-directional LSTM for temporal modelling.
The classifier achieves a low accuracy of 34.1% in identifying the 15 different accents of
mandarin from mainland China.

Jiao et al. (2016b) merged feed-forward and recurrent neural networks for text-
independent, native language identification from the TOEFL dataset for the Native
Language Sub Challenge (NLSC). In trying to classify speakers from the 11 different
countries, the proposed model achieves an accuracy of 51.92%. Both the DNN and RNN
are trained without textual information. The audio samples are segmented into fix-sized
4-second frames for classification, whereby for each 4-second frame, a long-term feature
vector is obtained and used as input for the DNN. The long-term feature vector is obtained
by computing different statistical functions, including mean and standard deviation, over
short-term MFCC features across the frame. On the other hand, the RNN models the
temporal series of the short-term features directly. A combination of both RNN and DNN
is used as the final classifier. However, the accuracy for the short-term features-based
classification model is significantly lower than the I-vector based model on the same
dataset, with researchers (Shivakumar, Chakravarthula & Georgiou, 2016) reporting an
accuracy of 79.93% using I-vector as well as phonetic features for the same NLSC task.

Najafian & Russell (2020) use the ABI dataset, which consists of fourteen different
accents of British English, to improve and adapt the ASR model. The model uses a PPRLM
with SVM for phoneme-based and universal background-Gaussian mixture model for
text-independent accent classifications and merge their outputs. It has been shown that the
model is able to achieve an accuracy of 84.87%. Prior research by De Marco & Cox (2013)
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on the same ABI dataset had demonstrated an accuracy of 81.05% by using the acoustic
I-vectors only.

Ge (2015) combines phoneme-specific and text-independent classification using the
Foreign Accented English (FAE) corpus classifying seven accents. The proposed model
is composed of a combination of phoneme-based and long-term classifiers. Universal
background GMM classifier predicts the accent for both, the phonemes and the complete
speech utterances. The phonemes which can be recognised with a higher degree of
confidence have been selected for phoneme-based weighted classification, with the weight
for each classification corresponding to the occurrences in the dataset for that phoneme.
Testedwith short speech samples, themodel is able to achieve an accuracy of 54%.However,
the corpus consists of 23 different accents from around the world, which are grouped to
collapse into seven different categories for classification, and this makes the target accents
significantly different and the classification task relatively easier.

A research (Rizwan & Anderson, 2018) classifies specific word utterances in speech using
ELM with MFCC and its delta features as input, to classify English speech. The research
used the TIMIT dataset and achieves 77.88% accuracy for seven native United States
accents. Singh, Pillay & Jembere (2020) used Speech Accents Archive (SAA) dataset and
found that MFCC as short-term features perform the best for accent classification.

Finally, Ubale et al. (2019) propose to use attentive pooling in CNNs for accent
classification. The model uses neural network for the classification with short term spectral
features as input and PLDA with I-vector inputs. The fusion of both classifications achieves
83.32% accuracy over a recent TOEFL dataset managed by the Education Testing Service
(ETS). More recently, Ubale et al. (2019) applied CNN model directly to a raw audio and
merged its output with I-vector classifier. The fusion reported an accuracy of 86.05%.
Kethireddy, Kadiri & Gangashetty (2020) have also used CNN with the raw audio as input
and reported 81.26% accuracy over a subset of CV dataset comprising eight accents.

Table 4 lists benchmark models for speech accent classification with the reported
accuracies as well as the strategies and features used. The table demonstrates that until
recently, I-vector representations with shallow models, such as support vector machines
(SVMs), have been found to perform best for speech accent classification. However, recent
studies have shown that using sequences of spectro-temporal features or even raw audio
waveforms with CNNs can result in higher classification accuracy. This shift in the use of
features and models highlights the evolving nature of the field and the ongoing search for
improved methods in speech accent classification. Figure 4 illustrates the ratio for usage of
different speech datasets, input features, and classification models by the surveyed studies.

FUTURE RESEARCH DIRECTIONS
Analyzing the state-of-the-art models and trends in speaker profiling, the following list of
key research directions can be identified for future research in speaker profiling.
1. Deep learning-based unsupervised long-term speaker embeddings for profiling
2. Interpretable machine learning for speaker profiling, especially in forensic applications.
3. Exploring the correlation of phoneme articulation features with demographic accents.
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Table 4 Benchmarkmodels for speech accent classification.

Reference Dataset Accents Accuracy Features Classifier Remarks

Kethireddy, Kadiri &
Gangashetty (2020)

Common voice 8 81.26% Raw wave CNN CNN applied directly to the
raw audio waveform

Ubale et al., (2019) TOEFL 11 86.05% Raw wave,
I-vector

CNN, Attentive-
pooling, PLDA

CNN applied to raw waveform
before weighted global averaging and
fusion with PLDA using I-vector

Ubale, Qian &
Evanini (2018)

11 83.32% Log Filter-Bank,
I-vector

RNN, Attention,
CNN, PLDA

Fusion of RNN and CNN applied to
Log Filter-Bank features, and
PLDA applied to I-vector.

