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ABSTRACT

Emotional recognition is a pivotal research domain in computer and cognitive
science. Recent advancements have led to various emotion recognition methods,
leveraging data from diverse sources like speech, facial expressions,
electroencephalogram (EEG), electrocardiogram, and eye tracking (ET). This article
introduces a novel emotion recognition framework, primarily targeting the analysis
of users’ psychological reactions and stimuli. It is important to note that the stimuli
eliciting emotional responses are as critical as the responses themselves. Hence, our
approach synergizes stimulus data with physical and physiological signals,
pioneering a multimodal method for emotional cognition. Our proposed framework
unites stimulus source data with physiological signals, aiming to enhance the
accuracy and robustness of emotion recognition through data integration. We
initiated an emotional cognition experiment to gather EEG and ET data alongside
recording emotional responses. Building on this, we developed the Emotion-
Multimodal Fusion Neural Network (E-MENN), optimized for multimodal data
fusion to process both stimulus and physiological data. We conducted extensive
comparisons between our framework’s outcomes and those from existing models,
also assessing various algorithmic approaches within our framework. This
comparison underscores our framework’s efficacy in multimodal emotion
recognition. The source code is publicly available at https://figshare.com/s/
8833d837871c78542b29.

Subjects Human-Computer Interaction, Artificial Intelligence, Data Science, Sentiment Analysis
Keywords Emotion recognition, Deep learning, Multimodal, EEG, ET

INTRODUCTION

Emotional recognition simulates and recognizes human emotions through computer
technology (Ezzameli & Mahersia, 2023). Emotional computing combines disciplines such
as computer science, psychology, neuroscience, and linguistics to analyze and process
various information such as human speech, facial expressions, and physiological indicators
through computers, thereby inferring human emotional states and behaviors (Guo ¢ Lin,
2023). In recent years, emotion recognition has received increasing attention due to its
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applications in various research fields such as human-computer interaction, emotion
analysis, user behavior detection, and fatigue monitoring (Zhao et al., 2022).

The methods of emotion recognition can be divided into two categories. One is based on
physical signals, such as user language comments, facial expressions, gestures, efc., which
recognize the external representation of human emotions. Another approach is based on
physiological signals, such as electroencephalogram (EEG), electrocardiogram (ECG), eye
tracking (ET), etc., to recognize the intrinsic representation of human emotions (Gandhi
et al., 2023). Zhao, Huang ¢» Pan (2019) used the word vector method to classify and
recognize emotional tendencies by exploring user comments on products. Kumar, Kishore
¢ Pandey (2020) classified human facial expressions using convolutional neural networks
to achieve analysis and recognition of user emotions. These emotion recognition methods
based on physical signals are simple to analyze and do not require much data information
to obtain emotion recognition results. However, physical signals belong to human external
reactions, and humans can hide their emotional expressions. In addition, image-based
emotion recognition methods do not reflect genuine human emotions but instead, replace
humans in emotion recognition of images (Yang et al., 2023). Therefore, the emotions
conveyed by these physical signals cannot accurately capture the true thoughts of humans.
Emotion recognition based on physiological signal methods such as EEG and eye tracking
cannot be easily controlled by the subjects, as its objectivity and deep level of recognition
have been proven to be a reliable emotion recognition method (Khare et al., 2024).

The intricate nature of human emotions renders single-modal data insufficient for a
full-fledged emotional analysis (Zhu et al., 2023). This has led researchers to explore
multimodal data combining various emotional indicators for more stable and
comprehensive emotion recognition. Studies affirm that multimodal data offers a holistic
view of emotional shifts, facilitating cross-verification among different data types (Garg,
Verma & Singh, 2023). Current research predominantly integrates physiological data like
EEG and eye movement recordings with behavioral data to formulate advanced emotion
recognition systems. Such multimodal approaches have been shown to yield accurate
insights into user emotions (Khosla, Khandnor ¢» Chand, 2020; Lim, Mountstephens ¢» Teo,
20205 Jafari et al., 2023).

For the experimental design of standard emotion recognition research, such as ET, EEG
measurement, and other emotion cognition experiments, the central stimuli are images,
videos, text, etc., (Babinet et al., 2022; Dzedzickis, Kaklauskas ¢ Bucinskas, 2020). During
this process, participants observe emotional stimuli such as an image, a piece of text, or a
movie clip and record the corresponding emotional responses while recording their
physiological cognitive data. Classify these physiological cognitive data through
corresponding emotional recognition frameworks and computational methods to identify
the user’s emotional cognition. However, emotional recognition is a collaborative process
between the stimulus source and the individual, whereby the stimulus elicits the subject’s
emotional response. Although existing methods focus on the correlation of multimodal
data, they do not consider the impact of stimulus sources on emotion recognition. They
only use physiological data and ignore stimulus source data, which can lead to information

loss in emotion recognition systems.
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To compensate for the lack of information in emotion recognition systems, we propose
a new framework for multimodal emotion recognition, which integrates stimulus source
data, user behavior data, and cognitive physiological data to achieve emotion recognition.
Figure 1 shows the multimodal emotion recognition framework. Case validation was
conducted based on our proposed multimodal emotion recognition framework. We use a
dataset of car images obtained from our team’s previous research as stimulus samples (Guo
et al., 2023), and use two types of emotional vocabulary as criteria (steady and lively) to
obtain users’ emotional responses to each car image as well as eye movement data and EEG
data. Classify the multimodal data mentioned above to obtain user sentiment recognition.
In addition, we will apply this framework to the existing publicly available dataset SEED
(Zheng & Lu, 2015), and perform fusion calculations based on the stimulus source (video
data) and EEG data of this dataset to determine the universality of the framework. Our
innovations are as follows:

e Propose a new emotion recognition framework that integrates stimulus source data and
physiological cognitive data to achieve emotion recognition.

e Propose a multimodal feature data fusion algorithm to adapt to this study’s multimodal
emotion recognition framework, which significantly improves accuracy compared to
baseline methods.

e Given the limitation of the small sample size of the current physiological cognitive
public dataset for emotion recognition, we will publicly disclose the data of this emotion
cognition experiment.

