Submitted 17 January 2024
Accepted 11 March 2024
Published 5 April 2024

Corresponding author
Sheela Jayachandran,
sheela.j@vitap.ac.in

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.1972

© Copyright
2024 Chilakalapudi and
Jayachandran

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Multi-classification of disease induced in
plant leaf using chronological Flamingo
search optimization with transfer learning

Malathi Chilakalapudi and Sheela Jayachandran
SCOPE, VIT-AP University, Amaravathi, Andhra Pradesh, India

ABSTRACT

Agriculture is imperative research in visual detection through computers. Here, the
disease in plants can distress the quality and cultivation of farming. Earlier detection
of disease lessens economic losses and provides better crop yield. Detection of disease
from crops manually is an expensive and time-consuming task. A new scheme is
devised for accomplishing multi-classification of disease using plant leaf images
considering the chronological Flamingo search algorithm (CFSA) with transfer
learning (TL). The leaf image undergoes pre-processing using Adaptive Anisotropic
diffusion to discard noise. Here, the segmentation of plant leaf is done with U-Net++,
and trained by the Moving Gorilla Remora algorithm (MGRA). The image
augmentation is further applied considering two techniques namely position
augmentation and color augmentation to reduce data dimensionality. Thereafter the
feature mining is done to produce crucial features. Next, the classification in terms of
the first level is considered for classifying plant type and classification in terms of the
second level is done to categorize disease using convolutional neural network (CNN)-
based TL with LeNet and it undergoes training using CFSA. The CFSA-TL-based
CNN with LeNet provided better accuracy of 95.7%, sensitivity of 96.5% and
specificity of 94.7%. Thus, this model is better for earlier plant leaf disease detection.

Subjects Artificial Intelligence, Computational Linguistics, Computer Vision, Data Mining and
Machine Learning, Neural Networks

Keywords Plant leaf diease classification, Transfer learning, LeNet, Convolution netural network,
U_Net++

INTRODUCTION

India represents a country that has fame in the domain of agriculture in which the majority
of the population relies on agriculture. The research in the domain of agriculture is aimed
at elevating productivity and quality of food at less cost and more profit. The agriculture
production model is a result of complicated interactions of soil, agrochemicals, and seeds.
Fruits and vegetables are the imperative products of agriculture. The disease indicates
impairment to normal plant state which enhances or interrupts its crucial operations like
transpiration, photosynthesis, fertilization, pollination, and germination. Hence, the
earlier treatment of disease in plants is termed a crucial task. The farmer needs repeated
monitoring from expertise which can be costly and take more time. Hence, determining a
quick, cost-effective, and precise technique for automatically determining the disease
through the symptoms of the plant leaf is of huge importance (Gavhale & Gawande, 2014).

How to cite this article Chilakalapudi M, Jayachandran S. 2024. Multi-classification of disease induced in plant leaf using chronological
Flamingo search optimization with transfer learning. Peer] Comput. Sci. 10:e1972 DOI 10.7717/peerj-cs.1972

http://dx.doi.org/10.7717/peerj-cs.1972
mailto:sheela.�j@�vitap.�ac.�in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1972
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

The disease of plant leaves are imperative cause of loss production and the detection of
disease in plant leaves is also a complex process in the agriculture domain (Annabel,
Annapoorani ¢ Deepalakshmi, 2019). For diagnosing the batches of leaf, there exists some
bewilderment because of the similarities amidst the size of batches, and color which only
specialists can detect. The initial step in fighting alongside leaf batches is sufficient
detection of its presence which is a precise diagnosis. The abnormal symptoms are the
suggestion to the existence of a disease and thus can be considered as an aid in treatment
(Jagtap & Hambarde, 2014; Geetha et al., 2020). The disease in plants can cause the serious
eruption of diseases that lead to huge-scale death and food shortages. It is evaluated that
the eruption of helminthosporiose of rice led to huge food loss and the deaths of several
people. The impact of plant disease tends to be devastating and some of the cultivation of
crops is ditched. Observation from the naked eye through expertise is a major technique
employed in practice for detecting and identifying disease in plants, but it needs repeated
expert monitoring that can be costly while dealing with huge farms (Arivazhagan et al.,
2013).

