
A structure-preserving linearly
homomorphic signature scheme with
designated combiner
Xuan Zhou1,*, Yuan Tian1,*, Weidong Zhong1, Tanping Zhou2 and
Xiaoyuan Yang1

1 College of Cryptography Engineering, Engineering University of People’s Armed Police, Xi’an,
Shanxi, China

2 TCA Laboratory, State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

* These authors contributed equally to this work.

ABSTRACT
Linearly homomorphic signature (LHS) allows the acquisition of a new legal
signature using the homomorphic operation of the original signatures. However, the
public composability of LHS also prevents it from being used in some scenarios
where the combiner needs to be designated. The LZZ22 scheme designates a
combiner and preserves the signature structure by having the signer and the
designated combiner share a secret. However, LZZ22 is not secure enough because
the secret is constant. Here, we first prove that there is a polynomial time adversary
that can crack the secret in LZZ22 through multiple signature queries. Then, we
propose a new scheme, which realizes all the functions of LZZ22 and fixes the
security problem by changing the secret with the message. The proposed scheme is
shown to be secure against existential forgery on adaptively chosen subspace attacks
under the random oracle model. Finally, we detail how to apply our scheme to the
proxy signature and perform it on a personal computer, and the results show that our
scheme is efficient.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Cryptography, Theory and Formal Methods
Keywords Homomorphic signature, Linearly homomorphic signature, Structure-preserving,
Linearly homomorphic signature with designated combiner

INTRODUCTION
Linear network coding is an effective technique to improve network throughput. It allows
nodes to combine multiple received data packets into one packet and forward it, so as to
realize efficient data transmission. However, some malicious nodes in the network may
inject forged packets into legitimate packets, and synthesize a corrupted packet that can be
forwarded to other nodes. Other nodes in the network combine the corrupted packet with
the legitimate packets to synthesize a new corrupted packet and forward it. Due to the
nature of network coding, corrupted packets will pollute more legitimate packets, leaving
the destination node unable to recover the original data. This type of attack is called a
pollution attack. The digital signature (Diffie & Hellman, 1976) is one of the core
technologies of cryptography, which can provide authenticity, integrity, and non-
repudiation of information. However, the general digital signature scheme cannot be used

How to cite this article Zhou X, Tian Y, Zhong W, Zhou T, Yang X. 2024. A structure-preserving linearly homomorphic signature scheme
with designated combiner. PeerJ Comput. Sci. 10:e1978 DOI 10.7717/peerj-cs.1978

Submitted 21 September 2023
Accepted 13 March 2024
Published 28 March 2024

Corresponding authors
Weidong Zhong, wdeast@163.com
Tanping Zhou,
tanping2020@iscas.ac.cn

Academic editor
Shi Dong

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.1978

Copyright
2024 Zhou et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1978
mailto:wdeast@�163.�com
mailto:tanping2020@�iscas.�ac.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1978
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

to solve the pollution attack problem because the original signature becomes invalid once
the message is changed. The homomorphic signature (HS) is a type of digital signature that
allows any entity to obtain a new legal signature by homomorphic operation on the
original signature. Among them, the linearly homomorphic signature (LHS)
(Attrapadung, Libert & Peters, 2013) can well resist pollution attacks in network coding
because it supports linear homomorphic operations on messages (Zhao et al., 2007;
Charles, Jain & Lauter, 2006; Yu et al., 2008; Yun, Cheon & Kim, 2010). With the
development of homomorphic signature technology, LHS has also been used in scenarios
such as electronic health systems (Li, Zhang & Sun, 2021), blockchain (Lin et al., 2018),
and the Internet of Things (IoT) (Li, Zhang & Liu, 2020).

According to the homomorphism of LHS, any entity can obtain the signature of the
linear combination of the original messages using the homomorphism operation of the
obtained signatures from a set of message/signature pairs with the same label. This is the
public composability of LHS. However, in some scenarios such as proxy signing, the user
will designate a server that has the unique authority to combine messages and generate a
legitimate signature. This allows the designated server to sign instead of the user in special
circumstances, such as when it is not convenient for the signer, or if there is too much data.
General LHS cannot implement the function of designating a combiner due to its public
composability. Designating a combiner means that the signature is homomorphic for the
combiner but not for other entities in the system. The linearly homomorphic signature
with designated combiner (LHSDC) (Lin, Xue & Huang, 2021) realizes the function of
designating a combiner by key agreement. However, the signature structure generated by
the combiner was changed (Lin, Xue & Huang, 2021), so that the combined signature
cannot continue to be used as the input of the combination algorithm. Li, Zhang & Zhang
(2022) proposed the formal definition and security model of structure-preserving linearly
homomorphic signature scheme with a designated combiner (SPS-LHSDC) and
constructed the first SPS-LHSDC scheme, LZZ22. LZZ22 modifies the signature algorithm
based on Lin, Xue & Huang (2021) to make the combined signature structure consistent
with the original signature structure. However, this scheme has a security problem.

Our contributions
In this article, we first prove that there is a polynomial time adversary that can crack the
secret information in LZZ22 through multiple signature queries. Then, the adversary is
able to forge the signature corresponding to any message.

Secondly, we propose a new scheme, which has all the functions of LZZ22 and fixes the
security problem by changing the secret information with the message by adding one hash
operation and one exponential operation to the signature algorithm. Meanwhile, we detail
how to apply our scheme to the proxy signature.

Finally, we run the signature forgery program of LZZ22 through experiments, and the
results show that the time required to forge a signature is inversely proportional to the
message dimension. We run the proposed scheme in the same experimental environment

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 2/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

and compare it with other LHS schemes. The experimental results show that the signature
algorithm and the verification algorithm of our scheme are efficient, and that the usage of
system resources by our algorithm is low.

Related works
Desmedt (1993) introduced the concept of HS, and Johnson et al. (2002) introduced its
formal definition and general framework in 2002. Afterward, many HS schemes appeared
(Cheng et al., 2016; Li et al., 2018; SadrHaghighi & Khorsandi, 2016; Catalano, Fiore &
Warinschi, 2014; Gorbunov, Vaikuntanathan & Wichs, 2015; Zhang, Jianping & Ting,
2012; Aranha & Pagnin, 2019), including one in which, LHS supports linear homomorphic
operations on messages. However, the early LHS schemes lack strict security proof and are
not practical. In 2009, Boneh et al. (2009) constructed the first provably secure LHS scheme
under the random oracle model. In this scheme, each file is regarded as a linear vector
subspace, and the source node signing the basis vectors of the subspace is equivalent to
signing the whole file. Gennaro et al. (2010) proposed the first LHS scheme based on the
RSA difficult problem. This scheme reduces the cost compared with the scheme in Boneh
et al. (2009). To achieve the function of anti-quantum attacks, Boneh & Freeman (2011)
proposed the first lattice-based LHS scheme in 2011. The security of the scheme is based on
the SIS difficulty problem. The signature verification of the scheme is completed in the
binary domain. Chen, Lei & Qi (2016) constructed the first LHS scheme based on the SIS
difficulty problem under the standard model. This scheme can resist weak adversaries and
provide weak context-hidden privacy. In 2018, Lin et al. (2018) constructed the first ID-
based LHS scheme by introducing ID-based signature technology. This scheme uses the
user’s identity ID as the public key, which avoids the disadvantage of difficult key
management. Zhang et al. (2018) proposed a more efficient ID-based LHS scheme,
Zhang18. However, their scheme does not augment the original vector, so it is not suitable
for network coding. Moreover, ID-based LHS schemes suffer from key escrow problems.
In 2021, Wu, Wang & Yao (2021) constructed a certificate-free LHS scheme Wu21 for
network coding. Their scheme avoids both the certificate management problem and the
key escrow problem.

