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ABSTRACT
This article explores the application of deep learning techniques for sentiment analysis
of patients’ drug reviews. The main focus is to evaluate the effectiveness of bidirectional
long-short-term memory (LSTM) and a hybrid model (bidirectional LSTM-CNN) for
sentiment classification based on the entire review text, medical conditions, and rating
scores. This study also investigates the impact of using GloVe word embeddings on the
model’s performance. Two different drug review datasets were used to train and test
the models. The proposed methodology involves the implementation and evaluation
of both deep learning models with the GloVe word embeddings for sentiment analysis
of drug reviews. The experimental results indicate that Model A (Bi-LSTM-CNN)
achieved an accuracy of 96% and Model B (Bi-LSTM-CNN) performs consistently at
87% for accuracy. Notably, the incorporation of GloVe word representations improves
the overall performance of the models, as supported by Cohen’s Kappa coefficient,
indicating a high level of agreement. These findings showed the efficacy of deep
learning-based approaches, particularly bidirectional LSTM and bidirectional LSTM-
CNN, for sentiment analysis of patients’ drug reviews.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Neural Networks
Keywords Deep learning, Sentiment analysis, Patients’ drug reviews, Bi-LSTM-CNN,
Bidirectional LSTM-CNN, LSTM, CNN

INTRODUCTION
Sentiment analysis, also known as opinion mining (OM), has gained significant popularity
as a crucial technique in natural language processing. Its objective is to extract subjective
information from text data, encompassing opinions, emotions, and attitudes (Pang, Lee
& Vaithyanathan, 2002). With the rise of online healthcare platforms, there has been an
exponential increase in patients’ drug reviews. In response, medical institutions have
established dedicated offices to manage patient experiences, ensuring that patients are
informed about the potential risks and complications associated with treatments. Hence,
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sentiment analysis of patients’ drug reviews holds immense value in providing insights
into patient satisfaction, drug efficacy, and adverse drug reactions. This information assists
decision-makers in the healthcare sector to gauge the quality of services and address
potential patient issues. Two primary approaches to sentiment analysis have been explored
in Aung & Myo (2017). The first is lexicon-based, which relies on dictionaries or lexicons
containing words and their corresponding sentiments. The second approach involves
machine learning algorithms that learn sentiments from labeled datasets. While several
attempts have been made using machine learning techniques, only a few studies have
applied deep learning to sentiment analysis of drug reviews. This work aims to fill that gap
by investigating and evaluating various deep learning architectures, such as convolutional
neural network (CNN), and long-short term memory (LSTM), with a focus on word
embeddings using Global Vectors for Word Representation (GloVe), which represents
words as high-dimensional vectors.

The sentiment analysis process involves several steps, including data cleaning and the
addition of extra-linguistic constraints, such as negation handling, on the pre-trained
embeddings. Deep learning techniques, including recurrent neural networks (RNNs),
LSTM, and encoder representations from transformers models, are employed for the
sentiment analysis task. Standard evaluation metrics like accuracy, precision, recall, and
F1 are utilized to assess the performance of the systems. Contextual understanding means
that the meaning of a word can change depending on the context in which it is used. So,
understanding the context in which the word is used is essential to accurately identify
the sentiment. Zhao & Mao (2017) demonstrated the limitations of the bag-of-words text
encoding without considering the semantics/context of different words in a text document.
These limitations proved to be a major setback for the natural language processing (NLP)
tasks which required diverse vocabulary and contextual encoding. To overcome these
limitations, the multi-label text classifications based on deep learning algorithms have been
used in this work which was already trained on large text corpus using semantic encoding.
The well-known encoding is GloVe word embedding. Therefore, this particular study
has three primary objectives: Firstly, it investigates the effectiveness of the deep learning
algorithms depending on the classification of sentiment analysis for drug review text,
conditions, and the rating score. Secondly, we compare the effectiveness of bidirectional
long short-term memory (Bi-LSTM), and hybrid model (bidirectional LSTM-CNN). We
develop a deep learning-based algorithm for sentiment analysis by involving the word
embedding and GloVe learning algorithms on the third objective. Lastly, we evaluate
and test the performances of the developed model by using a number of metrics such as
accuracy, precision, recall, and F1-score. The recent studies by Ahmet & Abdullah (2020)
revolve around the exploration and analysis of current trends and advances in sentiment
analysis, specifically focusing on deep learning-based approaches. The central theme
of another study by Zhang et al. (2022) revolves around aspect-based sentiment analysis
(ABSA), a significant fine-grained sentiment analysis problem that has garnered substantial
attention over the past decade.

The report structure comprises various sections, starting with the introduction, which
highlights the need for this research. The literature survey section provides a concise
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overview of previous studies in this area. The methodology section describes the methods
adopted for the study, followed by the results section, which evaluates the applied deep
learning algorithms and word embedding approaches. Finally, the conclusion section
summarizes the findings of the study.