Contemporary unrefined farming is acquiring a reputation in the domain of agriculture
considering several developing nations. There exist several issues that arise in farming
because of several environmental aspects and this disease in plant leaves is termed to be a
strong aspect that causes deficiency in the quality of agricultural products. The aim is to
alleviate this problem with machine learning (ML) models (Bayram, Bingol &> Alatas, 2022;
Bingol, 2022a, 2022b). Several ML and segmentation models are devised for the
categorization and discovery of diseases in plants through leaf images (Subramanian et al.,
2022; Krishnamoorthy et al., 2021; Sathishkumar et al., 2020). These methods have built a
way to discard the issues but the issues being confronted are the performance outcomes
generated (Hossain, Hossain & Rahaman, 2019). Many methods are devised for detecting
and classifying the plant leaf disease among which the k-nearest neighbor classifier tends to
be an effective one (Jasim ¢ Al-Tuwaijari, 2020). The studies revealed that deep learning
models are effectual techniques for classifying diseases in plants. An automatic model
aimed at aiding plant disease treatment considering the existence and noticeable symbols
of plants can help the learners in growing tasks and also help the professionals diagnose
diseases (Sladojevic et al., 2016; Grinblat et al., 2016). There exist several types of research
which are performed each year in cultivating the crop using computer vision and image
processing (Al-Tuwaijari, Mohammed & Rahem, 2018; Jasim ¢ Al-Tuwaijari, 2020;
Sachdeva, Singh & Kaur, 2021).

MOTIVATION

Organic farming has become more general in several countries that follow agricultural
practices. There exists a huge number of problems that happen in plant growth because of
several environmental aspects. The disease in crops can cause a reduction in productivity
and thus detection of crop disease in the starting stage can offer huge benefits in the
domain of agriculture. The challenges in the existing methods are:

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 2/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

o The segmentation may become a complex process because of contrast, scale, and shape
alterations.

o The images of low contrast impact the detection performance elevate the computational
cost and minimize the classification accuracy.

e The manual elucidation needs a huge quantity of work and expertise in detecting the
disease and also needs a huge time for processing.

These challenges are considered the motivation for developing a new model for
classifying plant disease using the leaf images.

The aim is to design multi-classification with leaf images using the chronological
Flamingo search algorithm (CFSA) with convolutional neural network (CNN) based
transfer learning (TL) and LeNet. The article’s chief contribution is:

e Designed CFSA-TL-based CNN with LeNet for first-level classification: The
classification in terms of the first level includes the classification of plant leaf type using
CFSA-TL-based CNN with LeNet. Here, the TL-based CNN with LeNet is trained with
CFSA, which is developed by unifying the chronological concept in the Flamingo search
algorithm (FSA).

e Developed CFSA-TL-based CNN with LeNet for second-level classification: The
classification in terms of the second level includes the classification of plant leaf disease
using CFSA-TL-based CNN with LeNet. Here, the TL-based CNN with LeNet is trained
with CFSA and is developed by unifying the chronological concept in FSA.

The remaining sections are arranged as follows: “Motivation” defines previously
developed plant leaf disease categorization models. “Proposed CFSA-Based TL for
Multi-Classification of Plant Leaf Disease” illustrates the proposed model to classify the
plant leaf disease. “Discussion of Outcomes” provides the analysis of outcomes in revealing
the efficacy of each method and finally, “Conclusion” concludes with TL-based CNN with
LeNet.

Literature survey

Hussain et al. (2022) designed a model for the detection of diseases from cucumber leaves.
The model was developed based on deep learning (DL) and includes fusion and collection
of optimum features. Here, a visual geometry group (VGG) was used. The feature obtained
was fused with a maximum fusion scheme and optimum features were selected with the
Whale Optimization algorithm and classified with supervised learning. However, this
technique was imperfect in handling other databases. Jadhav, Udup ¢ Patil (2019)
developed a model using k-nearest neighbors (KNN) classifiers, and a multiclass support
vector machine for the detection and categorization of soybean diseases with color images.
The thresholding was applied for extracting interesting regions. The Incremental K-means
clustering was adapted for segmentation and finally, support vector machine (SVM) and
KNN were utilized to classify disease. The method suffered from overfitting problems.
Singh & Kaur (2021) devised a technique for detecting and classifying the disease that
occurred in potato plants. Here, the consistent data set was adapted which was known as