Our contributions are twofold:

e We present a novel emotional recognition framework that integrates multiple data
sources to improve emotional recognition accuracy.

e We propose a multimodal data fusion algorithm that surpasses the accuracy of
traditional single-modal data or EEG and ET data fusion in emotional recognition.

The structure of the article is as follows. The second part introduces relevant work,
including sentiment datasets, multimodal data fusion methods, sentiment recognition, etc.
The third part introduces the methods of this article, mainly including experimental
design, multimodal feature data extraction and fusion, data processing, and emotion
recognition algorithms. The fourth part conducts case verification. The fifth part will be
discussed. Finally, summarize this article.

RELATED WORK

Emotional dataset

In emotion recognition for users, data selection plays a crucial role. Stimulus data must be
capable of eliciting distinctly differentiated emotional responses from users. For instance,
the SEED dataset utilizes movie clips infused with positive, neutral, and negative emotions
as stimulus data, and corresponding emotional physiological data is collected (Zheng ¢ Lu,
2015). Similarly, the DEAP dataset employs music videos with varying arousal degrees as
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Figure 1 Multimodal emotion recognition framework. In this figure, the image of the stimulus com-
ponent comes from the author’s public data set. The car emotion image dataset can be accessed from the
following website: https://doi.org/10.6084/m9.figshare.25484329.v1. Photo credit: Guo Zhuen. The pre-
sentation of data information components comes from pictures exported by BeGaze and EEGLab soft-
ware. The remaining components come from Guo Zhuen’s drawings.

Full-size k&) DOL: 10.7717/peerj-cs.1977/fig-1

stimulus samples, from which multimodal physiological data is also gathered (Koelstra
et al., 2012). Standard stimuli used in emotion recognition datasets are illustrated in
Table 1.

The sentiment dataset summarized in Table 1 cannot encompass all representative
datasets, and related research has summarized more types of datasets (Gandhi et al., 2023;
Zhao et al., 2021). Through understanding the existing publicly available datasets, it can be
concluded that physical signal-based emotional cognition datasets include facial
recognition, text, images, and more. The stimulus sources of physiological signal datasets
are images, videos, texts, etc., with various physiological signals, but mainly based on EEG
and eye tracking data. However, the sample size based on physiological signals is relatively
small. For example, the DEAP dataset with a large sample size is only 1,280, while the
stimulus samples are only 40. Deep learning technology requires a large amount of data to
support it and a sample size of data to support it. The sample size of existing emotional
datasets based on physiological signals has limitations (Zhang et al., 2022). In addition, the
emotion classification and recognition of known emotion datasets mainly involve intense
emotional colors based on differentiation, such as positive, negative, happy, sad, etc.
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Table 1 Emotional recognition dataset.

Data set Stimuli Physical data Physiological data Classification Samples

Aubt Music EMG/ECG/SC/RSP Joy/anger/sadness/pleasure 100
Multi-ZOL Text/image Physical score 12,587
SAVEE Text/movie Voice/FE Angry/happy/sad/neutral 480
IMDB Text Negative/positive 50,000
Sentiment140 Text Neutral/negative/positive 1,600,000
Twitter15 Text/image Neutral/negative/positive 5,338
Twitterl7 Text/image Neutral/negative/positive 5,972
IAPS Image Valence/arousal/dominance 956
SEED Movie EEG Neutral/negative/positive 15/625
SEED-IV Movie EEG/ET Happy/sad/fear/neutral 72/1,080
DEAP Music movie EEG/ECG/EMG/GSR Valence/arousal/dominance 40/1,280

Note:

EMG, electromyogram; SC, skin conductivity; RSP, respiration; GSR, galvanic skin response.

Although there has been basic research on emotion classification and recognition, which
lays the foundation for future emotion recognition, it has not been able to deeply classify
users’ deep emotional cognition. Given this, we use our team’s car image dataset as a
stimulus source to construct a multimodal emotional cognition dataset and target deep
emotional understanding in humans as a classification objective. Firstly, we plan to use
6,000 different types of car images as stimulus samples and use emotional vocabulary
“steady” and “lively” as deep emotional evaluation information as emotional recognition
targets. The subjects evaluated images of different types of cars based on emotional
vocabulary evaluation goals, recorded eye tracking data, and EEG data. Finally, they
obtained an emotion classification dataset with a large sample size, solving the limitations
of small sample sizes in existing emotion datasets and the lack of in-depth exploration of
human deep emotional understanding.

Emotion recognition framework

Emotion recognition technology has many applications in natural language processing,
social media analysis, market research, and user experience research. According to the
category of processed data, it can be divided into physical signals and physiological signals,
and according to the number of modes of data, it can be divided into single mode and
multimodal. In recent years, sentiment classification and recognition have primarily relied
on deep learning or machine learning methods for decision-making and inference (Khare
et al., 2024). Therefore, we summarize common emotion recognition frameworks based on
data information, modalities, and methods and compare them with the new multimodal
emotion recognition framework proposed in this study. The common emotion recognition
frameworks based on physiological cognitive data are shown in Table 2.

In emotion recognition based on physiological signal data, scholars mainly focus on
single modal EEG data, multimodal EEG data, and eye movement data in addition to using
the publicly available dataset DEAP multimodal data. In addition, the computational
inference process mainly uses deep learning and machine learning techniques, such as
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Table 2 Emotion recognition frameworks based on physiological cognitive data with differences highlighted.