RELATED WORK
The research presented by Na et al. (2012) proposes a rule-based linguistic approach for
sentiment classification of drug reviews. The clause-level sentiment classification algorithm
is developed and applied to drug reviews on a discussion forum. The algorithm adopts
a purely linguistic approach to computing the sentiment of a clause from the polarity
with three values positive, negative, and neutral assigned to individual words, taking into
consideration the grammatical dependency structure of the clause using the sentiment
analysis rules. MetaMap, a medical resource tool, is used to identify various disease
terms in the review documents to utilize domain knowledge for sentiment classification.
Experiment results with 1,000 clauses show the effectiveness of the proposed approach,
and it performed significantly better than baseline machine learning approaches. They
compared their rule-based approach with a machine learning approach using naïve Bayes
and found that their rule-based approach achieved comparable performance. The authors
also performed an analysis of the rules to identify the most significant rules for sentiment
classification. The approach is dependent on the development of a comprehensive set of
rules that require domain expertise, andmay not be able to capture the nuances of sentiment
expressed in natural language. More recently, deep learningmodels have shown remarkable
results for sentiment analysis on drug reviews.Colón-Ruiz & Segura-Bedmar (2020) studied
the performance of CNN and LSTM. According toBalakrishnan et al. (2022), the utilization
of bidirectional encoder representations from transformers (BERT) in conjunction with
Bi-LSTM was employed for conducting sentiment analysis on drug reviews. This study
highlights the integration of state-of-the-art language representation models and recurrent
neural networks in the domain of drug review sentiment analysis. Another investigation
conducted by Dang, Moreno-García & De la Prieta (2021) demonstrated the effectiveness
of the hybrid CNN-LSTM architecture as an approach for sentiment analysis on drug
reviews. This study provides insights into the application of advanced models in sentiment
analysis within the context of drug-related content.

The research by Na & Kyaing (2015) focused similarly on the tasks discussed earlier,
there has been a proliferation of research applying deep learning models to sentiment
analysis in recent years. For instance, Abdualgalil et al. (2022) applies several machine
learning and deep learning methods to aid governments and health policymakers in
making informed decisions to reduce tuberculosis prevalence through efficient forecasting
methods. These methods include SARIMAX, LSTM, CNN-LSTM Hybrid, MLP network,
SVR, XGboost, and RF Regression to forecast pulmonary positive, negative, and overall
tuberculosis incidence cases. In addition, Moradzadeh et al. (2021) underscores the
exceptional performance of the Bi-LSTM technique, demonstrating a superior correlation
coefficient compared to alternative methods in the realm of short-term load forecasting.
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The GloVe is a successful word embedding algorithm that helps to achieve high accuracy.
GloVe word embedding is a global log-bilinear regression model and is based on the
co-occurrence and factorization of a matrix to get vectors. Rezaeinia, Ghodsi & Rahmani
(2017)worked on improving the accuracy of the well-known pre-trained word embeddings
for sentiment analysis. They achieved a high accuracy of pre-trained word embeddings
based on the combination of four approaches such as lexicon-based approach, POS tagging
approach, word position algorithm, and Word2Vec/GloVe approach.

Shilpa et al. (2021) considered the use of GloVe word embedding with the DBSCAN
clustering algorithm in document clustering. The preprocessing is done with and without
stemming fromWikipedia and IMDB datasets. The GloVe word embedding algorithm was
applied with the DBSCAN clustering algorithm.

Lauren et al. (2018) proposed the evaluating word embedding models and methods.
The experimental results showed how the pertaining by using the GloVe affected the
performance of the model.

In addition, Maas et al. (2011) presented a vector space model that learns word
representations capturing semantic and sentiment information. The model’s probabilistic
foundation gives a theoretically justified technique for word vector induction as a
factorization-based technique commonly used.

According to Na & Kyaing (2015), focused on sentiment analysis of user-generated
content on drug reviewwebsites. The authors used amachine learning approach, specifically
a support vector machine (SVM), to classify drug reviews into positive, negative, or neutral
sentiment categories. The authors also conducted feature selection to identify the most
important features for sentiment classification. So, the studies also highlight the importance
of feature selection and domain expertise in developing effective sentiment classification
models.

Pang, Lee & Vaithyanathan (2002) demonstrated the effectiveness of machine learning
approaches for sentiment classification and highlights the importance of feature selection
and domain expertise in developing effective sentiment classification models. The study
also provided a benchmark dataset for sentiment classification that has since been used in
many subsequent studies.

The research done inMishra, Malviya & Aggarwal (2015) used the drug reviews written
by patients in different health communities to recognize commonly occurring problems.
Then they compare these issues with the drug labels approved by the Food and Drug
Administration (FDA) to identify any areas for improvement. They develop a system that
can be scaled up for mapping interventions to indications and the associated symptoms
mentioned in patient comments. By creating these mappings, our system can compare
various sections of the FDA labels and provide recommendations. To give an overall rating
to the drugs, it has been used an SVM-based framework was used for sentiment analysis.

Multiple aspects related to drugs have been studied in several studies that have focused
on aspect-based sentiment analysis, with the aim of developing an effective sentiment
classification approach. Bobicev et al. (2012) proposed a bag-of-words (BoW) approach
to represent Twitter messages that disclose personal health information. The authors
experimented with various machine learning algorithms such as naive Bayes, decision
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trees, KNN, and SVM. Similarly, in Ali et al. (2013) several algorithms including naive
Bayes, SVM, and logistic regression were investigated to estimate the polarity of patients’
posts in online health forums. In the context of the study, Wilson, Wiebe & Hoffmann
(2005) provided a foundation for the employed sentiment analysis features. These
features encompassed metrics such as the number of subjective words, adjectives, adverbs,
pronouns, and the presence of positive, negative, and neutral words were used to train
the algorithms. These features were taken from the Subjectivity Lexicon (Wilson, Wiebe &
Hoffmann, 2005).

Yadav & Vishwakarma (2020) proposed a weighted text representation framework
that utilizes feature selection to reduce the dimensionality of the data and a weighting
scheme that assigns weights to different words based on their importance in predicting
the sentiment. The authors evaluate the performance of their framework using a dataset
of drug reviews from the social media platform Twitter. They compared the performance
of their framework with traditional BoW and TF-IDF methods, as well as with several
machine learning algorithms including naive Bayes, support vector machines (SVM), and
decision trees.