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 3/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

the Plant Village database. Here, the K-means scheme was considered for segmenting
images, and the gray-level co-occurrence matrix concept with multi-class SVM was
applied for classification. This method provided poor accuracy while dealing with huge
data. Islam et al. (2017) devised a technique that unified machine learning and image
processing for permitting disease diagnosis through leaf images. The automatic technique
classified the disease of the potato plant. The SVM was utilized for classifying disease and
provided better accuracy. It was not appropriate for handling other datasets. Tiwari, Joshi
¢ Dutta (2021), designed a deep learning (DL)-based method for identifying and
classifying the disease in plants with leaf images acquired through different resolutions.
Here, the dense convolutional neural network (dense CNN) was trained using huge plant
leaf images considering data from different countries. The method was not able to expand
the plant leaf database for handling complex platforms. Roy ¢ Bhaduri (2021) devised a
deep learning-enabled object detection technique for classifying plant disease. The method
helps to provide accurate discovery and fine-grained detection of disease. Moreover, the
model was enhanced to optimize both speed and accuracy. However, this method was not
suitable for handling real platforms. Atila et al. (2021), devised EfficientNet for classifying
disease from plant leaves. Here, the PlantVillage dataset was utilized for training the
models. Each model was trained with a different set of images. Here, the concept of transfer
learning was used where all layers were trained for performing classification. However, this
method failed to extend the disease database by elevating the diversity of plants
considering different sets of classes. Lakshmi ¢ Savarimuthu (2021) devised a deep
learning framework for automatic plant disease detection and segmentation (DPD-DS)
considering an enhanced pixel-wise mask-region-based convolution neural network
(CNN). It utilized a region convolution neural network (R-CNN) to save memory and
cost. It helps to elevate detection accuracy. However, it did not adopt an ensemble network
for detecting disease in plant leaves. Bayram, Bingol ¢» Alatas (2022) established an
artificial intelligence technique for automatically detecting tomato leaf disease. Here, for
the classification Inceptionv3, Resnet50, Efficientb0, Shufflenet, Googlenet, and Alexnet
models were used. Then, the feature maps were gathered from the tomato images. The
neighborhood component analysis (NCA) was used in the feature extraction. However, a
single disease dataset was used in this research.

PROPOSED CFSA-BASED TL FOR MULTI-CLASSIFICATION
OF PLANT LEAF DISEASE

Figure 1 exposes the overlook of the multi-classification of plant leaf disease framework
considering CFSA. This article provides a TL-based CNN with LeNet considering CFSA
for multi-classification of plant leaf disease using images. Firstly, the leaf image is acquired
and provided for pre-processing to eliminate noise using Adaptive Anisotropic diffusion.
Then the segmentation of plant leaf is implemented using the U-Net++, which is trained
with RGWMA and is produced by the combination of GTO, EWMA, and ROA. Then, the
image augmentation is done which is classified into position augmentation and color
augmentation. Then, feature extraction is done with the hybrid opponent color local
binary pattern (OCLBP) based discrete wavelet transform (DWT) using the histogram of

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 4/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Pre-processing
Input leaf
image] Adaptive Anisotropic
diffusion

Plant leaf segmentation Remora Gorilla

U-Nets+ le—] Weighted Moving
Average (RGWIMA)

Position Color
augm erdation augn entation

'

Feature exiraction

Hybrid Opponent Color Local Binary P attern (OCLBP)
based Discrete Wavelet Transform (DWT) with Scale
invariart feature transform (SIFT), Local Tetnary Pattern
(LTP)

'

1" level classification

Transfer learming with
let}eaf tlype Convolutional Neural Network
classification

—

2! Jevel classification
Iulticlass plant -
disease detection Proposed Chronological
Flamingo search
l algorithm (CFSA)

Output
Flamingo
search
algorithm
(F8)

Chronological
concept

Figure 1 Overlook of multi-classification of plant leaf disease model with CFSA.
Full-size K&] DOT: 10.7717/peerj-cs.1972/fig-1

oriented gradients (HOG), scale invariant feature transform (SIFT) and local ternary
pattern (LTP). Next, the first level classification is considered as plant type classification
and the second level classification is considered as the multi-class plant disease detection,
both classifications are done by using a transfer learning-based CNN with LeNet. For the
first and second classifications, the training process is done with CFSA. The CFSA
produced is the blending of chronological concepts in FSA and finally, the output is noted.