Lin, Xue & Huang (2021) and Lin et al. (2017) proposed two LHSDC schemes to make
the LHS scheme applicable in scenarios that need to designate a combiner or verifier, Lin17
and Lin21. The latter made up for the former’s lack of public verifiability. In both schemes,
only the designated combiner has the right to combine the original signature. However, the
combined signature structure in Lin, Xue & Huang (2021) and Lin et al. (2017) has
changed, so that the combined signature can no longer be used as the input of the
combination algorithm. In 2022, Li, Zhang & Zhang (2022) proposed the first SPS-LHSDC
scheme LZZ22 based on the Lin21. In the SPS-LHSDC scheme, the combined signature
has the same signature structure as the original signature, so it can still be used as the input
of the combination algorithm. This function enables the SPS-LHSDC scheme to be used in
certain scenarios. However, the scheme LZZ22 has a security problem.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 3/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Organization
The overall structure of the rest of this article is as follows. In the “Preliminaries” section,
we introduce some preliminaries. In the “The Security Problem of LZZ22”, we analyze the
security of LZZ22 and then construct a signature forgery algorithm for LZZ22. In “The
proposed Scheme” section, we propose a new SPS-LHSDC scheme and prove the
correctness and security of the scheme. In the “Application and Security Analysis” section,
we first describe how to apply the scheme in this article to proxy signature, and then run
the signature forgery experiment of LZZ22 and compared the efficiency of our scheme
with four other LHS schemes. Finally, we summarize the full text and describe future
research directions in the Conclusions.

PRELIMINARIES
Here, we introduce some basics, including symmetric bilinear mapping, the augmented
basis vector, and the formal definition of SPS-LHSDC.

Symmetric bilinear mapping
In 1991 Menezes, Vanstone & Okamoto (1991) proposed symmetric bilinear mapping
which is defined as follows.

Let G1 and G2 be groups of order q. If a mapping e : G1 �G1 ! G2 satisfies:

1. Calculability: 8g 2 G1, solving e g; gð Þ is efficient;
2. Bilinear: 8a, b 2 Zq, g 2 G1, all satisfy e ga; gb

� � ¼ eðg; gÞab;
3. Non-degenerate: 9g 2 G1, makes e g; gð Þ 6¼ 1.

The mapping is called symmetric bilinear mapping.
Definition 1: (computational Diffie-Hellman problem (CDH)) (Boneh, 1998). Given a

triple ðg; ga; gbÞ, where g is the generator of G1, a; b RZ�q are two unknown elements,
solve gab.

Definition 2: (CDH assumption) (Boneh, 1998). If for any probabilistic polynomial-
time (PPT) algorithm A, the probability of solving the CDH problem is negligible, then it
is difficult to solve the CDH problem in G1.

The augmented basis vector
In an LHS scheme, a file is usually divided into a set of n-dimensional original vectors
v1; v2; . . . ; vm 2 Zn

q , where vi ¼ vi1; vi2; . . . ; vinð Þ, i 2 1; 2; . . . ;mf g, q is a large prime. To

ensure that receivers in the network can recover this set of vectors, the set of original
vectors will be augmented to ensure that they are linearly independent. The augmentation
operation of this set of vectors is as follows (Boneh et al., 2009): For each i 2 1; 2; . . . ;mf g,
let

vi ¼ vi1; . . . ; vin; vi nþ1ð Þ; . . . ; vi nþmð Þ
� � 2 ZN

q ; (1)

where

vi nþjð Þ ¼ 1; j ¼ i
0; j 6¼ i

i; j ¼ 1; 2; . . . ;m

�
: (2)

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 4/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Among them, N ¼ nþm, add a m-dimensional unit vector (the i-th bit of this unit
vector is “1”, and the rest bits are “0”) after the basis vector vi. This set of vectors after the
augmentation operation becomes a set of basis vectors of the subspace to which the
original file belongs due to its linear-independent property.

The formal definition of SPS-LHSDC
Definition 3: The SPS-LHSDC scheme consists of five PPT algorithms (Li, Zhang &
Zhang, 2022):

� Setupð1k;NÞ ! ðppÞ: The algorithm inputs the security parameter 1k and the
dimension N, outputs the system public parameter pp;

� KeyGenðppÞ ! ðsk; pkÞ: The algorithm inputs pp and outputs a private key sk and the
corresponding public key pk;

� Signðpp; skA; pkB; id; vkÞ ! ðs;rkÞ: The algorithm inputs pp, the signer’s private key
skA, the combiner’s public key pkB, file identifier id and vector vk, and outputs the
subspace label s and signature rk;

� Combine pp; pkA; skB; s; vk;rk;bkð Þf gmk¼1
� �! ðv;rÞ: The algorithm inputs pp, pkA, skB,

s andm triples vk;rk;bkð Þf gmk¼1, where bk 2 Z�q, outputs a message/signature pair ðv;rÞ;
� Verifyðpp; pkA; s; v;rÞ ! ð0; 1Þ: The algorithm inputs pp, pkA, s, v, and r. If r is the
legal signature of vector v, the algorithm outputs 1; otherwise, the algorithm outputs 0.

Correctness
The SPS-LHSDC scheme is correct if it satisfies the following two conditions:

1. 8id 2 0; 1f gk and vk 2 ZN
q , if rk Signðpp; skA; pkB; id; vkÞ, then

Verifyðpp; pkA; s; vk;rkÞ ¼ 1: (3)

2. 8id 2 0; 1f gk and vk;rk;bkð Þf gmk¼1, if Verifyðpp; pkA; s; vk;rkÞ ¼ 1 holds for all
k 2 f1; . . . ;mg, then
Verifyðpp; pkA; s; Combine pkA; skB; id; vk;rk;bkð Þf gmk¼1

� � ¼ 1: (4)

Security model
In the SPS-LHSDC scheme, the forgery of adversaryA is said to be successful if the forged
message/signature pair can pass the verification algorithm, and the forgery conforms to
one of the following types of forgery.

Type 1 Forgery: The adversary A never queried the subspace V and generates a valid
signature for w� 2 V , where w� 6¼ 0.

Type 2 Forgery: The adversaryA has queried the subspace V labeled s, and thenA uses
the label s to generate a valid signature for w�=2V , where w� 6¼ 0.

Type 3 Forgery: The adversary A has queried the subspace V, and then A generates a
valid signature for w� 2 V without knowing the private key of the combiner, where the
vector w� is composed of the basis vector of V and w� 6¼ 0.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 5/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Definition 4: If the probability of any PPT adversary A winning the following games is
negligible, then the SPS-LHSDC scheme is safe.

� Setup: The challenger C selects the security parameter 1k and a positive integer N
and runs Setupð1k;NÞ ! ðppÞ, KeyGenðppÞ ! ðsk; pkÞ in turn. Then C sends
pp; pkAð Þ to A.

� Combiner-key Generation Query: when A initiates this query, C runs
KeyGenðppÞ ! ðskB; pkBÞ and sends pkB to A.
� Combiner Corruption Query: When A initiates this query, A sends a combiner’s
public key pkB to C, then C returns the corresponding skB to A.
� Sign Query:When A initiates this query, A selects a subspace Vi ¼ spanfvi1; . . . ; vimg,
where vi1; . . . ; vim 2 Zn

q , then C:
1) For each k 2 f1;…;mg, augments vik 2 Zn

q to vik 2 ZN
q , then gets a new subspace Vi.

2) Randomly selects the file identifier idi, then gets the subspace label si ¼ ðidi; pkBÞ
for Vi.