To summarise, natural language processing (NLP) has been regarded as a pivotal element
of artificial intelligence (AI). This perspective stems from the fact that comprehending and
producing natural language serves as a sophisticated benchmark of intelligence. As a potent
instrument within the AI toolkit, deep learning, a potent instrument within the AI toolkit,
also finds its place within the broader spectrum of AI endeavors. Subsequently, we delve
into the integration of deep learning into the domain of AI. Following that, we elucidate
the rationale behind harnessing deep learning for NLP tasks. In the domain of sentiment
classification for drug reviews, the predominant approach has been the utilization of
deep-learning algorithms.

This work investigates the effectiveness of the deep learning algorithms depending on
the classification of sentiment analysis of drugs in the whole review text, conditions, and
the rating score. It also focuses on comparing the effectiveness of bidirectional LSTM, and
hybrid model (bidirectional LSTM-CNN). The investigation into the word embedding
using GloVe focused on assessing its impact on model performance. Incorporating GloVe
embeddings into the hybridmodel holds the potential to significantly enhance performance
by leveraging the semantic knowledge encoded in pre-trainedword vectors. This integration
augments themodel’s capacity to understand and represent the nuancedmeanings of words
within the context of the bidirectional LSTM-CNN architecture. By harnessing the rich
semantic information captured by GloVe, the hybrid model becomes more adept at
capturing both sequential dependencies and local patterns, ultimately contributing to
improved overall performance. For evaluating and testing the performance the accuracy,
precision, recall, and F1-score were applied to demonstrate the superiority of deep learning
techniques in the task of sentiment analysis. Additionally, we used the testing data in two
ways. For the drug review, we tested the drug reviews directly, and for WebMD, the data
was split into a training set and a test set.
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Figure 1 Neural networks.
Full-size DOI: 10.7717/peerjcs.1976/fig-1

Neural networks
Deep learning involves amultilayer approach to the hidden layers of neural networks (Dang,
Moreno-García & De la Prieta, 2021). Traditionally, in machine learning models, features
are identified and extracted either manually or using feature selection methods. However,
in the case of deep learning (Ghulam et al., 2019), features are learned, and extracted
automatically resulting in higher accuracy and performance. Figure 1 shows the differences
in sentiment classification between the two approaches.

Recurrent neural networks
A recurrent neural network (RNN) is a class of artificial neural networks where connections
between nodes can create a cycle, allowing output from some nodes to affect subsequent
input to the same nodes as shown in Fig. 2 This unique architecture allows RNNs to exhibit
temporal dynamic behavior.

Specifically designed for processing sequential data, RNNs play a crucial role in various
applications. The fundamental equation governing the recurrent nature of these networks
is expressed as follows: RNN are a part of the neural network family used for processing
sequential data. In the following equation

ht = f (ht−1,x), (1)

ht represents the output at time t , h(t−1) denotes the previous output, and x is the input.
The function f captures the recurrent relationship, describing how the network processes
and updates information over sequential steps.
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Figure 2 RNN architecture.
Full-size DOI: 10.7717/peerjcs.1976/fig-2

Recurrent neural networks (long short-term memory)
The LSTM network is a type of RNN that includes additional memory features to address
the challenges of vanishing and exploding gradients (Ghulam et al., 2019). LSTMs consist
of recurrently connected blocks, known as memory units, that are designed to mitigate
these issues. The memory units have gates, which determine whether to add or remove
information from the cell state as shows in Fig. 3. By utilizing these gates, LSTMs can
capture long-range dependencies in the input data, which is useful for text classification
tasks. Overall, LSTMs offer an advanced approach to RNNs that can better handle complex
and sequential data.

The architecture includes several gates and memory cells that enable it to capture and
remember information over varying time scales (Tran et al., 2016). The LSTM has an input
xt which can be the output of a CNN or the input sequence directly. ht−1 and ct−1 are the
inputs from the previous timestep LSTM. ot is the output of the LSTM for this timestep.
The LSTM also generates the ct and ht for the consumption of the next time step LSTM

• Forget gate: The forget gate determines what information from the previous cell state
should be discarded (Kim et al., 2016). It takes the previous cell state Ct−1 and the
current input xt as inputs and produces a value between 0 and 1 for each element in the
cell state

ft = σ (Wf · [ht−1,xt ]+bf ). (2)

• Input gate: The input gate controls how much new information should be added to the
cell state. It calculates two values: the candidate values C̃t (new candidate cell state) and
the input gate it which determines how much of this candidate value should be added.

it = σ (Wi · [ht−1,xt ]+bi) (3)
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Figure 3 Long short-termmemory (LSTM) architecture.
Full-size DOI: 10.7717/peerjcs.1976/fig-3

C̃t = tanh(WC · [ht−1,xt ]+bC). (4)

• Update cell state: The new cell state Ct is calculated by combining the forget gate, the
input gate, and the previous cell state.

Ct = ft ·Ct−1+ it · C̃t . (5)

• Output gate: The output gate determines the next hidden stateht and the output of
the LSTM cell. It combines the current input xt and the previous hidden state ht−1 to
calculate the output gate ot and the output

ot = σ (Wo · [ht−1,xt ]+bo) (6)

ht = ot · tanh(Ct ). (7)

Bidirectional LSTM
A bidirectional LSTM, or Bi-LSTM, is a sequence processing model that consists of two
LSTMs as shows in Fig. 4: one taking the input in a forward direction, and the other a
backward direction. Bi-LSTMs effectively increase the amount of information available to
the network, improving the context available to the algorithm (e.g., knowing what words
immediately follow and precede a word in a sentence).