Image acquisition

Research for the automatic discovery of diseases in plants has been of great interest among
researchers for several years. A model is developed for detecting several diseases in plants
considering plant leaf images. Due to increasing plant images, less expertise and knowledge
cannot fulfill the requirements of huge-scale image processing. Thus, an automated
detection of plant leaf has gained more focus. Due to the design of imaging techniques,
people can simply attain clear images of plants and the computer-assisted detection of
plant images is a major hotspot. Imagine a database F having a set of plant leaf images e
and is represented as

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 5/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-1
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

F:{X17X27"'ava"'>Xe} (1)

where, e depicts total images and y, symbolizes v'"

image.

Pre-processing with adaptive anisotropic diffusion

In the pre-processing phase, the inputted plant leaf image y, is considered. The pre-
processing is adapted on the provided image in a sequence which makes it appropriate for
better processing. The fundamental pre-processing phase is to resize the provided image.
The initial image size is huge which makes it complex and takes more processing time.
Hence, the application of pre-processing is done to eliminate noise and make it apt for
improved processing. Thus, the adaptive anisotropic diffusion (Tang et al., 2007) is
adapted for pre-processing. It is an effective smoothing procedure. Also, it is mainly used
for noise removal and edge-preserving. The data loss and image blur problems are avoided
in this model. Here, the evaluation of the edge map and the selection of k in diffusion
coefficients are more imperative. The imperative selection of these two things will generate
an improved anisotropic diffusion. If k is high, then the edge preservation will be best, but
noise will not be discarded. If k is small, then noise will be discarded, but edges will be
blurred. Hence, how to devise k is an imperative parameter in the diffusion technique. A
suitable k is to divide the noise through the edges in an effective manner. The operator of
gradient magnitude is sensitive to noise particularly whenever the edge strength is weak.
Thus, the gradient magnitude is utilized as an edge map and is stated as

Kg,r) = \/ VB, 1) + [VBo(g,) + [VBi(q, 1)+ [VBu(q, 1)’

4 (2)
VBp(q,r) = B(q,r + 1) — B(q,7) 3)
VBf(qv 1’) :B(q’r_ 1) _B(% T) (4)
VBk(q,r) =B(q+1,r) — B(q, 1) (5)
VBu(q,r) =B(q—1,r) = B(q. 7). (6)

The evaluation of diffusion coefficients is explored as

d(k) = exp <_ [k(i”] 2) 7)

1
d(k) =)
(k) 1+ [k(q, r)2 — mz]/[mz(l + m?)] ®

Assume the distribution of noise in an image and consider a homogenous region with
noise and can consider that VBp(q,), VBs(q,r), VBk(q,r), and VBy(q, r) poses the
same zero mean normal distribution like R(0, 6?) and hence equation becomes,

4 1
— xk(q,r)’ = = <W3f(q7 N|* + [VBo(q,r)|” + [VBx(q,r)[* + |VBul(q, T)|2) ©)

o2

It poses a chi-squared distribution having four freedom degrees.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 6/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Once the noise gradient distribution is obtained, compute the choice of m. Consider that
g, r indicates the pixel coordinates of the image and one can utilize Eq. (9) to generate the
gradient map. If the point belongs to the edge, then the gradient map becomes an outlier in
four freedom degrees. Hence the threshold m is chosen for rejecting those outliers and m is
generated as

p(k(q, r)? > m*) <. (10)

The aforesaid expression is rewritten as

4 o, 4
p(;*k(q,r) >m *;) < (11)
where, # stands for significance level. Hence, the m is set as

m=do (13)

where, 62 represents the variance of noise gradient and d denotes constant. Hence, the pre-
processed outcome generated through adaptive anisotropic diffusion is notified as T.

Segmentation of plant leaf with Moving Gorilla Remora algorithm
(MGRA)-based U-Net++

Thus, the pre-processed outcome T is provided as segmentation input. The segmentation
function aimed to mine the complete leaf region over the background. For improving the
reliability and accuracy of mining, it is essential for the model to be in capacity for
depicting the features contained in the image that are fine-grained and alteration in size
and shape. The U-Net++ (Fan et al.,, 2022) is adapted for performing the segmentation of
plant leaves with MGRA-based U-Net++. The structure of U-Net++ and its training
module is stated in subsections.

Overview of U-Net++

A U-Net++ (Fan et al., 2022) is termed as a backbone platform for accomplishing the
segmentation. The U-Net++ is developed using U-Net and is devised for meeting the needs
of precisely segmenting the images. This model substitutes the plain skip connection in the
place of nested and dense skip connections and it obtains fine data. It poses the ability to
find leaves having various sizes considering the feature maps having various scales. For
handling features of leaves, the U-Net++ is suitable for attaining segmentation of plants.
The U-Net++ comprises three major modules, namely encoding, decoding, and dense
concatenation of cross-layers.