Reference Data Types Methods Difference
Zhang et al. (2021) EEG/EMG/GSR, etc. Multimodal eDKMO

Pusarla, Singh & Tripathi (2022) EEG Single DCERNet

Moin et al. (2023) EEG/FE Multimodal SVM/KNN/Bagged

Xing et al. (2019) EEG Single SAE-LSTM-RNN

Liu & Fu (2021) EEG Single SVM

Jiang et al. (2020) EEG Single CNN

Guo & Lin (2023) EEG/ET Multimodal XGBoost Physiological data
Fei et al. (2023) EEG/ET Multimodal GAN

Wu et al. (2022) EEG Single CNN

Yin et al. (2017) EEG/EMG/GSR, etc. Multimodal MESAE

Yin et al. (2021) EEG Single GCNN-LSTM

Linear regression

Yang et al. (2020) EEG Single Linear regression

Ours Stimulus-EEG/ET Multimodal CNN-LSTM Stimulus and physiological data

CNN, SVM, LSTM, etc. A relatively novel emotion recognition calculation method, such as
CNN-LSTM, is used to fuse different data. The difference between our research framework
and existing emotion recognition frameworks is that we use multiple physiological signal
data, integrate stimulus source data, and combine multiple deep learning algorithms for
fusion calculation. Although traditional multimodal emotion recognition frameworks can
effectively achieve emotion recognition, it is worth exploring whether combining two data
types for emotion prediction can improve prediction accuracy. In addition, multimodal
data fusion of stimulus source data can also explore issues such as reducing overfitting in
physiological data prediction and improving the stability of prediction performance.
Therefore, we propose integrating stimulus source data and stimulus source emotion
induction data to achieve emotion recognition, a novel multimodal emotion recognition
framework. This study will verify the robustness and accuracy of emotion prediction under
this framework.

Multimodal data fusion

As research progresses, it has been found that multimodal data fusion processing can be
better used in emotional recognition (Wang et al., 2020), target detection (Amsaprabhaa,
Nancy Jane ¢ Khanna Nehemiah, 2023), image segmentation (Farshi, Drake ¢ Ozcan,
2020), and other applications. The method of multimodal data fusion has gained attention
from researchers for its potential to improve classification performance. Three types of
fusion methods can be categorized based on the level and method of fusion: feature-level,
decision-level, and deep-learning hybrid (Liu et al., 2022). Feature-level fusion refers to the
merging, addition, multiplication, and other operations of different modal features to form
new multimodal features, followed by classification. The strength of this method is in
utilizing information from different modalities to improve classification performance, with
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an uncomplicated implementation and high computational efficiency (Goshvarpour ¢
Goshvarpour, 2023; Muhammad, Hussain ¢ Aboalsamh, 2023). Decision-level fusion
combines the output results of different modal classifiers to form a new decision result
using voting, weighted summation, or maximizing probability. The advantage of this
method is in better utilizing the advantages of each modal classifier, reducing misjudgment
and improving classification accuracy (Zhang et al., 2023; Hu, Jing ¢ Wu, 2023). Based on
deep learning hybrid fusion, different deep learning methods are used to process and
extract features from data of different modalities, and fusion is carried out through feature-
level fusion or decision-level fusion. When processing different modal data, methods such
as deep neural networks, convolutional neural networks, recurrent neural networks,
attention mechanisms, efc., can be chosen, and the advantages of different fusion levels can
be combined for selection. For example, Pan et al. (2023) proposed a method for assessing
the alertness of high-speed train drivers based on physiological signals based on both
decision-level and feature-level fusion. They first performed feature-level fusion
calculations on EEG and ECG data using LSTM, filtering the result with a threshold to
evaluate the driver’s alertness. Similarly, Akalya devi ¢» Karthika Renuka (2023) proposed a
multimodal emotional recognition framework based on decision-level and feature-level
fusion methods, using LSTM, CNN, and other methods to extract multimodal features and
different fusion methods at different stages to achieve emotional recognition. Decision-
level fusion and feature-level fusion are the foundations of deep learning hybrid fusion.
Deep learning hybrid fusion can achieve the best results in multimodal data fusion by
analyzing the characteristics of different modal data and processing them separately.
Based on the summary of the relevant work above, the existing research, including
emotion dataset types, emotion recognition frameworks, and multimodal data fusion
patterns, provides the foundation for this study. The foundation provided by the relevant
work for this study and the limitations that this study aims to address are as follows:

1) The types of sentiment datasets in existing research are diverse and have been widely
used and validated in sentiment recognition research. However, the number of stimulus
samples in existing sentiment datasets is relatively small, which cannot meet the
requirements of using a large amount of sample data in deep learning. Given this, this
study will develop a multimodal emotion dataset suitable for emotion recognition,
including stimulus source and physiological data, to provide a benchmark dataset for
deep learning-based emotion recognition methods.

2) The emotion recognition framework has gradually evolved from single modality to
multimodality and emotion recognition methods have evolved from linear classification
to deep learning. Existing research provides a methodological foundation for
conducting this study. However, existing emotion recognition frameworks mainly focus
on identifying physical or physiological signals without effectively fusing stimulus
source data. Therefore, this study proposes an emotion recognition framework that
integrates stimulus source data and physiological data.

3) The research on multimodal data fusion methods is a hot topic in emotion recognition,
and existing research provides a reference for data fusion methods in this study.
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In this study, we propose a strategy based on deep learning hybrid fusion for emotional
recognition and prediction of multimodal data. Firstly, we use feature-level fusion to
extract EEG features through filtering and differential entropy methods. Based on the
spatial distribution of EEG, we combine and structure the EEG features in a plane. This
creates the EEG feature set. Next, we extract ET data features that can represent cognitive
psychology, combine them, and construct the ET feature set. Secondly, using decision-level
fusion, we apply CNN-LSTM to process the EEG feature set and obtain the output of EEG
feature data. The ET feature set is then processed using DNN to output the ET feature data.
We improve the VGGNet algorithm to obtain the output of stimulus source image
features. Finally, decision fusion is again used to fuse the three categories of obtained
multimodal feature data. User behavior data are combined, and deep neural networks
process the fused data to achieve emotional recognition.

METHODS

Experimental design

To expand the emotion recognition framework proposed in this study to more fields, we
summarized an experimental process based on traditional psychological cognition
experiments (Zheng & Lu, 2015; Koelstra et al., 2012; Zheng et al., 2019; Liu et al., 2022).
This process can obtain the subjects’ behavioral data, physiological data, and stimulus
source data. The experimental setup is as follows:

1) Selection of stimuli. According to the needs of emotional recognition, stimuli can be
selected from images, videos, text, sound, etc., and multiple stimuli can also be
combined.

2) Determine the output of emotional cognition. Based on the research objectives of
emotion recognition of stimuli, determine participants’ different emotional cognitive
states towards stimuli, such as “positive neutral negative”, “happy angry sad happy”, or
emotional vocabulary equivalence.