3) For each k 2 f1;…;mg, runs Signðpp; skA; pkB; idi; vikÞ ! rik.
4) Returns si and ri ¼ ðri1; . . . ;rimÞ to A.
� Combine Query: When A initiates this query, A sends si; vik;rik;bikð Þf gmk¼1

� �
to C,

then C runs Combine pp; pkA; skB; si; vik; rik;bikð Þf gmk¼1
� �! ðv; rÞ and returns

ðv;rÞ to A.
� Forgery: A outputs a signer’s public key pk�A, a combiner’s public key pk�B, a subspace
label s�, a non-zero vector v� 2 ZN

q and a signature r�.

If Verifyðpp; pk�A; s�; v�;r�Þ ¼ 1 and one of the following three conditions is true, the
adversary A is considered to win the above game:

1. s� 6¼ si for any i;

2. s� ¼ si for some i but v�=2Vi;

3. s� ¼ si for some i, v� 2 Vi � fvi1; . . . ; vimg, and A has not queried the combiner’s
private key.

THE SECURITY PROBLEM OF LZZ22
Here, we first analyze the security of LZZ22 and then perform signature forgery against its
security problem.

Security analysis of the LZZ22
Li et al. used a similar method as Boneh et al. (2009) to prove that LZZ22 is secure against
existential forgery on adaptively chosen subspace attacks under the random oracle model.
However, the security model of the SPS-LHSDC scheme has one more type of forgery
(Type 3 Forgery) than Boneh et al. (2009). Li, Zhang & Zhang (2022) actually only proves
that the LZZ22 scheme can resist Type 1 Forgery and Type 2 Forgery. Type 3 Forgery exists

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 6/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

in SPS-LHSDC because requires that no entity other than the designated combiner
combine original signatures to generate a new signature. Type 3 Forgery without knowing
the private key of the designated combiner, can obtain the signature of a new message.
Below, we analyze the feasibility of Type 3 Forgery in LZZ22.

LZZ22 designates a combiner by binding the combiner’s public key to the signature
algorithm. The signer then shares a secret information with the combiner through key
negotiation. The secret information can make the signatures generated by the signer
temporarily lose the homomorphic property. Therefore, other entities in the system cannot
combine signatures, and the combiner who has the secret information can restore the
homomorphic property of the signature, thereby obtaining the authority to combine
signatures. Thus, the key to realizing the function of designating a combiner is that only
the signer and the designated combiner have the secret information. An adversary that can
decrypt the secret information in LZZ22 can pretend to be the designated combiner and
make any combination of the original signatures to forge a new message/signature pair.
Next, we explore a theoretical way to crack LZZ22’s secret information.

In LZZ22, the document will be divided into m message vectors vif gmi¼1, where
vi ¼ vi1; vi2; . . . ; vi;mþn

� �
, i 2 1; 2; . . . ;mf g, and the signer signs these message vectors,

respectively. The signature corresponding to the k-th message vector is

rk ¼
Qn

i¼1 g
vk;i
i

Qm
j¼1H1 s; jð Þvk;nþjuB

� �aA
, where gif gni¼1 are the generators of G1, s is the

subspace label, H1 is a hash map: 0; 1f g� ! G1, uB is the public key of the designated
combiner, aA is the private key of the signer. uBaA ¼ uAaB ¼ gaAaB , so uBaA is the secret
information shared by the signer and the designated combiner. However, uBaA is a fixed
value and can be obtained by division between two different signatures. If the adversary
finds out the value of uBaA , he obtains the authority to combine signatures, thereby forging
a new message/signature pair.

Signature forgery
The specific requirements of Type 3 Forgery in the SPS-LHSDC security model (Li, Zhang
& Zhang, 2022) are as follows:

� The adversary A does not know the private key of the combiner.

� A has queried the subspace V, that is,A knows a set of basis vectors vif gmi¼1 of subspace
V and the corresponding signature rif gmi¼1.
� A generates a legal signature for a non-zero vector v�, and v� must be obtained by a
linear combination of vif gmi¼1.
According to the requirements of Type 3 Forgery and the security vulnerability of the

LZZ22 scheme, if the adversary A wants to forge the signature r� of a vector v�, A first
needs to find the secret information uaAB shared by the signer and combiner by asking for
two different signature values (Step 1). The adversary then represents the attempted forged
vector v� with a set of basis vectors vif gmi¼1 of subspace V (Step 2). Finally, the adversary,

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 7/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

with the secret information uaAB , will be able to assume the identity of the combiner and run
the Combine in LZZ22 to obtain the legal signature of the vector v� (Step 3). The specific
steps are as follows:

Step 1: Queries the signature r0 of any message v0 and the signature r00 ¼ r20
u
aA
B
of

message 2v0; get u
aA
B ¼ r20

r00
.

Step 2: After querying the subspace V where the message v� is located, a set of basis
vector/signature pairs vi;rif gmi¼1 of the subspace V is obtained, and v� can be decomposed
into

v� ¼
Xm
i¼1

bivi: (5)

Step 3: Calculates r�i ¼ ri
u
aA
B
; i ¼ 1; 2; . . . ;m, respectively, and gets the signature

corresponding to v�:

r� ¼
Ym
i¼1

r�i
bi

 !
� uaAB

¼
Ym
i¼1

rir00
r20

� �bi
 !

� r
2
0

r00
:

(6)

The correctness of the message/signature pair ðv�; r�Þ is obvious. The key to the
successful forgery above is that the adversaryA finds out the secret information uaAB shared
by the signer and the designated combiner. This type of forgery satisfies the condition of
the Type 3 forgery.

In this section, we find that the root cause of the insecurity of the LZZ22 scheme is that
the secret information uBaA shared by the signer and the specified combinator is a fixed
value, and this fixed value can be easily separated from the signature. Our signature forgery
approach can attack some digital signature schemes with the same characteristics: (1) some
of the important information in the signature is a fixed value; (2) this fixed value can be
derived by arithmetic among multiple signatures. In the next section, we propose a more
secure scheme. Compared with the LZZ22 scheme, our scheme adds a hash function value
of the message vk to the index part of the secret information uBaA . If the adversary wants to
obtain the secret information, it will need to solve the discrete logarithm problem, so our
scheme ensures the security of secret information.

THE PROPOSED SCHEME
Here, we first propose a new scheme by fixing the security problem of LZZ22, then we
prove the correctness and security of our scheme.

Construction
The proposed scheme is composed of five algorithms, Setup is responsible for generating
initialization parameters, KeyGen is responsible for generating public/private keys of the
user and the designated combiner, Sign is run by the signer and is responsible for

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 8/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

generating the original signature, Combine is run by the designated combiner and is
responsible for generating the combined signature from the original signature. The Verify
algorithm is responsible for verifying the legitimacy of all signatures. The details of each
algorithm are as follows:

� Setupð1k;NÞ ! ðppÞ: The algorithm inputs the security parameter 1k and a positive
integer N, then:
1) Two multiplicative cyclic groupsG1 andG2 with large prime q are randomly selected,
where q. 2k, a bilinear mapping e : G1 �G1 ! G2.
2) The generators g; g1; . . . gN is randomly selected in the group G1.
3) Selects two hash function H1 : 0; 1f g� ! G1 and H2 : ZN

q ! Z�q.
4) Outputs system public parameter pp ¼ G1;G2; q; e; g; g1; . . . gN ;H1;H2ð Þ.
� KeyGenðppÞ ! ðsk; pkÞ: The algorithm inputs pp, when the signer runs the algorithm,
randomly selects aA 2 Z�q as the signer’s private key skA, and calculates uA ¼ gaA as the
signer’s public key pkA; when the designated combiner runs the algorithm, randomly
selects aB 2 Z�q as the designated combiner’s private key skB, calculates uB ¼ gaB as the
public key pkB of the designated combiner.