The architecture of bidirectional LSTM comprises of two unidirectional LSTMs which
process the sequence in both forward and backward directions (Graves & Schmidhuber,
2005). This architecture can be interpreted as having two separate LSTM networks, one
gets the sequence of tokens as it is while the other gets in the reverse order. Both of these
LSTM networks return a probability vector as output, and the final output is derived from
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Figure 4 Bidirectional LSTM (architecture).
Full-size DOI: 10.7717/peerjcs.1976/fig-4

Figure 5 Convolution neural networks.
Full-size DOI: 10.7717/peerjcs.1976/fig-5

the combination of these probability vectors. It can be represented as:

pt−= pft +p
b
t , (8)

where

• pt represents the final probability vector of the network.
• pft represents the probability vector from the forward LSTM network.
• pbt represents the probability vector from the backward LSTM network.

Convolution neural networks
CNNs (Moskovitz, Roy & Pillow, 2018) are a type of deep neural network primarily used
for analyzing visual imagery. Recently, text classification has been revolutionized by
the advancements in deep learning particularly RNN and CNN. In fact, CNN for text
classification is the new sexy for NLP practitioners in industry, research, and academia
because of the efficient encoding of language semantics and context into mathematical
vectors. In our model we proposed how the CNNs offer a powerful approach to analysis
of visual data, leveraging their ability to learn and extract features from images. The
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Figure 6 TDSP level design flow prepared for this study.
Full-size DOI: 10.7717/peerjcs.1976/fig-6

architecture of a CNN can be deconstructed into two fundamental components as listed
below and shows in Fig. 5:
• Convolutional layers: These layers are responsible for extracting features from the input
data.
• Fully connected (dense) layers: After the convolutional layers identify relevant features,
the fully connected layers utilize this extracted information to generate the final output.

METHODS FOR SENTIMENT ANALYSIS OF PATIENTS’ DRUG
REVIEWS
This section outlines how various techniques and models are utilized to develop a robust
and effective sentiment analysis system. First, the design flow of this researchwas descriptive
and for each block in the flow, the diagram is explained in detail. The data sets used in
this work, their source, and their components are then described. The relevant fields in
the data set that were chosen for this research are described in detail. Data acquisition and
understanding is the next phase and includes the pre-processing of the data and analysis.
The data prepossessing techniques are also discussed. The next phase is modeling which
is defined by the algorithms used, and it has three sub-stages: the CNN-LSTM model
design for text quantification, model implementation, and finally, the evaluation model is
described by precision, classifier recall, and F1-measure metric. These stages are shown in
Fig. 6.

Patients’ drug reviews datasets
Two relevant datasets were planned to be used for this research. Both are publicly available
drug reviews.

Drug
The drug review dataset is shown in Table 1, and includes patient reviews on particular
drugs, their associated medical conditions, and a 10-star satisfaction rating. It was utilized
in the Winter 2018 Kaggle University Club Hackathon and is currently accessible to the
public. This dataset comprises 51,408 instances and six attributes. Training and testing data
were split as 75–25 in the present study. The number rating for the drug has been divided
into three general classes: positive (7–10), negative (1–4), or neutral(4-7).

The UCI ML Drug Reviews dataset comprises seven features; however, for this study,
particular emphasis is placed on three key features: condition, review, and rating. These
specific features are deemed more crucial and impactful within the context of the study, as
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Table 1 Drug review dataset.

Field Condition Review Rating

Definition Health condition User comment User rating on 10-point scale
Type Textual Textual data Numerical

Drug review contains 161,297 reviews and seven attributes

Table 2 WebMD dataset.

Filed Condition review Rating

Definition Health condition User comment User rating on 5-point scale
Type Textual Textual data Numerical

WebMD continues 362,806 reviews and 12 attributes

they play a significant role in shaping the analysis and outcomes. The condition provides
insights into the health context, the review encapsulates the subjective user experience, and
the rating quantifies the overall assessment. Together, condition, review, and rating form
the focal elements that contribute substantially to the study’s objectives and findings.

WebMD
The second dataset is WebMD Drug shows in Table 2 which is used to compare the
result depending on the balance of review in the dataset. The dataset provides user
reviews on specific drugs along with related conditions, side effects, age, sex, and ratings
reflecting overall patient satisfaction. There are around 0.36 million rows of unique reviews
which are updated until Mar 2020. The WebMD dataset encompasses twelve features;
however, within the scope of this study, special attention is directed towards three pivotal
features: condition, review, and satisfaction. These specific features have been identified as
significantly influential in the study. Delving deeply into these three columns is imperative,
as they collectively contribute essential information. It is crucial to thoroughly examine and
analyze conditions, reviews, and ratings, as they hold paramount importance in shaping
the study’s insights and outcomes.

Data cleaning and prepossessing
These stages were carried out after gaining a thorough understanding of the behavior
and features of the selected dataset. It was observed that the user must have to write the
drug’s name and intake quantity in the review which was not necessary for this research
work. Therefore drugs’ names and quantity measurements were dropped. In addition, the
condition and review text emerged in one file. Algorithm 1 explains the next steps which
are text cleaning and preparation modules and have to be utilized as listed below:

• Remove any leading or trailing spaces (Sekihara et al., 2016). Removing characters or
white spaces from the beginning or end of a string is the basic step to preprocessing the
text in NLP which is achieved by using the strip function.
• Convert all the review’s text into lowercase using the lower() function.
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• Substitute any occurrence of a new line character. To perform a global search and
replace, use a regular expression with a space using the sub() function.
• Remove any punctuation and special characters from each word. If the input string
consists of punctuation, then we have to make it punctuation-free. Let us say the input
string is $Student@’ then we have to remove $ and @, furthermore, we have to print the
plain string ‘Student’ which is free from any punctuation. More details can be found at
GeeksforGeeks (2023).
• Remove English stop words (Shilpa et al., 2021), which are words that are very frequent
in a language and are thus considered to not contain much information on the analyzed
text such as ‘‘the’’, ‘‘which’’, ‘‘where’’, ‘‘and’’, ‘‘is’’, ‘‘how’’, and ‘‘who’’ from the text
using the NLK.corpus and remove any word having less than three characters since such
words do not provide much information.
• Lemmatize each token (Ingason et al., 2008): which entails reducing a word to its
canonical or dictionary form. The root word is called a ‘lemma’.The method entails
assembling the inflected parts of a word in a way that can be recognized as a single
element. The process is similar to stemming but the root words have meaning.
• Stemming is a rules-based approach that produces variants of a root/base word (Lovins,
1968). In simple words, it reduces a base word to its stem word. This heuristic process is
the simpler of the two as the process involves indiscriminate cutting of the ends of the
words. Stemming helps to shorten the look-up time and normalize the sentences for a
better understanding.

Word embedding by using GloVe encoding
In this work, contextual encoding which is already trained on large text corpus using
semantic encoding is utilized. The encoding GloVe will be used in the LSTM bidirectional
model and in the hybrid model LSTM-CNN shows in Algorithm 2 and Fig. 7. GloVe
stands for global vectors for word representation. It is an unsupervised learning algorithm
developed by Stanford University (Pennington, Socher & Manning, 2014) for generating
word embedding by aggregating a global word-word co-occurrence matrix from a corpus.
GloVe (Naili, Chaibi & Ghezala, 2017) is a widely used pre-training method in natural
language processing (NLP) for generating word embedding, which are dense vectors
that represent the semantic meaning of words. These embeddings are useful in various
NLP tasks and can significantly improve the performance of deep learning models. By
incorporating GloVe embedding as input in CNN, RNN, and LSTM models, the semantic
meaning of words can be captured, leading to accurate predictions (Mitchell et al., 2008).
Therefore, using GloVe embedding in pertaining deep learning models can be a powerful
technique to improve the performance of NLP tasks. The GloVe model is trained with a
massive corpus and uses it for the mathematical conversion of the input text.

DEEP LEARNING MODELS FOR SENTIMENT ANALYSIS OF
PATIENTS’ DRUG REVIEWS
In this section, the modeling of Bi-LSTM and Bi-LSTM-CNN architectures is described
depending on the classification of sentiment analysis of drug review text, conditions, and

Al-Hadhrami et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1976 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1976


Algorithm 1 Clean Text Function
1: function clean_text(text)
2: F Remove Pre and Post Spaces
3: text← strip(text)
4: F Lower case the entire text
5: text← to_lower(text)
6: F Substitute New Line Characters with spaces
7: text← substitute(text)
8: F Tokenize the sentence
9: word_tokens← tokenize(text)
10: F Initialize cleaned text list
11: cleaned_text←[]
12: F Remove punctuation and special characters
13: for word in word_tokens do
14: cleaned_word← ""
15: for char in word do
16: if is_alphanumeric(char) then
17: cleaned_word← cleaned_word+char
18: end if
19: end for
20: cleaned_text.append(cleaned_word)
21: end for
22: F Specify the stop words list
23: stop_words← get_stopwords(′english′)
24: F Initialize text_tokens list
25: text_tokens←[]
26: F Remove stopwords and words containing less than 2 characters
27: for word in cleaned_text do
28: if len(word)> 2 and word /∈ stop_words then
29: text_tokens.append(word)
30: end if
31: end for
32: F Lemmatize each word in the word list
33: text← lemmatize(text_tokens)
34: return text
35: end function
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Figure 7 Architectures for generating the embedding matrix.
Full-size DOI: 10.7717/peerjcs.1976/fig-7

Table 3 Modeling description.

Words embedding Data training Data testing

Model(A) Without using GloVe encoding Drugs train-raw Drugs test-raw
Model(A) Using GloVe encoding (GloVe.6B.300d) Drugs train-raw Drugs train-raw
Model(B) Without using GloVe encoding (GloVe.6B.300d) WebMD WebMD
Model(B) Using GloVe encoding (GloVe.6B.300d) WebMD WebMD

the rating score of drug reviews. In line with the purpose of this work, the model is divided
into two parts Model A which will be trained and tested in Drugs-Train, and Model B
which will be trained and tested in WebMD as shown in Table 3.

Within this study, by integrating bidirectional LSTM and bidirectional LSTM-CNN
models, along with GloVe embeddings, the research exemplifies the potential of deep
learning-based approaches to propel the field of drug sentiment analysis within the
healthcare domain. The emphasis is placed on utilizing these advanced techniques to
conduct a detailed and nuanced analysis of sentiment in patients’ drug reviews. This
methodological approach aims to pave the way for advancements in understanding
sentiment within the context of healthcare, setting a foundation for subsequent evaluation.
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Algorithm 2 Create Embedding Matrix Function
1: function create_embedding_matrix(FP,WI ,ED)
2: F File path, word index, embedding dimension
3: FP← "GloVe.6B.300d" F File path
4: WI← word_index FWord index
5: ED← embedding_dim F Embedding dimension
6: F Vocabulary size
7: vocab_size← length(word_index)+1
8: F Initialize the embedding matrix with zeros
9: embedding_matrix← zeros((vocab_size,embedding_dim))
10: F Open the embedding file
11: with open(file_path,encoding=’utf-8’) as file:
12: for every line in file: do
13: F Extract the word and its corresponding vector
14: word,∗vector← line.split()
15: if the word is in word_index: then
16: F Get the word index
17: IDX←word_index[word]
18: F Extract the embedding vector
19: embedding_matrix[IDX ]← array(vector)[:embedding_dim]
20: end if
21: end for
22: return embedding_matrix
23: end function

BiLSTM-CNN
Figure 8 shows the detailed flow diagram of all the steps within the modeling phase.
• The review underwent pre-training and embedding using GloVe vectorization to
generate the embedding matrix, which was then fed into a dedicated convolution layer.
• Bi-LSTM: The output of the max pooling layer is then passed through a bidirectional
LSTM layer. Hence, can be used to understand the long-distance relationship between
the regions and predict the ratings effectively.
• A convolutional layer is added to extract features from the embedded sequences.
• Max pooling layer is added to reduce dimensionality.
• Finally, a dense layer with softmax activation is added to predict the sentiment class of
the input sequence.