Jiao et al. (2016b) 11 51.92% MFCC, LT vector RNN, DNN Fusion of RNN applied to MFCC
sequence, and DNN applied to a
statistically modelled long-term vector.

Shivakumar,
Chakravarthula
& Georgiou (2016)

11 79.93% I-vector PLDA PLDA applied to I-vector

Rizwan & Anderson
(2018)

TIMIT 7 77.88% MFCC, deltas ELM ELM applied to the combination of
MFCC and delta features

Ge (2015) FAE 7 54.00% PLP, PCA, HLDA UBM-GMM Universal Background GMMmodel
applied to PLP features compressed
using PCA and HLDA

Brown (2018) AISEB 4 86.70% MFCC, ACCDIST SVM SVM applied to distance matrix among
vowel acoustic features

Najafian & Russell
(2020)

ABI 4 84.87% PPRLM, I-vector SVM Fusion of classification using I-vector
and Phonotactic features

De Marco & Cox
(2013)

4 81.05% I-vector projections LDA LDA used to project I-vectors in
lower dimensions before classification

4. Speaker profiling models for low-resource languages.
Most successful models that utilise long-term acoustic features use I-vectors that are

computed via statistical measures. Although bottleneck embedding from deep neural
networks, termed x-vector, has been used for speaker verification models, deep learning-
based long-term modelling has yet to surpass the performance of I-vectors for speaker
accent profiling.

Lately, there has been a noticeable increase in research exploring interpretable machine
learning and deep learning models for various machine learning tasks. However, the
task of speaker profiling research does not have many interpretable models. This is
particularly crucial, given the substantial advantages that interpretable models can bring,
especially in the context of forensic and sociophonetic applications. Interpretable models
can significantly enhance the understanding of the correlation between the articulation
features of phonemes and demographic accents. Filling this gap provides a valuable research
direction that can help grasp the connections between linguistic nuances and demographic
characteristics. Moreover, interpretable results for speaker profiling can bemore reliable for
forensic communities aimed at criminal convictionwhich has critical human consequences.

Except for a few studies (Humayun, Shuja & Abas, 2023),most of the accent classification
models disregard individual phoneme specific time segments, classifying complete
utterances. Few works target analysis from individual phoneme time windows. Examining
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Figure 4 Usage of speech datasets, input features, and classification models.
Full-size DOI: 10.7717/peerjcs.1984/fig-4

short-term features related to the articulation of a specific phoneme and exploring the
variability of these features within a short duration can also significantly aid in enhancing
the comprehension of sociophonetic variations. This exploration has potential for future
research, particularly in advancing phonetic understanding.

Limited works have analyzed vowel-specific accent classifications. Vowels stand out as
the most prominent distinguishing phonemes across various accents, given their usage
frequency in speech and their extended durations. Therefore, delving into the articulation
characteristics and, consequently, the features unique to vowel-associated speech is an
important focus for future research. The specific classification of vowels can not only refine
our understanding the classification results but can also enhance interpretable and reliable
speaker profiling.

Machine learning-based research demands extensive datasets and substantial resources,
often directing its attention predominantly to high-resource languages, such as English,
while neglecting low-resource languages, particularly those indigenous to areas with
limited resources. Despite the presence of accent variations in many of these low-resource
languages, minimal research has been dedicated to speaker profiling within this context.
Consequently, there is a significant research potential in exploring low-resource languages
for speaker profiling.

Cross-lingual transfer learning capability can also be explored in the future, particularly
for low resource languages. Accent or speaker profiling models can be tailored for low-
resource languages by adapting through the fine-tuning of models initially trained on
high-resource languages. This approach offers a viable solution to address the scarcity of
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labeled datasets in low-resource languages by transferring the knowledge gained in speaker
profiling from high-resource languages.

CONCLUSIONS
Speaker profiling ranges from identifying the physical body parameters of speakers to
identifying their social traits, geographic origin, and native language. Estimation of the
social background of speakers has multiple applications, including forensic investigations
and improving speech recognition models.

This article has reviewed the state-of-the-art in speaker profiling from speech accents.
The speech features, generally used as input for speaker accent classification, have been
presented. Short-term acoustic features are mostly modelled as long-term vectors for
complete speech utterances to classify the accents. Traditional machine learning classifiers
using I-vector as long-term acoustic representation were the most successful for speaker
profiling tasks. However, deep learning models have recently outperformed conventional
classification methods by using recurrent and convolutional neural networks on the
sequence of short-term spectral features or even directly on the raw audio waveform.

Most notable among the speech datasets for English is the TOEFL English speech dataset
by ETS, containing speech samples from candidates worldwide and has been used for native
language identification tasks. The highest accuracy of 86.05% has been reported on the
ETS dataset by applying a bank of CNNs directly to the raw audio waveforms of speech.
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