The outputted features through the encoder are combined with the upcoming encoder
layer through the features of up-sampling amid layers. The fused outputs are combined
with equivalent up-sampled features of consequent layers and are repeated till there is no
equivalent module in the upcoming layer. The unified feature maps are described by

Ny () t=20
b= {%([[bsvp];_;,n(bsm1)]) £>0 (4

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 7/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

where (+) delineates convolution function, #(-) states the upsampling layer, [] is the
concatenation layer. Node residing at level t = 0 receives input through prior encoder
layer while nodes at level ¢ = 1 receives the encoder and input of sub-network from two
successive levels and nodes t > 1 receives t + 1 of which ¢ input are termed as outputs of
prior t nodes in similar skip pathways and the final input is up-sampled outcome from low
skip pathway. The dense skip connections amid layers of similar size pass the outcome of
present modules to all equivalent modules and combine it using other inputted features.
Hence complete U-Net++ fusion model is modelled in the format of an inverted pyramid
in which the intermediate layer comprises more precise localization data whereas the in-
depth layer acquires pixel-level class data. The purpose is to segment the plant image into
binary by labeling it as background and foreground as 0 and 1.

U-Net++ training with MGRA

The U-Net++ training is devised through MGRA by updating the weights of U-Net++.
The update expression of the remora optimization algorithm (ROA) host feeding module
(Jia, Peng & Lang, 2021) is induced with the Gorilla Weighted Moving Average algorithm
(GWMA) to design MGRA. Here, GWMA is developed by combining GTO (Xiao et al.,
2022) and EWMA (Saccucci, Amin & Lucas, 1992). Hence, the MGRA’s update expression
is presented as,

G<f+1>=[i[ux (ps— 1) % Gy(j) + P x Qx G() — (1 —) x G — 1)

o 0] (7o)

(15)

Thus, Gy stands for the best solution, f delineates the remora factor, and j expresses
current iteration, G(j) indicates the current position vector of each gorilla, p;, implies
arbitrary number amidst 0 and 1, L articulate constant, Gy(j) states arbitrarily selected
gorilla sites in the current population, Q signifies row vector in problem computation using
the rate of the unit are randomly built-in [—L, L], 1 expresses smoothing factor, G*(})
signifies evaluated location of search agent at j" iteration, G*(j — 1) notify estimated search
agent position at (j — l)th iteration, P and O delineate constants. Hence, the segmented
outcome attained with RGWMA-based U-Net++ is explicated as E.

Augmentation of image

The segmented outcome E is provided to this phase. It is useful when one is provided a

database with very less instances. Moreover, this process aids in fighting overfitting and

enhances the efficiency of deep networks for dealing with several tasks. It aids in making
data rich and adequate hence making the model perform better and precisely. It helps to
minimize operational costs considering various kinds of transformations. Here, position

and color augmentation methods are applied and are examined below:

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 8/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Position augmentation
These methods affected the location of pixel values to build augmented images. The
amalgamation of four transformations, like padding, rotation, translation, and affine
transformation are utilized in this research.

a) Padding

Padding is the process of adding a border around the image. It helps to build space over
the element's content inside any described borders. It indicates the blank space over the
image. This augmented outcome is notified by Z;.

b) Rotation

Rotation is a process of rotating an image with certain angles and orientations. It utilizes
two major attributes rotation angle and the point through which the rotation is performed.
It is essential for extracting features and matching features. This augmented result is
notated by Z,.

¢) Translation

Translation is the process of transforming an image from one domain to another
domain in which the aim is to learn the mapping amid input and output images. This
method aims to learn the mapping relationship amid the input and target image for
suitably transforming the former to the latter. This augmented output is signified by Z;.

d) Affine transformation

Affine transformation indicates a linear mapping technique that preserves points,
planes and direct lines. The group of parallel lines remained parallel after performing an
affine transformation. It is used to correct geometric distortions and deformations which
happen with non-ideal angles of the camera. This outcome is expressed by Z,.