Bidirectional LSTM model
As shown in Fig. 9 a bidirectional LSTM layer is added to capture the sequential
dependencies in the data. Finally, the output layer is added with three units, one for
each class in the classification task. The softmax activation function is used to output class
probabilities.
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Figure 8 Architectures for modeling LSTM-CNN.
Full-size DOI: 10.7717/peerjcs.1976/fig-8

The architecture of the model
For bothModel A andModel B, the Bi-LSTM and Bi-LSTM-CNN architectures are applied
as explained below:

• The model starts with the embedding layer which creates a dense vector representation
of each word in the input sequence. It has three arguments the size of the vocabulary,
output dimensions, and the length of the input sequence.
• The second layer is the SpatialDropout1D layer which helps prevent over-fitting.
• Abidirectional LSTM layer was applied enabling the input sequence to be applied in both
forward and backward directions. This bidirectional processing allows themodel to glean
insights from the entire context, capturing dependencies not only from preceding words
but also from subsequent ones. Consequently, the bidirectional LSTM layer enables the
model to discern complex patterns and nuances in drug reviews, facilitating a more
nuanced sentiment analysis. The inclusion of a SpatialDropout1D layer is crucial for
preventing overfitting, enhancing the model’s generalization capabilities by selectively
dropping entire 1D feature maps during training
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Figure 9 Architectures for modeling LSTM-Bil.
Full-size DOI: 10.7717/peerjcs.1976/fig-9

• The dense layer applies a linear transformation to the output of the previous layer,
followed by a softmax activation function. The softmax function normalizes the output
to a probability distribution over the three classes. The concluding Dense layer, coupled
with a softmax activation function, serves as the ultimate decision-making layer. It
transforms the output from preceding layers into a probability distribution across the
three sentiment classes
• The method configures the learning process for the model by compile processing which
was used in programming contexts. The loss argument specifies the loss function to
optimize, the optimizer argument specifies the optimization algorithm and the metrics
argument specifies the evaluation metric(s) to use during training and testing.
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The bidirectional LSTM layer in the Bi-LSTM-CNN architecture maintains its role
in considering both past and future context, synergizing with the convolutional layer’s
local feature extraction. This combination proves particularly effective in capturing
intricate nuances in the sentiment expressed within drug reviews. Similar to the Bi-
LSTM architecture, the Dense layer, and compile processing are integral components
for transforming learned features into actionable predictions, ensuring optimal learning
and evaluation processes. In summary, the Bi-LSTM-CNN architecture amalgamates the
strengths of both LSTM and CNN components, providing a holistic approach to sentiment
analysis in drug reviews.

Architecture A and B Bi-LSTM-CNN
The architecture of Models A and B Bi-LSTM-CNN are the followings:

• The model starts with the embedding layer which creates a dense vector representation
of each word in the input sequence. it has three arguments the size of the vocabulary,
output dimensions, and the length of the input sequence).
• In the second reiteration, the arguments for the Embedding layer will be four because
adding the weights parameter specifies the pre-trained word embedding by using GloVe
encoding GloVe.6B.300d.
• The second layer is added as a 1D convolutional layer with 64 filters and a filter size of
5. The activation function used is ReLU (rectified linear unit).
• Max pooling layer with a pool size of 4 was applied to reduce the dimensionality of the
data.
• A bidirectional LSTM layer was applied with 64 units, a dropout rate of 0.1, and a
recurrent dropout rate of 0.3. The bidirectional LSTM allows the model to consider both
past and future context in the input data.
• The dense layer applies a linear transformation to the output of the previous layer,
followed by a softmax activation function. The softmax function normalizes the output
to a probability distribution over the three classes
• The method configures the learning process for the model by compile processing. The
loss argument specifies the loss function to optimize, the optimizer argument specifies
the optimization algorithm and the metrics argument specifies the evaluation metric(s)
to use during training and testing.

RESULTS
The results in Table 4 show that the hybrid model LSTM-CNN can achieve a higher
accuracy. Model A is applied to the Drug Review dataset, and Model B is applied to the
Dataset in WebMD Drug. The results for accuracy show that using global vectors for
word representation (GloVe) generally improved the performance of Model B and had the
opposite effect in Model A. Model A (Bi-LSTM) has an accuracy of 85% without GloVe
embedding and only 76% with GloVe embedding. While, Model B (Bi-LSTM) has an
accuracy of 74% without GloVe embeddings and 75% with GloVe embedding.

Model A (Bi-LSTM-CNN) has an accuracy of 96% without GloVe embeddings and 87%
with GloVe embedding. As well, Model B (BiLSTM-CNN) has an accuracy of 87% with
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Table 4 Evaluation accuracy with word embeddings with glove and without it for drug review dataset
for bothModel A-B.