� Signðpp; skA; pkB; id; vkÞ ! ðs;rkÞ: The algorithm inputs pp, skA ¼ aA, pkB ¼ uB, the
file identifier id 2 0; 1f gk and the vector vk 2 ZN

q , then outputs the subspace label
s ¼ ðid; pkBÞ and the signature

rk ¼
Yn
i¼1

g
vk;i
i

Ym
j¼1

H1 s; jð Þvk;nþjuBH2ðvkÞ
 !aA

: (7)

� Combine pp; pkA; skB; s; vk;rk; bkð Þf gmk¼1
� �! ðv; rÞ: The algorithm inputs pp,

pkA ¼ uA, skB ¼ aB, s, and m triples vk; rk; bkð Þf gmk¼1, where bk 2 Z�q. The designated
combiner calculates and outputs:

v ¼
Xm
k¼1

bkvk; (8)

r ¼ uaBH2 vð Þ
A

Ym
k¼1

rkðuaBH2 vkð Þ
A Þ�1

� �bk
: (9)

� Verifyðpp; pkA; s; v;rÞ ! ð0; 1Þ: The algorithm inputs pp, pkA ¼ uA, s, the vector v, and

the signature r. If e r; gð Þ ¼ e
Qn

i¼1 g
vi
i

Qm
j¼1 H1 s; jð ÞvnþjuBH2ðvÞ; uA

� �
holds, the

algorithm outputs 1; otherwise, it outputs 0.

Correctness
The correctness of the proposed scheme consists of two parts, namely the correctness of
the signature algorithm and the correctness of the combination algorithm.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 9/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

The correctness of the signature algorithm
8id 2 0; 1f gk and vk 2 ZN

q , if rk Signðpp; skA; pkB; id; vkÞ holds, then
c1 ¼ e rk; gð Þ

¼ e
Yn
i¼1

g
vk;i
i

Ym
j¼1

H1 s; jð Þvk;nþjuBH2ðvkÞ
 !aA

; g

 !

¼ e
Yn
i¼1

g
vk;i
i

Ym
j¼1

H1 s; jð Þvk;nþjuBH2ðvkÞ; uA

 !

¼ c2:

(10)

The correctness of the combination algorithm
8id 2 0; 1f gk and vk;rk; bkð Þf gmk¼1, if Verifyðpp; pkA; s; vk; rkÞ ¼ 1 holds for all

k 2 f1; . . . ;mg, ðv; rÞ Combine pkA; skB; id; vk; rk; bkð Þf gmk¼1
� �

, where

v ¼Pm
k¼1 bkvk, then

r ¼
Yn
i¼1

gvii
Ym
j¼1

H1 s; jð ÞvnþjuH2 vð Þ
B

 !aA

¼ uaAH2 vð Þ
B

Yn
i¼1

gvii
Ym
j¼1

H1 s; jð Þvnþj
 !aA

¼ uaBH2 vð Þ
A

Yn
i¼1

g

Qm
k¼1

bkvk;i

i

Ym
j¼1

H1 s; jð Þ
Qm
k¼1

bkvk;nþj

0
B@

1
CA

aA

¼ uaBH2 vð Þ
A

Xm

k¼1
Yn
i¼1

gvk;ii

Ym
j¼1

H1 s; jð Þvk;nþj
 !aA !bk

¼ uaBH2 vð Þ
A

Xm

k¼1 rk � uaBH2 vkð Þ
A

� ��1� �bk

:

(11)

Security analysis
In this section, we use a game to prove the security of the scheme. Our general idea is to
assume that there exists a PPT adversary A that can forge a message/signature pair of our
scheme with a non-negligible probability ϵ. Then we will show that there exists another
PPT algorithm B, and that B can crack the CDH problem by interacting with A with
another non-negligible probability ϵ0. According to the CDH assumption that there exists
no PPT algorithm that can crack the CDH problem with a non-negligible probability,
therefore, we conclude that there exists no PPT adversaryA that can achieve forgery with a
non-negligible probability, thus proving the security of this scheme. In our proof process,
we first define the type of queries that adversary A is able to make (capabilities of A) and
the way B replies, and find the probability ϵ1 that B is able to successfully simulate the
system based on the way B replies (the probability that B has not given up the simulation).

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 10/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Then, assuming that A has output a valid forgery with probability ϵ, we find the
probability ϵ2 that B correctly outputs a solution to the CDH problem using the forgery of
A. Finally, if all of the above events hold true, we obtain the probability that B cracks the
CDH problem as ϵ0 ¼ ϵ1ϵ2ϵ. Since ϵ1, ϵ2, and ϵ are not negligible, ϵ0 is not negligible. By
the converse method, we conclude that PPT adversary A cannot crack our scheme with
non-negligible probability ϵ. The specific proof process is as follows.

Theorem 1. If there is a PPT adversary A who can break the proposed scheme with a
non-negligible probability ϵ, then there is another PPT algorithm B that can solve the
CDH problem with a non-negligible probability ϵ0 � e2 1� 1

qsqh

� �
1� 1

q

� �
ϵ, where qs and

qh, respectively represent the number of Sign Query and H1 Query.
Proof. Suppose there is an adversary A that meets the above conditions, then we will

construct another PPT algorithm B, B will call A as a subroutine, and obtain gab from the
known public parameters pp ¼ ðq;G1;G2; e; gÞ and ðga; gbÞ, where g 2 G1; a; b RZ�q.

� Setup: B Selects a large integer N, then:
1) Randomly selects s1; s2; . . . ; sN 2 Z�q, calculates gj ¼ gb

� �sj for j 2 ½1;N�;
2) Lets pkA ¼ ga ¼ uA, publishes the parameter pp ¼ ðq;G1;G2; e; g; g1; g2; . . . ; gNÞ;
3) Sends pkA and pp to A.
� Combiner-Key Generation Query: A will initiate multiple queries. B denotes the t-th
query as ðpk tð Þ

B ; sk tð Þ
B Þ, and guesses that the T-th query corresponds to the final forgery of

A. B creates a list Lk to record this query, and each record in Lk is ðt; pk tð Þ
B ; sk tð Þ

B Þ. When

A initiates this query, then B:
1) If t 6¼ T , B selects yt RZ�q as the private key sk tð Þ

B , then calculates and returns the
corresponding public key pk tð Þ

B ¼ gyt to A;
2) If t ¼ T , B selects yt RZ�q, lets the public key pk tð Þ

B ¼ gbyt ¼ uB. Neither A nor B
knows the private key sk Tð Þ

B corresponding to pk tð Þ
B . B stores t; pk tð Þ

B ; sk tð Þ
B

� �
into list Lk

and returns pk tð Þ
B to A.

� Combiner Corruption Query: When A initiates this query, A sends a combiner’s
public key pk tð Þ

B to B. If t ¼ T , B gives up the simulation, otherwise, B queries the list Lk
and returns sk tð Þ

B to A.
� H1 Query: B builds a list LH to record the H1 Query, and each record in LH is

ðs; fi;H1 s; ið Þf gmi¼1Þ. When A initiates this query, A sends the subspace label s to B,
then B:
1) If s has already been queried, B queries the list LH and returns H1 s; ið Þf gmi¼1;
2) Otherwise, B selects f1; f2; . . . ; fm RZ�q and calculates H1 s; ið Þ ¼ gb

� �fi for
i 2 ½1;m�. B stores s; fi;H1 s; ið Þf gmi¼1

� �
into list LH and returns H1 s; ið Þf gmi¼1.