Color augmentation
This method alters the properties of color considering original images to build augmented
mages. Here, the unification of four properties is utilized for producing novel images like
contrast, hue, and saturation.

a) Contrast

Contrast refers to a term that depicts the change in contrast amid light and dark colors.
It indicates the quantity of color or differentiation between gray scales that exist amid
several image features. The image with a high level of contrast exposes a huge degree of
color variation compared to those with low contrast. The contrast output is signified by Zs.

b) Hue

The hue refers to a wavelength in the visible light spectrum in which the output of
energy from the source tends to be greatest. This augmented outcome is notated as Zs.

¢) Saturation

Saturation indicates an expression to depict the relative bandwidth of the visible
outcome through the light sources. This augmented result is notified as Z;.

Hence, the augmentation vector Z produced is modeled as

Z:{ZI)ZZ>”'7Z7}' (16)

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 9/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Obtain crucial feature

Here, the augmented image vector Z is given as input. Feature extraction indicates an
imperative step in constructing the pattern categorization and its goal is to extract the
pertinent data which helps to characterize each class. Here, the pertinent features are
obtained through the images to form a feature vector. These feature vectors are further
used by the classifier for recognizing the target. It is easy for the classifier to classify
different classes by adapting the features as it permits easy to distinguish. Here, features
like OCLBP-based DWT, SIFT, and LTP features are mined:

a) OCLBP-based DWT

The augmented image is fed to DWT and it is divided into LL, LH, HL, and HH bands
wherein the HH band contains noise and thus it is prevented. Hence LL, LH, and HL bands
are adapted with OCLBP (Vishnoi, Kumar & Kumar, 2022) and finally concatenated and
applied with HoG to establish a feature vector.

OCLBP (Vishnoi, Kumar ¢ Kumar, 2022) indicates a joint color-texture feature that
helps to compare gray scale and color textures. Here, pairs of colors like red-green and
yellow-blue are acquired by humans and called opponent colors. These opponent colors
are determined by adapting LBP on center and adjacent pixels with opposite color
channels. The texture 7 is adapted as a distribution t & y(ot(v, — v5), -+, %(Vxk—1 — Vs_1))-
The local texture considering the image around (¥, fis)is described as

LBP (9,550 =) ot(vs — 05)2" (17)

=
—

i
(=}

. 1, 9>0

“j) = {0, 9 <0. (18)
Hence, the texture of the image is described approximately as

© = 7 (LBP.w(v,.ny))- (19)

HoG (Vishnoi, Kumar ¢ Kumar, 2022) offers information regarding the occurrence of
orientation-related gradients in Rol or local regions. The evaluation of gradient R and
direction ¢ is modeled in a generalized way as

1
Rl = (R +)’ 20
Ry
— tan' R0 21
¢ =tan R, (21)

where Ry and Ry, represent gradient along ¢} and % directions. The image is split into
various square cells or areas with specific sizes. This feature is explained as V.

b) SIFT

SIFT (Vishnoi, Kumar ¢» Kumar, 2022) offers local key features considering the objects
that are unchanged against the transformations of scale. It involves three steps namely
determining the scale-space maxima and keypoints, orientation assignment, and key point
descriptor.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 10/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Determination of scale-space maxima and key points: The operation utilized to find
key points is termed scale-space and is expressed as A(a, ¢, g). It is termed as a convolution
of Gaussian kernel C(a, ¢, o) and image H(a, ¢) such that

A(a,c,0) = C(a,c,a) x H(a,c) (22)

where, * denotes convolution amid a and ¢, and ¢ stands for the standard deviation of
various scales such that

1 a2+
o2 exp 20 . (23)

Cla,c,0) =

The difference of Gaussians (DOG) S(a, ¢, o) is evaluated as
S(a,c,0) = A(a,c,Ta) — A(a,c,a) (24)

where T is constant which divides two successive smooth images.
Orientation assignment: Hence, the gradient magnitude V(a, ¢) and orientation
W (a, c)considering smoothed image at scale o is given by

=

V(a,c) = {(A(a+1,c) — Ala—1,¢))* + (A(a,c + 1) — A(a,c — 1))*}

B A(a,c+1) — A(a,c—1)
W(a,c) = tan™" A+ 10—Ala—1.0) (26)

(25)

Key point descriptor: It is established for every key that poses a stable orientation, scale,
and position. This SIFT feature is signified by V.

c¢) LTP

LTP (Vishnoi, Kumar ¢ Kumar, 2022) is an expansion of LBP in which the center pixel
and its adjacent pixels are done in three unique zones. Considering three zones, the LTP
histogram is generated. The LTP operator is stated as