Model A Model B

Accuracy Accuracy

Without GloVe With GloVe Without GloVe With GloVe

Bi-LSTM 0.85 0.76 0.74 0.75
LSTM-CNN 0.96 91 0.87 0.88

Table 5 Bi-LSTMwithout GloVe embedding.

Model A without GloVe Model B without GloVe

– Precision Recall F1-score Precision Recall F1-score

Negative 0.78 0.84 0.81 0.76 0.80 0.78
Neutral 0.00 0.00 0.00 0.68 0.04 0.08
Positive 0.87 0.96 0.92 0.73 0.91 0.81
Accuracy 0.85 0.74
Macro avg 0.55 0.60 0.57 0.72 0.58 0.56
Weighted avg 0.77 0.85 0.81 0.74 0.74 0.70
Accuracy 0.847564 0.744680
Cohen-score 0.660347 0.546443

GloVe embeddings and 87% without GloVe embedding. Although the GloVe can improve
the performance of the model, in our investigation, the GloVe achieved poor improvement
in the performance Model A. The main reason behind this is we have enough records here
(100,000 to be exact) for our embedding layer in the Encoder-Decoder model to learn
the semantics of the language, so it performed quite well even without the pre-trained
embeddings.

Bi-LSTM without GloVe embedding
Based on the evaluation metrics provided in Table 5 above, and Figs. 10 and 11 parts a and
b, respectively, it seems that Model A without GloVe outperforms Model B without GloVe
in terms of precision, recall, F1-score, and accuracy for all three classes. The precision,
recall, and F1-score for the neutral class are 0 for Model A without GloVe, indicating that
the model does not predict this class well. However, Model B without GloVe has a higher
precision, recall, and F1-score for the Neutral class, which means it can predict this class
better than Model A without GloVe. The overall accuracy for Model A without GloVe
is 0.847564, which is higher than the accuracy of Model B without GloVe at 0.744680.
Additionally, the Cohen-score for Model A without GloVe is 0.660347, which is higher
than the Cohen-score for Model B without GloVe at 0.546443. Therefore, we can conclude
that Model A without GloVe performs better than Model B without GloVe in terms of
overall sentiment classification for drug reviews.
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Figure 10 LSTM loss and accuracy curves and confusionmatrix Model A without GloVe embedding.
Full-size DOI: 10.7717/peerjcs.1976/fig-10
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Figure 11 LSTM loss and accuracy curves and confusionmatrix Model B without GloVe embedding.
Full-size DOI: 10.7717/peerjcs.1976/fig-11

Bi-LSTM-CNN without GloVe embedding
Overall, Model A outperformedModel B on all evaluation metrics, indicating that Model A
is a better-performingmodel. As show in Table 6 and Figs. 12, 13 parts a and b, respectively.
Model A performed well in all classes, achieving high precision, recall, and F1-scores on
all sentiment classes, indicating that the model is performing well. The accuracy score for
Model A is also higher, indicating that the model is performing better overall. Cohen’s
kappa scores for both models are relatively high, indicating that the models have a high
level of agreement with the actual sentiment labels. Overall, depending on the result, the
model Bi-LSTM-CNN achieved height accuracy on both models with GloVe embedding
and without embedding than Bi-LSTM, and the Cohen score is perfect.

Bi-LSTM with GloVe embedding
From the evaluation results in Table 7 above and Figs. 14, 15 parts a and b, respectively, it
can be seen that the models with GloVe embeddings (Model B) outperformed the models
without GloVe embeddings (Model A) in terms of precision, recall, and F1-score. However,
there is a trade-off between precision and recall for the negative class, as the models with
GloVe embeddings had higher precision but lower recall compared to the models without
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Table 6 Evaluation of Bi-LSTM-CNNwithout GloVe embedding.

Model A without GloVe Model B without GloVe

– Precision Recall F1-score Precision Recall F1-score

Negative 0.98 0.97 0.97 0.90 0.89 0.90
Neutral 0.92 0.90 0.91 0.88 0.90 0.89
Positive 0.99 0.99 0.87 0.88 0.90 0.89
Accuracy 0.98 0.91
Macro avg 0.96 0.96 0.96 0.86 0.80 0.82
Weighted avg 0.98 0.98 0.98 0.87 0.87 0.87
Accuracy 0.971581 0.874666
Cohen-score 0.941360 0.958807
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Figure 12 Bi-LSTM-CNN loss and accuracy curves and confusionmatrix Model A without GloVe.
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Figure 13 Bi-LSTM-CNN loss and accuracy curves and confusionmatrix Model B without GloVe em-
bedding.
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Table 7 Bi-LSTMwith GloVe embedding.

Model A with GloVe Model B with GloVe

– Precision Recall F1-score Precision Recall F1-score

Negative 0.81 0.42 0.56 0.77 0.81 0.79
Neutral 0.00 0.00 0.00 0.66 0.06 0.11
Positive 0.75 0.98 0.85 0.74 0.91 0.82
Accuracy 0.85 0.75
Macro avg 0.52 0.47 0.47 0.72 0.59 0.57
Weighted avg 0.70 0.76 0.71 0.74 0.75 0.70
Accuracy 0.760198 0.750711
Cohen-score 0.378105 0.558728
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Figure 14 LSTM loss and accuracy curves and confusionmatrix Model A with GloVe embedding.
Full-size DOI: 10.7717/peerjcs.1976/fig-14

GloVe embeddings. The neutral class had poor performance overall, with F1-scores close
to zero, while the positive class had the best performance. The accuracy of the models
was similar both with and without GloVe embeddings. The Cohen score was higher for
Model B, which indicates better inter-rater agreement. Overall, the results suggest that
using GloVe embeddings can improve the performance of sentiment classification models
on drug reviews from patients.