� Sign Query: A queries for the signatures of the subspace V 	 ZN
q , then B:

1) Selects id R 0; 1f gk and let the label of the vector subspace V be s ¼ ðid; pk tð Þ
B Þ. If

H1 s; �ð Þ has already been queried, then B aborts the simulation;
2) Lets m ¼ N � n, calculates fi ¼ �

Pn
j¼1 sjvij for i ¼ 1; . . . ;m;

3) Selects a value zi RZ�q, lets H1 s; ið Þ ¼ gzi gbð Þfi
pk tð Þ

B

;

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 11/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

4) Calculates ri ¼ gaðziþH2 við Þ�1Þ;
5) Outputs label s and signature rif gmi¼1.
� Combine Query: A sends pk tð Þ

B ; s; bi; vi; rif gmi¼1
� �

to B, if t ¼ T , then B gives up this
simulation. Otherwise, then B:
1) Calculates v ¼Pm

i¼1 bivi;

2) Calculates r ¼ gsk
tð Þ
B H2 vð ÞaQm

i¼1 ri � ðgsk
tð Þ
B H2 við ÞaÞ�1

� �bi

;

3) Outputs label s and message/signature pair ðv; rÞ.
� Output: In the above process, if B does not give up the simulation, the successful forgery
of A means outputting a quadruple ðpk�B; s�; v�;r�Þ, where v� 6¼ 0, and Verify
pp; pkA; s�; v�;r�ð Þ ¼ 1. If s� has not appeared in the signature query, B computes and

outputs gab ¼ r�

ga yþH2 v�ð Þ�1ð Þ

� � 1
s�v�
, where s ¼ ðs1; . . . ; sn; f1; . . . ; fmÞ.

Below we prove that B successfully simulates the Setup, KeyGen, and Sign algorithm,
and hash function H1 without giving up the simulation. Since the Combine algorithm
simulated by B runs completely according to the real algorithm, its correctness proof is
ignored here.

Since s1; s2; . . . ; sN are randomly selected values, g1; g2; . . . ; gN are also random values,
so B successfully simulates the algorithm Setup and KeyGen; and because f1; f2; . . . ; fm
are randomly selected values, the output of H1 is also a random value, so B successfully
simulates the hash function H1. Below, we prove that B successfully simulates the Sign
algorithm:

For the Sign algorithm, when the input parameter is ðpp; skA; pk tð Þ
B ; id; vÞ, where

skA ¼ a; pk tð Þ
B ¼ uB, the corresponding real signature value is:

r ¼
Yn
i¼1

gvii
Ym
j¼1

H1 s; jð ÞvnþjuBH2ðvÞ
 !a

: (12)

Substituting the query value gi ¼ gb
� �si ;H1 s; jð Þ ¼ gzj gbð Þfj

uB
; uB ¼ gyt into the above

formula, the result of the Sign Query is:

r ¼
Yn
i¼1

gb
� �sivi Ym

j¼1

gzj gb
� �fj
uB

 !vnþj

gytH2 vð Þ
 !a

¼ g
b
Pn

i¼1 siviþ
Pm

j¼1 fjvnþj

� �
gzg H2 vð Þ�1ð Þ

 !a

¼ gabðs�vÞgaðzþH2 vð Þ�1Þ

¼ gaðzþH2 vð Þ�1Þ:

(13)

According to the construction of f in the Sign Query, s � v ¼ 0 can be known, so the last
equal sign in the above formula is established. It can be found that the output of the real

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 12/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

signature algorithm Sign is consistent with the output of B, so B successfully simulates the
algorithm Sign.

Below we analyze the probability that B does not give up the simulation. Let
qk; qr; qh; qs; qc denote the query number of Combiner-Key Generation Query,
Combiner Corruption Query,H1 Query, Sign Query, and Combine Query, respectively.
If B does not abandon the simulation, the following conditions need to be met during all
queries:

1. The combiner public key corresponding to the final forged result ofA was not used in qr

times of Combiner Corruption Query initiated byA, and this probability is 1� 1
qk

� �qr
;

2. In the qs Sign Queries initiated by A, none of the vector subspace labels used by B has
been queried by A in H1 Query and this probability is 1� 1

qs�qh;

3. In the qc Combine Queries initiated byA, the public key of the combiner corresponding

to the final forged result of A is not used, and the probability is 1� 1
qk

� �qc
.

So the probability that B does not abandon the simulation is

1� 1
qk

� �qr
1� 1

qs�qh

� �
1� 1

qk

� �qc � e2 1� 1
qs�qh

� �
. Below we prove the correctness of the

output of B when B does not give up on the simulation. Let A finally outputs the
quadruple ðpk�B; s�; v�;r�Þ, and Verify pp; pkA; s�; v�; r�ð Þ ¼ 1, then

e r�; gð Þ ¼ e
Yn
i¼1

g
v�i
i

Ym
j¼1

H1 s; jð Þv�nþjuBH2ðv�Þ; uA

 !
: (14)

Substituting the query value gi ¼ gb
� �si ;H1 s�; jð Þ ¼ gb

� �fj ; uB ¼ gy into the above
formula, we get

e r�; gð Þ ¼ e g
b
Pn

i¼1 siv
�
i þ
Pm

j¼1 fjv
�
nþj

� �
gygH2 v�ð Þ�1; uA

 !

¼ e gabðs�v
�ÞgaðyþH2 v�ð Þ�1Þ; g

� �
:

(15)

Therefore r� ¼ gabðs�v
�ÞgaðyþH2 v�ð Þ�1Þ, if s � v� 6¼ 0, then gab ¼ r�

ga yþH2 v�ð Þ�1ð Þ

� � 1
s�v�
. If

s � v� ¼ 0, B will not output the value of gab correctly. Event s � v� ¼ 0 occurs in the
following three situations:

1. When the forgery ofA belongs to the Type 1 Forgery. Since all values of s are randomly
selected numbers in the space Zq, and v� 6¼ 0, so s � v� is uniformly distributed in Zq,
then P s � v� ¼ 0ð Þ ¼ 1

q :

2. When the forgery ofA belongs to the Type 2 Forgery. Since all values of s are randomly
selected numbers in the space Zq, then P s � v� ¼ 0ð Þ ¼ 1

q in the same way.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 13/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

3. When the forgery of A belongs to the Type 3 Forgery. All values of s are randomly
selected numbers in space Zq, v� 2 V � fv1; v2; . . . ; vmg and v� 6¼ 0, so the value of

s � v� is uniformly distributed in Zq�m, then P s � v� ¼ 0ð Þ ¼ 1
q�m. Because of q
 m,

P s � v� ¼ 0ð Þ at this time is close to 1
q :

In summary, the probability of event s � v� 6¼ 0 is 1� 1
q : We set the probability that A

successfully outputs a valid signature as ϵ, then B can correctly output the value of gab with

probability ϵ0 � e2 1� 1
qs�qh

� �
1� 1

q

� �
ϵ.

Since the CDH assumption is established, the probability ϵ0 of B correctly outputting gab
is negligible, so the probability ϵ is negligible.

APPLICATION AND EXPERIMENT ANALYSIS
Here, we illustrate how the proposed scheme works when it is applied to proxy signatures,
and then theoretically analyzed the efficiency of our scheme. Finally, the signature forgery
experiments on LZZ22 and our scheme are respectively run in the same experimental
environment, and the efficiency of our scheme is compared with other schemes.