3) Emotional cognitive joint experiment. To obtain multimodal cognitive physiological
data, multiple physiological measurement devices can be selected, such as EEG caps, ET
devices, ECG devices, efc., to simultaneously measure the physiological and
psychological states of subjects during the emotional cognitive process of stimuli and
output multimodal data.

4) Obtaining cognitive and behavioral data of participants. After the subjects have an
emotional understanding of stimuli, output indicators of emotional cognition appear.
The subjects need to make quick choices based on cognitive understanding to obtain
behavioral data such as their choices.

5) Multimodal data processing. Synchronize the physiological cognitive, behavioral, and
stimulus source data of the subjects, and obtain feature data of each modality data.

The summary of emotional datasets found that the existing physiological signal-based
emotional datasets have a small sample size. At the same time, deep learning techniques
require a large amount of sample data. Therefore, based on the proposed experimental
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process, cognitive experiments were conducted with publicly available team datasets.
Therefore, this study uses car images as stimulus samples to analyze the emotional
perception of participants. Compared with traditional emotions such as “positive neutral
negative” and “happy angry sad happy”, we use the emotional adjective “steady lively” with
high-level emotional understanding as emotional recognition information. Combining
common physiological cognitive data, we use EEG caps and ET devices to measure the
physiological data of users. The specific experimental process is shown in Fig. 2.

Data extraction
Users’ physiological and behavioral data can be acquired based on the emotional
recognition framework. As feature extraction is unnecessary for behavioral data, the multi-
modal feature data focuses solely on the physiological and stimulus source data. Figure 3
illustrates the processing methodology of multi-modal feature data. Its main components
are the EEG feature data extraction, ET feature data extraction, and stimulus source data
extraction. To integrate multi-modal data, it is essential to synchronize the data
information. Different data trails can be divided based on the stimulus source, and
behavioral labels for each trail can be marked. For EEG data, it is necessary to construct a
multidimensional feature data structure to integrate the frequency, spatial, and temporal
characteristics of EEG signals. Because the stimuli in each experiment are different, we
need to conduct a single trial analysis for each stimulus. The differential entropy feature
has been proven to be a reliable method for analyzing single-trial EEG signals and a stable
method for emotion recognition in related research. This study will use differential entropy
(DE) as the feature extracted from EEG data. Firstly, we decompose each trial segment into
five frequency bands using a Butterworth filter, including 6(1 Hz ~ 3 Hz), 0(4 Hz ~ 7 Hz),
(8 Hz ~ 13 Hz), (14 Hz ~ 30 Hz) and (30 Hz~). The purpose of doing this is to
integrate frequency information from different EEG data. Subsequently, we extracted
differential entropy features for each segment band using 0.5 s as a window to obtain the
temporal characteristics of changes in EEG signals during the emotional cognition of the
subjects.

The differential entropy feature H(x) of continuous EEG data Xcan be defined as:

HG) = [ p(a)log(pl)ds W

where p(x) is the probability density function of X.

When defining the probability density function p(x) of continuous EEG data X, it is
expected to employ statistical methods or data modeling techniques. Here, we utilize the
Gaussian distribution to describe the probability density function p(x) of continuous EEG
data X. The probability density function of the Gaussian distribution is given by:

e )2) @

where p represents the mean and ¢ denotes the standard deviation of the Gaussian

distribution. Finally, according to the distribution of different electrode channels, the
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extracted differential entropy features are stacked in two dimensions using the feature level
fusion method to obtain the spatial distribution characteristics of EEG signals. In this
article, we set up an 11 * 11 two-dimensional space to integrate the distribution positions of
different electrode channels. As shown in Fig. 4, the electrode and two-dimensional plane
information of the EEG cap we used are shown respectively, where 0 represents no data at
that position.

Regarding ET data, we conducted a separate feature extraction of the left and right eyes.
It has been demonstrated in related research that ET features, such as pupil diameter,
number of fixations, and saccade count, can reflect the emotional and cognitive state of the
user (Guo et al., 2019). We undertook data filtering and selection based on existing studies
and the data obtained from each trial, culminating in the acquisition of 52 distinctive
feature categories (Mele ¢ Federici, 2012), as illustrated in Table 3. We employed a feature-
level fusion method to merge the ET feature data to obtain an ET feature dataset.

We resized images evenly and extracted unique multi-color features to obtain stimulus
source features. Consequently, we acquired a feature set of size 224 x 224 x 3.

Muitimodal fusion network

We propose an Emotion-Multimodal Fusion Neural Network (E-MFNN), a novel multi-
modal fusion neural network based on our new emotional recognition framework. E-
MEFNN synchronously fuses physiological cognitive data, user behavioral data, and
stimulus source data to extract the characteristics of each modality and forecast the
emotional state. E-MFNN incorporates decision-level and feature-level fusions. In the
beginning, the decision-level fusion is utilized to process and train the data of each
modality by different neural networks to acquire the main characteristics of each respective
modality’s data. Next, based on the feature-level fusion technique, the aforementioned
main characteristics of each modality’s data are concatenated to generate a characteristic
data set containing each modality of the data. Finally, the final dataset produced by
integrating feature sets of each modality’s data is trained to provide predicted values. The
E-MFNN network structure is displayed in Fig. 5.

For EEG data, each trial includes multiple datasets of differential entropy features based
on the time series due to the extraction of differential entropy features. A CNN network
extracted the EEG’s frequency and spatial information. Still, since the spatial information
dimension of EEG signals is relatively small, we did not increase the pooling layer when
using CNN to preserve more feature information. Our neural network consists of eight
convolutional layers with a ReLu activation function, and the last convolutional layer is
connected to three fully connected layers, which ultimately output 256 features. We used
an LSTM artificial neural network to process all output feature data from the trial in
combination with the same CNN model for handling other differential entropy feature
data of the time series. Finally, we obtained EEG feature output that corresponded to each
trial stimulus.