Bi-LSTM-CNN with GloVe embedding
Based on the evaluation metrics in Table 8 and Figs. 16 and 17 parts a and b respectively, it
can see the LSTM-CNN algorithm with GloVe embeddings performed better on Model A
than on Model B. The LSTM-CNN algorithm with GloVe embeddings performed well on
both models, with higher scores on Model A compared to Model B. The model achieved
high precision, recall, and F1 scores on all sentiment classes in Model A, indicating that the
model is performing well in all classes. However, the performance Model B was lower for
the neutral sentiment class, indicating that the model is having some difficulty correctly
classifying neutral sentiment. The accuracy scores for both models are relatively high,
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Table 8 Evaluation of Bi-LSTM-CNNwith GloVe embedding.

Model A with GloVe Model B with GloVe

– Precision Recall F1-score Precision Recall F1-score

Negative 0.86 0.93 0.89 0.93 0.88 0.90
Neutral 0.65 0.59 0.62 0.79 0.61 0.69
Positive 0.97 0.95 0.96 0.86 0.95 0.90
Accuracy 0.91 0.88
Macro avg 0.83 0.82 0.82 0.86 0.82 0.83
Weighted avg 0.91 0.91 0.91 0.88 0.88 0.87
Accuracy 0.913528 0.876342
Cohen-score 0.825912 0.791976
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Figure 16 Bi-LSTM-CNN loss and accuracy curves and confusionmatrix Model A with GloVe embed-
ding.

Full-size DOI: 10.7717/peerjcs.1976/fig-16

indicating that the model is performing well overall. The Cohen score was higher for
Model B, which indicates better inter-rater agreement.
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Figure 17 Bi-LSTM-CNN loss and accuracy curves and confusionmatrix Model B with GloVe embed-
ding.
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Table 9 Cohen’s Kappa interrater measurement.

Kappa Value interpretation

< 0 No agreement
0–.20 Slight
.21–.60 Fair
.41–.60 Moderate
.61–.80 Substantial
.81–1.0 Perfect

COHEN’S KAPPA INTERRATER
Kappa measurement is an interrater reliability measure used to understand the agreement
level between two rating sources and to establish whether any of those sources biased the
results as shown in Table 9.

The Cohen’s Kappa values were mainly substantial and perfect as shown in Tables 8 and
6.

COMPARATIVE ANALYSIS
As Table 10 shows, in a previous study, Yadav & Vishwakarma (2020) delved into a
text-representation framework grounded in weighted word embeddings, utilizing a
combination of TF-IDT weighing scheme and FastText word embeddings. Notably,
the SVM classifier emerged as the most effective, achieving a remarkable F1-score of
91.7%. Another significant study by Thoomkuzhy (2020) examined the comparative
efficacy of the regional CNN-LSTM architecture against in-domain approaches. While
regional CNN-LSTM demonstrated superior performance, the study fell short of attaining
its predetermined research objectives. Gräßer et al. (2018) contributed to the discourse
by employing SVM classification, resulting in a Cohen score of 83%. Their research
underscored the inherent challenge of surpassing an 82% Cohen score, a metric measuring
interrater agreement between given and computer-predicted ratings for a set of drugs.
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Table 10 Comparative analysis on sentiment analysis of patients’ drug reviews.

Research Dataset source Model used Predicted output Accuracy

Na & Kyaing (2015) WebMD.com Clause-wise Lexicon approach and Classification
using SVM

Sentiment polarity 62.0

Gräßer et al. (2018) Drugs.com, Drugslib Logistic regression Drug rating 92.24
Thoomkuzhy (2020) Drugs.com, Drugslib Regression using regional CNN-LSTM Drug rating/Sentiment

Dimensionality
65.07

Yadav & Vishwakarma (2020) Drugs.com Classification using SVM, NB, DT, RF, KNN Drug rating 94.6
This work Drug.com, WebMD.com Classification using In-Domain CNN-BILSTM Drug rating 97.1

Building upon these insights, this current research investigates the application of CNN-
BiLSTM in the In-domain context. Our proposed model achieved a notable accuracy of
97%, F1 scores of 97% for negative, 91% for natural and 87% for positive, and aCohen score
of 94%, surpassing previous benchmarks. This study contributes valuable perspectives to
the academic discourse on effective methodologies, particularly in employing CNN-LSTM,
for sentiment analysis in patients’ drug reviews. The findings presented herein offer valuable
contributions to the ongoing exploration of advanced techniques in sentiment analysis
within the healthcare domain.

CONCLUSION
The experimental results showed that the Bi-LSTM-CNN model achieved the highest
accuracy and Cohen score for sentiment analysis of patients’ drug reviews in both cases:
withGloVe embedding or without GloVe embedding. The Bi-LSTM-CNNmodel combines
the strengths of both LSTM and CNN layers, allowing it to capture both temporal and
spatial dependencies in the data. The CNN layers can extract local features from the
input sequence, while the Bi-LSTM layers can capture longer-term dependencies and
contextual information. This additional capacity has enabled the Bi-LSTM-CNN to learn
more complex patterns in the data and make better predictions, leading to higher accuracy.
Moreover, it can be concluded that using GloVe embedding does not show significant
improvement in the performance of sentiment classification models. Therefore, the word
embedding will be more useful if the regional LSTM-CNN model is used. Involving the
regional CNN and LSTM models can be used for future work to extract drug rating or
valence-arousal pairs by mining textual review data. To extend the analysis further, the
implementation of drug reviews across many diseases snd conditions is required. Several
considerations are worth reporting for future work such as the limited size of the available
datasets. In addition, using the domain-specific vectorization of text data may help to
improve the efficiency of the model.
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