Application
Digital signature technology can provide authenticity and integrity certification to users. In
real life, a large number of signature activities are often required in some departments (e.g.,
governments and hospitals). Ordinary digital signature schemes do not allow entities other
than a specific user to have signing privileges, so users have to accomplish a large number
of signing tasks on their own. The linearly homomorphic signature scheme with a
designated combiner can improve the efficiency of signing by transferring the user’s large
number of computational tasks to a server with high computational power. Consider the
following specific scenario:

Suppose the user has partitioned the file set labeled s into m n-dimensional vectors

v1; v2; . . . ; vm 2 Zn
q , and augmented vif gmi¼1 into a set of basis vectors vif gmi¼1 in the

subspace V according to the method in “Preliminaries”. The user has computed the
signatures rkf gmk¼1 of vif gmi¼1 respectively. At this time, if the user needs to generate the
signatures r� of the data vectors v� ¼Pm

k¼1 bkvk; bk 2 Z�q, the user can only re-compute
the signature on his own in the ordinary digital signature scheme. In contrast, in the
LHSDC scheme, the user only needs to send the label s and the combination coefficients bk
to the specified server, and the specified server will complete the signature instead of the
user (as shown in Fig. 1). We call this application scenario proxy signing.

The proposed scheme contains three types of participants when applied to proxy
signing, namely the signer (user), the designated combiner (server) and the verifier (Fig. 2).
The specific application process is as follows:

Step 1: The system runs the algorithm Setup to generate the system public parameter pp
and publish pp to all participants. The signer and the designated combiner run the
algorithm KeyGen respectively to generate the private/public key pair ðskA; pkAÞ of the
signer and the private/public key pair ðskB; pkBÞ of the designated combiner.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 14/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Step 2: The signer first divides the message file needing a signature into m
n-dimensional message vectors v1; v2; . . . ; vm 2 Zn

q , and uses the vector augmentation

method in “Preliminaries” section to augment each n-dimensional message vector into an
N-dimensional subspace basis vector v1; v2; . . . ; vm 2 ZN

q . Then, the label s of the vector
subspace is generated according to the file identifier id. Finally, the signer runs the
algorithm Sign to sign vkf gmk¼1 to obtain rkf gmk¼1, send ðs; vk;rkð Þf gmk¼1Þ to the designated
combiner, which runs the algorithmVerify to verify the legitimacy of rkf gmk¼1 respectively.
If rkf gmk¼1 are all valid, the designated combiner will store them.

Step 3:When the signer wants to generate the signature r� of the new message v� under
this subspace, he only needs to express v� as v� ¼Pm

k¼1 bkvk, and then send the
combination coefficient bkf gmk¼1 to the designated combiner. The designated combiner
runs the algorithm Combine to get ðv�; r�Þ, and sends ðv�;r�Þ to the verifier. The verifier
runs the algorithm Verify to verify the legitimacy of the combined signature r�.

In proxy signing, let us consider another case. After the designated combiner has
derived the signature r� of a certain message v� by the algorithm Combine, the signer
expects the combiner to continue generating the signature r�� of the message v�� ¼ nv�.
At this point, ðv�;r�Þ cannot be used as an input to the algorithm Combine because the
signature r� generated by the combiner is structurally altered compared to the original
signature generated by the signer in the LHSDC. The signer must first decompose v�� intoPm

k¼1 b
�
kvk; b

�
k 2 Z�q, and then the combiner inputs vk; rk;b

�
k

	
m
k¼1 into the algorithm

Combine to obtain the signature r��. Boneh et al. (2009) determined that the process
requires ðmþ 1Þ pairing operations, mþ 2ð Þ exponentiation operations, m inverse
operations, 2mmultiplication operations, and ð2mþ 1Þ hash operations. In contrast, SPS-
LHSDC maintains the signature structure on top of the function of designating a
combiner. Therefore, v�� does not need to be decomposed into the form of multiple basis
vector representations, and ðv�; r�; nÞ can be directly used as the input to the algorithm

Combine. Using our scheme, r�� ¼ uaBH2 v��ð Þ
A r� uaBH2 v�ð Þ

A

� ��1� �n

, the process requires

Figure 1 The advantage of LHSDC in proxy signing. Full-size DOI: 10.7717/peerj-cs.1978/fig-1

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 15/24

http://dx.doi.org/10.7717/peerj-cs.1978/fig-1
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

only three exponential operations, one inverse operation, four multiplication operations,
and two hash operations. The SPS-LHSDC scheme can significantly reduce the
computation of proxy signing as shown in Fig. 3.

Figure 2 The application process of the proposed scheme.
Full-size DOI: 10.7717/peerj-cs.1978/fig-2

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 16/24

http://dx.doi.org/10.7717/peerj-cs.1978/fig-2
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

In summary, SPS-LHSDC can reduce the calculation of the signer and improve the
efficiency of signing compared with ordinary digital signature schemes and LHSDC
schemes. However, since the designated combiner (server) in SPS-LHSDC also has the
authority to generate signatures, the server must be under the management of the most
authoritative department of the organization. Meanwhile, the SPS-LHSDC scheme does
not apply to some departments with high confidentiality due to the irreplaceable nature of
the signatures of these departments.

Theoretical analysis
Table 1 illustrates the meanings of the notations used in this section. Table 2 compares our
scheme with the other four schemes in Lin, Xue & Huang (2021), Li, Zhang & Zhang
(2022), Zhang et al. (2018) and Wu, Wang & Yao (2021) in terms of efficiency and
functionality.

By comparing with other four schemes theoretically, we find that only our scheme and
LZZ22 are able to realize both functions of designating a combiner and maintaining the
signature structure. In “The Security Problem of LZZ22”, the LZZ22 scheme was shown to
have a security vulnerability, and our scheme was the only secure SPS-LHSDC scheme.

Figure 3 The advantage of SPS-LHSDC in proxy signing.
Full-size DOI: 10.7717/peerj-cs.1978/fig-3

Table 1 Notations and the correspondent operations.

Notation Operation

H Map-to-point hash operation

E1 Exponential operation in G1

E2 Exponential operation in G2

M1 Multiplicative operation in G1

M2 Multiplicative operation in G2

P Bilinear pairing operation

jG1j The size of elements in G1

jG2j The size of elements in G2, G2j j, jG1j

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 17/24

http://dx.doi.org/10.7717/peerj-cs.1978/fig-3
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Our scheme has the lowest computational overhead for both the signature algorithm and
the verification algorithm, thus our scheme is efficient.

Experiment analysis
In this section, we run the signature forgery program of LZZ22 through experiments, so as
to obtain the probability and time required for an adversary to successfully forge a
signature. Then, under the same experimental environment, we run our scheme and
evaluate its efficiency.

The following illustrates experimental environment and parameter selection. We build
the simulator in Python and use a 2.6 GHz single-core twelve-thread processor. The
parameter params we used in LZZ22’s, Wu21’s and our simulations are from pypbc
(Maas, 2004) library’s A-type curve. The parameter params we used in Lin’s and
Zhang18’s simulations are from pypbc library’s F-type curve. The security parameter
length is 80 bits, and the element lengths inG1 andG2 are 320 and 160 bits respectively. In
our experiment, in order to meet the needs of simulating multiple scenarios, the size of the
test file we choose is 3.2 KB (3,279 bytes). The file will be divided intom blocks, each block
contains n elements, and each element length is 160 bits, which means that the test file is
represented by m n-dimensional vectors, and the values of m and n need to meet:
160
8 ðm�1Þn � 3; 279 � 160

8 mn. According to the load of the network, we set the packet size

as 1,460 bytes. Thus, each packet can hold 1;460
20 ¼ 73 elements. Therefore, the augmented

data packet length N should satisfy: N ¼ mþ n � 73.