To process ET data, the data size needs to be transformed from 52 X 2 to 52 x 2 X 1
before being inputted into the CNN module explicitly designed for ET data processing. In
contrast to the CNN module for EEG feature extraction, this one lacks the LSTM process
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Figure 4 Electrodes of EEG caps and corresponding two-dimensional maps. Image credit: Zhuen Guo.
Full-size K&] DOT: 10.7717/peerj-cs.1977/fig-4

for feature data extraction. The VGGNet16 neural network architecture was utilized for
stimulus source data, as it remains the most prevalent architecture for image classification
despite being proposed earlier (Simonyan & Zisserman, 2015). Unlike the VGGNet16
architecture, the CNN module for processing stimulus source data generates a feature map
size of 256 as the output of its last fully connected layer without applying the Softmax
calculation. Each modality dataset produces 256 features following processing through
different neural networks and concatenating these features through the feature-level fusion
method. Training these features, three fully connected layers, and the Softmax function can
ultimately make emotional response predictions. The configuration of the E-MFNN
structure is displayed in Table 4.

EXPERIMENTAL VERIFICATION AND RESULTS

Emotional cognition experiment

Preparation of stimulus samples

As elaborated in “Emotional dataset”, this study employed specimens of cars as stimuli and
utilized a car dataset of our emotional images as the source of stimuli. The dataset
comprises 25,152 pictures of various car models and colors from orthogonal perspectives,
captured against a white background to downplay the effect of extraneous variables on
emotional components. Based on the emotional data obtained previously, we categorized
6,000 car images to form the stimulus sample pool, selecting 3,000 images randomly for
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Table 3 ET features indicators.

ET features

The total of stimulus selection time (ms)
Blink count

Blink frequency (count/s)

Blink duration total (ms)

Blink duration average (ms)

Blink duration maximum (ms)
Blink duration minimum (ms)
Fixation count

Fixation frequency (count/s)
Fixation duration total (ms)
Fixation duration average (ms)
Fixation duration maximum (ms)
Fixation duration minimum (ms)
Fixation dispersion total (px)
Fixation dispersion average (px)
Fixation dispersion maximum (px)
Fixation dispersion minimum (px)
Scanpath length (px)

Saccade count

Saccade frequency (count/s)
Saccade duration total (ms)
Saccade duration average (ms)
Saccade duration maximum (ms)
Saccade duration minimum (ms)
Saccade amplitude total (°)

Saccade amplitude average (°)

Saccade amplitude maximum (°)

Saccade amplitude minimum (°)

Saccade velocity total (°/s)

Saccade velocity average (°/s)

Saccade velocity maximum (°/s)

Saccade velocity minimum (°/s)

Saccade latency average (ms)
Entry time (ms)

Sequence

Net dwell time (ms)

Dwell time (ms)

Glance duration (ms)
Diversion duration (ms)
First fixation duration (ms)
Glances count

Revisits

Fixation count

Visible time (ms)

Net dwell time (%)

Dwell time (%)

Fixation time (ms)
Fixation time (%)

Average pupil size
Minimum pupil size
Maximum pupil size

Variance of pupil size

each emotion class (steady and lively), of which the two categories had approximately the

same number of samples.

Recruiting participants

To delve into participants’ emotional responses towards products while nullifying the
influence of individuals with specific emotional recognition linked to product design, car
salespeople, efc., we recruited test subjects from Guizhou University and remunerated
them suitably. With an age range of 21, 28, 30 participants were the final selection for the
emotional recognition experiment, with 16 males and 14 females being right-handed,
having normal vision or corrected vision, and having no history of mental illness or related
conditions. Participants received training on the purpose of the experiment and possible
challenges that may arise from the test.
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Figure 5 The neural network architecture of E-MFNN. In this figure, the image of the stimulus component comes from the author’s public data
set. The car emotion image dataset can be accessed from the following website: https://doi.org/10.6084/m9.figshare.25484329.v1. Image credit: Guo
Zhuen. Full-size K&l DOI: 10.7717/peerj-cs.1977/fig-5

Experimental process

The emotional-cognitive experiments were conducted using a range of equipment. One of
them is the EPOC Flex EEG cap, which includes 32 electrode channels and has a resolution
of 128 Hz; the SMI RED500 desktop eye tracker, which has a resolution of 120 Hz; a
stimulus presentation computer; and separate EEG and ET data recording computers.
During the experiments, E-Prime two Psychology Experiment software is used to integrate
these devices and present sample stimuli. EEG data and information are recorded using
Emotiv Pro, while the iView X and BeGaze tools record and process ET data. The
operating environment relied upon during these studies is illustrated in Fig. 6.

A total of 6,000 stimulus samples were randomly distributed among 60 groups, each
consisting of 100 samples. The experimental area was maintained at a consistent
brightness level and was free of extraneous sound or lighting interference. Before
experimenting, participants were required to wash their hair to help reduce the influence of
scalp oil on conductivity. During the experiment, a pre-test was performed to allow
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Table 4 Configuration of neural network structure for E-MFNN.

E-MFNN

EEG data ET data Image

DE data . DE data

Input (11 * 11 *5) Input (11 * 11 *5) Input (52 *2 * 1) Input (224 *224 * 3)

conv3-64 conv3-64 conv3-64 conv3-64

conv3-64 conv3-64 conv3-64 conv3-64

conv3-128 conv3-128 conv3-128 Maxpool

conv3-128 conv3-128 conv3-128 conv3-128

conv3-256 conv3-256 conv3-256 conv3-128

conv3-256 conv3-256 conv3-256 Maxpool

conv3-64 conv3-64 conv3-64 conv3-256

conv3-64 conv3-64 conv3-64 conv3-256

FC-2048 FC-2048 FC-2048 conv3-256

FC-2048 FC-2048 FC-2048 Maxpool

FC-256 FC-256 conv3-512
conv3-512
conv3-512
Maxpool
conv3-512
conv3-512
conv3-512
Maxpool
FC-4096

LSTM FC-4096

256 FC-256 FC-256

Concatenate

FC-768

FC-768

FC-10

Softmax

individuals to become familiar with the operating requirements. The formal experiment
included the appearance of a “+” symbol, displayed for 0.5s, to draw participants’
attention. This was followed by a 5 s presentation of a stimulus sample image, upon which
participants were shown a set of emotional words, for example, sedate and lively.
Participants were then required to choose one of these options. Although the choice had no
set time limit, the reaction time was recorded. A blank image was shown for 0.5 s after each
trial to remove any visual afterimage. Each subject participated in two experiments at
different intervals, requiring roughly 25 min of preparatory time.
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Figure 6 Test operating environment. Photo credit: Zhuen Guo.
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Data processing

Firstly, we processed the physiological and behavioral data of the subjects by screening the
collected data to improve the accuracy of our study. We detected incomplete EEG data in
two sets of experiments, covering 21 Trails, and incomplete ET data in one set of
experiments, covering six Trails. We eliminated the incomplete data, acquiring a complete
dataset containing 5,973 sets of physiological data, user behavior data, and stimulus source
data.

Subsequently, we proceeded to process the obtained data. To preprocess the EEG data,
we utilized the EEGLAB toolbox. The processing included importing the data and stimulus
label, locating the electrodes, re-referencing using the average reference method, filtering,
cropping the Trail time, performing baseline correction, performing Independent
Component Analysis (ICA), and removing artifacts. This resulted in the acquisition of
5,973 segments of EEG data containing 32 electrodes.

Finally, we extracted EEG feature data using filtering and differential entropy methods,
acquiring 5,973 sets of differential entropy containing 10 differential entropy features with
time series for 32 channels and five frequency bands. The EEG data was formed into a
(5,973 x 32 x 5 x 10) dimensional dataset. We extracted ET features as per “Data
extraction” and calculated the values of each ET feature indicator. A total of 52 features
were obtained for the left and right eyes, resulting in a (5,973 x 2 x 52) dimensional ET
dataset. We reduced the image resolution to 224 x 224 pixels for the stimulus source data
and normalized the data. This process resulted in a (5,973 x 224 x 224 x 3) dimensional
stimulus source dataset.

Finally, the preprocessed data was normalized and transformed into datasets. The
datasets were divided into training, validation, and test sets at an 8:1:1 ratio and were used
to train and validate the E-MFNN model. To enable efficient training, the State Key
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Laboratory of Public Big Data, Guizhou University, provided server clusters with an
Ubuntu 18.04 environment, using the TensorFlow framework and a single NVIDIA A100
processor. In addition, we also used different modal data combinations and neural network
architectures for ablation experiments to verify the effectiveness and advantages of the
emotion recognition framework and E-MFNN proposed in this study. The combination
methods of data include the fusion of EEG-ET data, EEG data, stimulus source data, ET
data, EEG data fusion stimulus source data, and ET fusion stimulus source data. The
training network is a variation of the E-MFNN proposed in this study, which involves
retaining the network module that trains the data and deleting the training module that did
not input the data.

Experimental result
We will train each data type for 100 epochs and update the training parameters using the
SGD optimizer. In addition, to ensure comparison with existing technologies and fully
validate the performance of the multimodal emotion recognition framework proposed in
this study, we compared our results with the latest emotion recognition techniques based
on EEG physiological data.

Standard emotion recognition methods based on EEG data and deep learning.

1D-CNN (Aldawsari, Al-Ahmadi & Muhammad, 2023). In emotion recognition based
on EEG data, EEG signals are usually one-dimensional. The convolutional layers of one-
dimensional CNN architecture are used to process EEG physiological data, achieving
emotion recognition and classification. The baseline validation will be trained using a 1D-
CNN network, and comparative experiments will be conducted by normalizing and one-
dimensional stretching the EEG data of each stimulus trail.

2D-CNN (Farokhah, Sarno ¢ Fatichah, 2023). 2D-CNN is the default architecture of
CNN, which converts one-dimensional EEG signals into two-dimensional structures
through preprocessing techniques and uses 2D-CNN for sentiment recognition to achieve
classification. During baseline validation, 32 electrode channels will be arranged in a two-
dimensional manner, and each electrode channel will be a one-dimensional EEG sequence
data.

3D-CNN (Yuvaraj et al., 2023). By defining the spatial layout of EEG data, the three-
dimensional structure of EEG data can be visualized and expressed. Data from different
bands of each electrode channel will be extracted during baseline validation, and the
electrode channels will be laid out to form a three-dimensional data structure.

4D-CNN (Shen et al., 2020). Four-dimensional structured data is formed by defining the
spatial layout of EEG data and extracting relevant data features based on time series.
During baseline validation, the band data of each electrode channel is extracted, and the
differential entropy features of the data are extracted to form four-dimensional structural
data.

RNN (Liu, Su & Liu, 2018). EEG data is physiological data of time series, which is
trained through RNN recurrent networks and extended network structures such as LSTM,
BERT, and transformer to achieve emotion recognition. During baseline validation, LSTM
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Table 5 The results of each framework.

Number Type Data Model Accuracy Training speed (it/s) Test speed (it/s)
1 Baselines EEG 1D-CNN 71.80% 7.39 17.12
2 EEG 2D-CNN 73.51% 7.14 17.05
3 EEG 3D-CNN 86.13% 7.81 16.26
4 EEG 4D-CNN 85.86% 6.95 14.54
5 EEG LSTM 82.65% 6.12 15.17
6 Ablation experiment ET 63.57% 8.16 20.18
7 EEG 85.06% 7.11 16.35
8 Stimulus 87.36% 9.36 22.51
9 EEG-ET 86.95% 6.31 13.49

10 EEG-Stimulus 89.03% 6.16 14.51

11 ET-Stimulus 87.25% 5.95 14.3

12 Our Multimodal E-MFNN 93.85% 531 13.32

networks are used to process the EEG data of each electrode channel separately. Finally, the
features of different electrode channels are fused to achieve emotion recognition.

Table 5 showcases the multimodal emotion recognition framework, the baseline
method introduced in this study, and the results from ablation experiments conducted for
each data modality.