Signature forgery experiment of LZZ22
The signature forgery of LZZ22 includes two processes, namely the signature query and the
signature forgery. Since the adversary can obtain the signatures r0; r00, and frigmi¼1 from
the signatures generated by the signer in the past, we ignore the cost of the signature query.
The cost of the signature forgery process is consistent with the formula

r� ¼ Qm
i¼1

rir00
r20

� �bi� �
� r20r00

. Figure 4 shows the relationship between the cost required for

the signature forgery and the message vector dimension n.
From Fig. 4, it can be found that the adversary can forge the signature of LZZ22 in a very

small amount of time after the Sign Query. The time required for forging the signature
decreases with the increase of the dimension n. This is because an increase in n is
accompanied by a decrease in m.

Table 2 Comparison of cost and functions.

Scheme Sig.cost Verify.cost Signature size Characteristic

Lin21 3H þ nþ 2ð ÞE2 þ nþ 1ð ÞM2 mþ 2ð ÞH þ nþ 1ð ÞE2 þ nM2 þ 3P jG2j LHSDC

LZZ22 H þ nþ 1ð ÞE1 þ ðnþ 1ÞM1 mH þ nE1 þ ðnþ 1ÞM1 þ 2P jG1j SPS-LHSDC

Zhang18 mþ nð ÞH þ nþ 2ð ÞE2 þ n� 1ð ÞM2 mþ 2ð ÞH þ nþ 1ð ÞE2 þ nM2 þ 2P jG2j ID-based

Wu21 nþ 1ð ÞH þ nþ 2ð ÞE2 þ nþ 1ð ÞM2 nþ 1ð ÞH þ nþ 1ð ÞE2 þ n� 1ð ÞM2 þ 4P 2jG1j Certificateless

Our 2H þ nþ 2ð ÞE1 þ ðnþ 1ÞM1 ðmþ 1ÞH þ ðnþ 1ÞE1 þ ðnþ 1ÞM1 þ 2P jG1j SPS-LHSDC

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 18/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Efficiency analysis experiment of the proposed scheme
Figures 5 and 6 show a comparison between our scheme and the schemes in Lin, Xue &
Huang (2021), Li, Zhang & Zhang (2022), Zhang et al. (2018) andWu, Wang & Yao (2021)
from the cost of the signature algorithm and verification algorithm, respectively. Figure 7
shows the CPU and RAM occupancy of each scheme, and Fig. 8 shows the specific usage of
RAM for each scheme.

Figure 5 illustrates that the cost of each scheme in the signature algorithm does not
change greatly with the increase of the dimension value n of the base vector. This is because
an increase in n is accompanied by a decrease inm, that is, although the length of each data
packet increases, a file can be represented using fewer data packets. Figure 6 shows that the

Figure 4 The cost of the signature forgery for LZZ22. Full-size DOI: 10.7717/peerj-cs.1978/fig-4

Figure 5 The cost of signing a 3.2 KB file. Full-size DOI: 10.7717/peerj-cs.1978/fig-5

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 19/24

http://dx.doi.org/10.7717/peerj-cs.1978/fig-4
http://dx.doi.org/10.7717/peerj-cs.1978/fig-5
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

cost of each scheme in the verification algorithm increases with the increase of the
dimension n of the base vector. This is because the verification of each vector needs to add
one multiplication operation and one exponent operation due to the increase of n.

By comparing our scheme with the experimental results of other schemes, we find that
whether signing a 3.2 KB file or verifying a single message vector, the time overhead of the
LZZ22 scheme is the smallest, and our scheme is the second smallest. However, we have
proved in “The Security Problem of LZZ22” that the LZZ22 scheme has a security
vulnerability. Therefore, our scheme has the highest efficiency among the remaining
schemes. When the amount of valid data in the packet reaches the maximum value of 41
(n = 41), our scheme takes 1.620 s to sign a 3.2 KB file and 55.406 ms to verify a single data
vector under that file.

Figure 6 The cost of verifying a message vector. Full-size DOI: 10.7717/peerj-cs.1978/fig-6

Figure 7 Occupancy of CPU and RAM. Full-size DOI: 10.7717/peerj-cs.1978/fig-7

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 20/24

http://dx.doi.org/10.7717/peerj-cs.1978/fig-6
http://dx.doi.org/10.7717/peerj-cs.1978/fig-7
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Figures 7 and 8 illustrate that there is no major difference between the schemes in terms
of CPU occupancy. In terms of RAM occupancy, LZZ22 has the smallest memory usage,
followed by our scheme. Since the LZZ22 scheme is insecure, our scheme has the smallest
usage on RAM among the remaining schemes. When the file size is 3.2 KB, running our
scheme will consume 12:7% of CPU and 1;462:8

8�1;024¼ 17:86% of system memory. Overall, our
scheme has a low computational overhead and system resource usage on top of the
simultaneous functionality of designating a combiner and maintaining the signature
structure.

CONCLUSION
Here, we prove that there is a polynomial time adversary that can crack the secret
information in LZZ22 through multiple signature queries, which will allow the adversary
to forge the signature corresponding to any message. We proposed a new scheme, which
has all the functions of LZZ22 and fixed the security problem by adding one hash
operation and one exponential operation to the signature algorithm. Our scheme proved
secure against existential forgery on adaptively chosen subspace attacks under the random
oracle model. We also detailed the application of our scheme to the proxy signature.
Finally, we ran the signature forgery program of LZZ22 through experiments, and the
results showed that the time required to forge a signature was inversely proportional to the
message dimension. The proposed scheme was run in the same experimental environment
and compared with other similar schemes. The experimental results show that the
signature algorithm and the verification algorithm of our scheme are efficient, and
efficiently use the system resources.

It should be noted that in proxy signing because our scheme allows the designated
combiner (server) to generate legal signatures, the server must be managed at the highest
level in the department. Meanwhile, the SPS-LHSDC scheme does not apply to some
departments with high confidentiality due to the irreplaceable nature of the signatures of
these departments. In addition, in this article, we only explore the application of SPS-

Figure 8 RAM usage. Full-size DOI: 10.7717/peerj-cs.1978/fig-8

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 21/24

http://dx.doi.org/10.7717/peerj-cs.1978/fig-8
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

LHSDC scheme in proxy signatures, and some other application scenarios that need to
specify servers for calculating such as federated learning, cloud auditing, and so on deserve
more in-depth research. Although the proposed scheme is more efficient than the existing
LHSDC scheme and is the only secure SPS-LHSDC scheme, there is still room for
improving the efficiency of the signature algorithm. Two directions deserve further
research to improve the efficiency of the signature algorithm. One of them is to optimize
the homomorphic hash function, which can significantly improve the efficiency of the
scheme. The other is to optimize the way to bind combiners, that is, to find a way to bind
combiners other than key exchange, which can improve the efficiency of the scheme by a
small margin.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (Grant
Nos. 62172436, 62102452), the National Key R&D Program of China (2021YFB3100100),
Innovative Research Team in Engineering University of PAP (KYTD201805), and the
Natural Science Foundation of Shaanxi Province (2023-JC-YB-584). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 62172436, 62102452.
National Key R&D Program of China: 2021YFB3100100.
Innovative Research Team in Engineering University of PAP: KYTD201805.
Natural Science Foundation of Shaanxi Province: 2023-JC-YB-584.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Xuan Zhou conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.
� Yuan Tian performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, and approved the final draft.
� Weidong Zhong analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.
� Tanping Zhou analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.
� Xiaoyuan Yang analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 22/24

http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1978#supplemental-information.

REFERENCES
Aranha DF, Pagnin E. 2019. The simplest multi-key linearly homomorphic signature scheme. In:

Schwabe P, Thériault N, eds. Progress in Cryptology—LATINCRYPT 2019. Cham: Springer
International Publishing, 280–300.