Through comparison with baseline methods and ablation experiments, we found that
our proposed multimodal emotion recognition framework has significant advantages.
However, the sentiment classification accuracy of EEG data in baseline methods can reach
over 85%, such as through 3D-CNN and 4D-CNN models. However, our framework has
significantly improved performance, reaching 93.85%. In addition, the results of the
ablation experiment also indicate that emotion recognition based on eye movement data is
ineffective. Although some models based on baseline methods have advantages in emotion
recognition of EEG data compared to emotion recognition only targeting EEG data in our
ablation experiments, we did not integrate the baseline method model with the multimodal
framework model. The main reason is that the baseline method model is relatively
complex. If the baseline method model is fused with our model, the training speed is
slower, and higher servers must be configured for training.

Based on the Table 5, we compared the training and testing speeds of different models
with our model, using the same batch size (64 as shown in the table). The results indicate
that although our model exhibits superior accuracy compared to other models, it lags in
both training and testing speeds. Despite having a significantly larger model size and
dataset than other models, the difference in training and testing speeds is not substantial.
In terms of time cost, the discrepancy is negligible.

To better analyze the prediction of emotion recognition using different data, we selected
representative EEG-ET fusion data and EEG data related to changes during the training
process. Figure 7 summarizes the fitting curves of the accuracy of using multimodal data,
EEG-ET fusion data, and EEG data as a function of the training cycle and includes the
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Figure 7 Accuracy of emotion recognition for different data types.
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fitting curves of the training and testing sets and the comparison process. Our novel
discovery is that for our research goal, the binary classification problem of emotion
recognition, the accuracy should ideally exceed 95%. We can see from the comparison of
training results with different data that the classification performance of the multimodal
emotion recognition framework proposed in this study gradually increases with the
increase of the training cycle, and the recognition accuracy will eventually reach over 90%.
The accuracy of emotion recognition training sets based on traditional methods that only
target EEG-ET fusion data to obtain EEG data can reach over 90%. Still, the accuracy of the
test set differs significantly from that of the training set. For example, the accuracy of the
test set for EEG-ET fusion data can only reach over 85%, while the accuracy of emotion
recognition based on EEG data is only about 80%. In traditional emotion recognition
methods, the accuracy of the test set fluctuates wildly. In contrast, the accuracy of the
validation and test sets of this study’s multimodal emotion recognition framework
fluctuates less with the training cycle, resulting in a more stable emotion recognition effect.

To delve deeper into the emotion recognition performance across three data types, we
analyzed their training loss functions during the training process. Figure 8 illustrates the
fitted loss value curves for multimodal, EEG-ET fusion, and EEG data, plotted against the
training duration. These curves reveal that irrespective of the data type, the loss values of
the training set consistently diminish as training progresses. Notably, the training loss for
the multimodal emotion recognition framework introduced in this study exhibits a steady
decline over time. In contrast, the loss values for emotion recognition using EEG-ET fusion
and EEG data show more pronounced fluctuations. This comparison underscores the
stability of our proposed multimodal framework in emotion recognition, demonstrating its
potential to mitigate overfitting to a certain degree.

The variations in accuracy and loss values indicate that while traditional physiological
data has some applicability in emotion recognition, its stability is somewhat lacking, and
the quality and quantity of the data are critical factors. The multimodal emotion
recognition framework proposed in our study integrates stimulus source data, effectively
reducing data overfitting and enhancing the stability of emotion recognition. To
investigate the effectiveness of emotion recognition across different data types further, we
analyzed the accuracy changes among the three data types. Figure 9 summarizes the
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accuracy data for each type during the training and validation phases. The figure illustrates
that within a 5% to 95% confidence interval, the accuracy distribution for emotion

recognition using multimodal data exhibits a tighter clustering than that of EEG-ET and
EEG data, signifying a more consistent and reliable performance in emotion recognition.

Evaluation

To assess the efficacy of various data types and network models, we employed test data to
compare the classification performance of different modal data types, utilizing confusion
matrices as our analytical tool. Figure 10 displays the emotion recognition prediction
results achieved through multimodal and stimulus source data. In this comparative
analysis, the emotion recognition framework newly proposed in our study achieved a
prediction accuracy of 94.53%. In contrast, the prediction accuracy for emotion
recognition utilizing EEG-ET fusion data stood at 89.5%, while the prediction accuracy
based solely on EEG data was 87.33%. These results demonstrate that the emotion
recognition predictions derived from multimodal data significantly outperform those
based on stimulus source data alone, highlighting our proposed framework’s enhanced
accuracy and reliability.
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From the comparison results of different methods, our proposed multimodal emotion
recognition framework performs better than traditional methods based on EEG-ET fusion
emotion recognition or analyzing EEG data for emotion recognition. The primary
manifestation of our proposed emotion recognition framework is based on multiple types
of data for emotion recognition, including physiological data of subjects, such as eye
tracking data and EEG data, behavioral data of subjects, and stimulus source data. By
integrating multiple data types, we can obtain more data features generated by the
emotional understanding process of subjects toward stimuli. In addition, our proposed E-
MENN also plays a vital role in emotion prediction. We process data types separately and
fuse them through decision and feature fusion to obtain excellent prediction results.

DISCUSSION

This study robustly demonstrates the viability of multimodal data fusion in emotion
recognition through extensive experimentation. And propose E-MFNN to make it more
suitable for emotion recognition and prediction in multimodal data. The results in
“Experimental Verification and Results”, when compared with other modal data-based
emotion recognition methods, affirm the superiority of our proposed multimodal emotion
recognition framework. This framework exhibits several critical advantages over
traditional approaches: (1) It achieves higher prediction accuracy; (2) It is less prone to
overfitting during the training process; (3) It enables participants to discern deeper
emotional understandings of stimuli beyond merely recognizing emotions associated with
overt emotional expressions.

Firstly, compared with other studies, the EEG-ET approach shows lower effectiveness in
emotion recognition and prediction. This study’s EEG and ET feature data are based on
relevant works. The EEG data feature extraction is similar to previous studies, which
utilized differential entropy features and conducted a spatial feature transformation (Shen
et al., 2020). However, they used a longer single EEG data duration (4 min), while our
study had only 5 s. The extraction of ET feature data is also similar to prior studies, which
extracted multiple ET features (Liu, Zheng ¢ Lu, 2016). However, we extracted more ET
feature indicators than prior studies, utilizing 52 ET feature indicators separated by left and
right ET. Thus, we suspect the poor performance of emotion recognition after eye-brain
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data fusion may relate to the stimulus duration and feature selection during training.
Furthermore, selecting more ET feature indicators may affect prediction accuracy. Hence,
future research can focus on obtaining more representative feature indicators in the case of
shorter single test durations. This issue should also be considered in emotion recognition
studies that incorporate EEG-ET. Despite the noteworthy performance of our proposed
multimodal emotion recognition framework, addressing these issues will further increase
our emotion recognition accuracy and robustness.