Attrapadung N, Libert B, Peters T. 2013. Efficient completely context-hiding quotable and
linearly homomorphic signatures. In: Kurosawa K, Hanaoka G, eds. Public-Key Cryptography—
PKC 2013. Berlin, Heidelberg: Springer, 386–404.

Boneh D. 1998. The decision Diffie-Hellman problem. In: Buhler JP, ed. International Algorithmic
Number Theory Symposium. Berlin, Heidelberg: Springer, 48–63.

Boneh D, Freeman DM. 2011. Linearly homomorphic signatures over binary fields and new tools
for lattice-based signatures. In: Catalano D, Fazio N, Gennaro R, Nicolosi A, eds. Public Key
Cryptography—PKC 2011. Berlin, Heidelberg: Springer, 1–16.

Boneh D, Freeman D, Katz J, Waters B. 2009. Signing a linear subspace: signature schemes for
network coding. In: Jarecki S, Tsudik G, eds. Public Key Cryptography—PKC 2009. Berlin,
Heidelberg: Springer, 68–87.

Catalano D, Fiore D, Warinschi B. 2014. Homomorphic signatures with efficient verification for
polynomial functions. In: Garay JA, Gennaro R, eds. Advances in Cryptology—CRYPTO 2014.
Berlin, Heidelberg: Springer, 371–389.

Charles D, Jain K, Lauter K. 2006. Signatures for network coding. In: 2006 40th Annual
Conference on Information Sciences and Systems. Piscataway: IEEE, 857–863.

ChenW, Lei H, Qi K. 2016. Lattice-based linearly homomorphic signatures in the standard model.
Theoretical Computer Science 634:47–54 DOI 10.1016/j.tcs.2016.04.009.

Cheng C, Lee J, Jiang T, Takagi T. 2016. Security analysis and improvements on two
homomorphic authentication schemes for network coding. IEEE Transactions on Information
Forensics and Security 11(5):993–1002 DOI 10.1109/TIFS.2016.2515517.

Desmedt Y. 1993. Computer security by redefining what a computer is. In: 1992-1993Workshop on
New Security Paradigms. New York: ACM, 160–166.

Diffie W, Hellman ME. 1976. New directions in cryptography. IEEE Transactions on Information
Theory 22(6):644–654 DOI 10.1109/TIT.1976.1055638.

Gennaro R, Katz J, Krawczyk H, Rabin T. 2010. Secure network coding over the integers. In:
Nguyen PQ, Pointcheval D, eds. Public Key Cryptography—PKC 2010. Berlin, Heidelberg:
Springer, 142–160.

Gorbunov S, Vaikuntanathan V, Wichs D. 2015. Leveled fully homomorphic signatures from
standard lattices. In: 47th Annual ACM Symposium on Theory of Computing. New York: ACM,
469–477.

Johnson R, Molnar D, Song D, Wagner D. 2002.Homomorphic signature schemes. In: Preneel B,
ed. Topics in Cryptology—CT-RSA 2002. Berlin, Heidelberg: Springer, 244–262.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 23/24

http://dx.doi.org/10.7717/peerj-cs.1978#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1978#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1978#supplemental-information
http://dx.doi.org/10.1016/j.tcs.2016.04.009
http://dx.doi.org/10.1109/TIFS.2016.2515517
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

Li T, Chen W, Tang Y, Yan H. 2018. A homomorphic network coding signature scheme for
multiple sources and its application in IoT. Security and Communication Networks 2018:1–6
DOI 10.1155/2018/9641273.

Li Y, Zhang F, Liu X. 2020. Secure data delivery with identity-based linearly homomorphic
network coding signature scheme in IoT. IEEE Transactions on Services Computing 15(4):2202–
2212 DOI 10.1109/TSC.2020.3039976.

Li Y, Zhang F, Sun Y. 2021. Lightweight certificateless linearly homomorphic network coding
signature scheme for electronic health system. IET Information Security 15(1):131–146
DOI 10.1049/ise2.12011.

Li Y, Zhang M, Zhang F. 2022. Structure-preserving linearly homomorphic signature with
designated combiner for subspace. In: Nguyen K, Yang G, Guo F, Susilo W, eds. Information
Security and Privacy. Cham: Springer International Publishing, 229–243.

Lin C-J, Huang X, Li S, WuW, Yang S-J. 2017. Linearly homomorphic signatures with designated
entities. In: Liu JK, Samarati P, eds. Information Security Practice and Experience. Cham:
Springer International Publishing, 375–390.

Lin C, Xue R, Huang X. 2021. Linearly homomorphic signatures with designated combiner. In:
Huang Q, Yu Y, eds. Provable and Practical Security. Cham: Springer International Publishing,
327–345.

Lin Q, Yan H, Huang Z, Chen W, Shen J, Tang Y. 2018. An ID-based linearly homomorphic
signature scheme and its application in blockchain. IEEE Access 6:20632–20640
DOI 10.1109/ACCESS.2018.2809426.

Maas M. 2004. Pairing-based cryptography. Master’s Thesis, Technische Universiteit Eindhoven.

Menezes A, Vanstone S, Okamoto T. 1991. Reducing elliptic curve logarithms to logarithms in a
finite field. In: 23rd Annual ACM Symposium on Theory of Computing. New York: ACM, 80–89.

SadrHaghighi S, Khorsandi S. 2016. An identity-based digital signature scheme to detect pollution
attacks in intra-session network coding. In: 2016 13th International Iranian Society of Cryptology
Conference on Information Security and Cryptology (ISCISC). Piscataway: IEEE, 7–12.

Wu B, Wang C, Yao H. 2021. A certificateless linearly homomorphic signature scheme for
network coding and its application in the IoT. Peer-to-Peer Networking and Applications
14(2):852–872 DOI 10.1007/s12083-020-01028-8.

Yu Z, Wei Y, Ramkumar B, Guan Y. 2008. An efficient signature-based scheme for securing
network coding against pollution attacks. In: IEEE INFOCOM 2008-The 27th Conference on
Computer Communications. Piscataway: IEEE, 1409–1417.

Yun A, Cheon JH, Kim Y. 2010. On homomorphic signatures for network coding. IEEE
Transactions on Computers 59(9):1295–1296 DOI 10.1109/TC.2010.73.

Zhang Y, Jiang Y, Li B, Zhang M. 2018. An efficient identity-based homomorphic signature
scheme for network coding. In: Barolli L, Zhang M,Wang XA, eds. Advances in Internetworking,
Data & Web Technologies. Cham: Springer International Publishing, 524–531.

Zhang P, Jianping Y, Ting W. 2012. A homomorphic aggregate signature scheme based on lattice.
Chinese Journal of Electronics 21(4):701–704.

Zhao F, Kalker T, Medard M, Han KJ. 2007. Signatures for content distribution with network
coding. In: 2007 IEEE International Symposium on Information Theory. Piscataway: IEEE, 556–
560.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1978 24/24

http://dx.doi.org/10.1155/2018/9641273
http://dx.doi.org/10.1109/TSC.2020.3039976
http://dx.doi.org/10.1049/ise2.12011
http://dx.doi.org/10.1109/ACCESS.2018.2809426
http://dx.doi.org/10.1007/s12083-020-01028-8
http://dx.doi.org/10.1109/TC.2010.73
http://dx.doi.org/10.7717/peerj-cs.1978
https://peerj.com/computer-science/

	A structure-preserving linearly homomorphic signature scheme with designated combiner
	Introduction
	Preliminaries
	The security problem of lzz22
	The proposed scheme
	Application and experiment analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