Next, the contribution of E-MFNN to the recognition and prediction of emotions in
multimodal data is a noteworthy achievement that has produced excellent results.
However, E-MFNN still has room for improvement to accommodate a broader range of
multimodal fusion data. This study’s proposed emotion recognition framework can obtain
physiological cognitive data, including electroencephalogram and ET data. E-MFNN
processes electroencephalogram data based on time series while directly processing ET
data through the CNN module. Scholars have shown that ET data fully reflects the
subject’s cognitive process (Zhu et al., 2022). Yet, we only utilized the cognitive results of
ET data in the study, neglecting the extraction of cognitive feature indicators
corresponding with alterations in ET data. Therefore, further improvement of E-MFNN
can be achieved by adding time-based data processing while processing ET data. This
adjustment will supplement the subject’s cognitive feature extraction and promote a more
profound comprehension of emotions in the prediction results. E-MFNN is an exemplary
algorithm for processing multimodal emotional data, which can be modified to handle
different data types by introducing additional processing modules and fusing the data via
feature and decision-level fusion training. These modifications will improve its
applicability to a broader scope of emotional data processing.

Introducing this new multimodal emotion recognition framework aims to expand its
applicability across a broader spectrum of emotion recognition scenarios. In this study, we
utilized physiological and stimulus source data from emotional cognition experiments for
emotion recognition. To assess the framework’s versatility, we tested it against the publicly
available SEED dataset, a three-class dataset comprising EEG physiological data (Zheng ¢
Lu, 2015). The SEED dataset employs movie clips as stimuli to elicit emotional responses
and EEG data from participants. Although SEED doesn’t provide direct stimulus source
data, it offers comprehensive details about the stimuli, including video source websites and
time segment information.

Leveraging our multimodal emotion recognition framework, we integrated video and
EEG data to facilitate emotion recognition inference. We extracted movie segment
information and derived a stimulus source dataset with a time series by capturing one
frame per second from the segments. Given that the dataset has only 15 stimulus fragments
but 625 sample instances, we applied data augmentation techniques, such as cropping and
rotation, to the frame data. LSTM networks were used to train the time-series frame
images, which were then fused with LSTM networks processing the EEG data. A CNN was
employed to handle the features from both sources, culminating in the output of emotion
recognition. The process and methodology are depicted in Fig. 11.
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Table 6 Comparison of emotional recognition accuracy based on SEED dataset.

Number Author Accuracy
1 Delvigne et al. (2022) 84.11/2.9

2 Li et al. (2021) 93.12/6.06
3 Li et al. (2018) 92.38/7.04
4 Shen et al. (2020) 94.74/2.32
5 Our 96.78/3.51

Our study undertook a comparative analysis with the latest research in emotion
recognition using the SEED dataset, employing a five-fold cross-validation method to
ascertain recognition accuracy. This comparison, detailed in the accompanying Table 6,
demonstrates that our proposed emotion recognition framework surpasses existing state-
of-the-art models in emotion recognition accuracy within the SEED datasets. By
incorporating stimulus sources (video data), our framework achieved a remarkable
accuracy rate of 96.78%, effectively inferring users’ emotional states. This outcome not
only validates the effectiveness of our framework but also attests to its universality. It
underscores the potential of our proposed multimodal emotion recognition framework to
be applicable in diverse emotion recognition scenarios involving both stimulus sources and
physiological data.

However, our study did not extend the verification to other publicly available datasets
like DEAP and SEED-IV, primarily due to their lack of stimulus source data. Despite
efforts to locate such data based on information provided in these public datasets,
including website sources and descriptions, we encountered significant challenges. A
substantial portion of the stimulus source data was either inaccessible or unplayable. As a
result, our validation was confined to the SEED dataset. Future research endeavors will
continue to explore our framework’s applicability to a broader range of datasets. This
expansion will enhance our understanding of the framework’s versatility and effectiveness
in various emotion recognition contexts.
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CONCLUSION

In this research, we developed an innovative emotion recognition framework that
synergizes stimulus source, behavioral, and physiological cognitive data. To effectively
integrate and train multimodal data for emotion recognition, we introduced the E-MFNN
algorithm. This framework and the E-MFNN demonstrate enhanced accuracy and
robustness in emotion recognition compared to traditional methods and data types, such
as EEG-ET fusion data and stimulus source data. A key aspect of our study involved using
car images, which necessitated a deep emotional understanding from participants as
experimental cases. We captured physiological cognitive data through ET devices and EEG
caps. However, it is important to note that this is merely a case study validation. The crux
of our research lies in the proposed framework’s ability to recognize emotions in response
to diverse stimuli and employ various physiological measurement techniques, showcasing
its broad adaptability.

In addition, as previously noted throughout this study, our experimental design utilized
emotionally evocative images from past research to evaluate subjects’ emotional
comprehension at a deeper level, as opposed to stimuli with easily distinguishable
emotional expressions. The results were deemed satisfactory regarding emotion
recognition and prediction. However, we feel there is a lack of significant difference
between our results vs those presented by stimuli with clear emotional distinctions. As
emotion recognition is the product of classifying induced data, the resulting data is devoid
of deep emotional processing based on the data. As a result, we are motivated to investigate
further whether different types of modality data correlate during emotion recognition
training and how they differ from data generated by stimuli with clear emotional
distinctions. Despite being a complex black box, where both the subject’s mind and deep
learning algorithms play a part, differences in data and training can reveal differences
among various types of emotional stimuli, aside from simply focusing on the result.
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E-MFNN Emotion-Multimodal Fusion Neural Network
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RNN Recurrent Neural network
RSP Respiration

SC Skin conductivity

SVM Support vector machine
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VGGNet  Visual Geometry Group Network
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