K—1

LTP; (s, t) = sz ©—U5)3 27)
K=0
where
_17j§55_y
a() =20 —y<j<ss+7y (28)
1 j=>ss+7y

where y denotes threshold. The LTP feature is notified by V3. Hence, the feature vector
formed is stated by,

V= {V17V27V3}' (29)

First-level classification to identify plant leaf type using TL with LeNet
After completing the feature extraction, the obtained feature vectors are applied for further
inspection before being grouped into specific classes. The plant leaf type classification is an

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 11/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Training of
LeNet Acquire
hyperparameters

/\ Training of
.
-

Classified
Outcome

Features /7 —————»|

L

Features /'

Figure 2 LeNet with TL. Full-size K&l DOT: 10.7717/peerj-cs.1972/fig-2
Convolution Convolution
fayer Subsampling fayer Convolution Fully
Subi?mpling tayer con;):ted

T (

v |

Figure 3 Outlook of LeNet. Full-size K&l DOT: 10.7717/peerj-cs.1972/fig-3

essential step in discovering the type of plant. In previous works, the researchers struggle
and spend a huge time establishing the dataset by accumulating several leaf samples as raw
databases. Here, the first level classification is considered which helps to recognize the type
of plant leaf using TL with LeNet. The outlook of TL with LeNet is described along with
CFSA steps.

Outlook of TL with LeNet

The LeNet is simple and a minimum number of layers only required. Also, it needs less
training time. TL is merged into a LeNet model to enhance the accuracy and model
reliability when trained using a small quantity of data. Here, the Outlook of TL with LeNet
is described herewith.

CNN gives enhanced efficacy with large datasets in contrast to smaller ones. It is useful
in the applications of CNN wherein data tends to be small. Hence, the idea behind the TL
is that it comprises a trained model with huge databases that are utilized for applications
that contain small databases. Figure 2 provides LeNet with TL.

Training of LeNet

LeNet (Bouti et al., 2020; Wahlang et al., 2020) indicates a current convolutional network
that is devised for detecting plant leaf disease. It expresses a CNN having adequate input to
generate several objects and various outputs. It can determine strings that lack prior
segmentation. Hence, max pooling and layers of sparse convolution indicate the LeNet
center. Thus, the lower layer contains the max pool and convolution layers. The output
generated by LeNet is signified by ¢,,,. Figure 3 illustrates a preview of the LeNet structure.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 12/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-2
http://dx.doi.org/10.7717/peerj-cs.1972/fig-3
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Fetch hyperparameters

TL uses knowledge attained from the source to improve learning through the target area.
In transferring parameters, the Hyperparameter acquired from the source is effectually
utilized to optimize the target. It uses knowledge learned by source for improving the
learning of the target. The LeNet model contains problems of low accuracy with few faulty
data. Hence, acquiring knowledge from sources helps to improve LeNet's efficiency in the
target. At last, the training instances of the target are utilized for performing parameters
fine-tuning considering CNN-based transfer learning to fit the target.

Training of CNN
The goal is to offer a CNN-based TL (Shi et al., 2019) with a pre-trained model like LeNet
to classify the disease contained in plant leaves with improved accuracy.

CNN model

CNN (Aslam ¢ Cui, 2020) is well-known because of its enhanced efficiency in classifying
the data. Here, the set of convolution layers and filters helps in extracting spatial and
temporal features through data. The layer comprises a weight-sharing method which helps
in reducing evaluations. The CNN expresses a feed forward ANN which comprises two
problems.

Steps of CFSA
The training of Transfer learning-based CNN with LeNet is done using CFSA. Here, the
CFSA is obtained by inducing chronological concepts in FSA (Zhiheng ¢ Jianhua, 2021).
CFSA is motivated by the foraging and migratory characteristics of flamingos. It helps to
fulfill global exploration as well as local exploitation abilities. Moreover, it is extensively
competitive with classical techniques based on the speed of convergence, accuracy, and
stability. FSA is utilized for finding and visualizing its optimization. It provides better
solutions for optimum design in various research domains of optimization issues and
offers novel solutions that can better help address these engineering design-related issues.
The chronological idea is induced in FSA wherein the position data of the flamingo in the
past iteration is adapted to produce the best solution. Based on this solution, the weights of
neurons are updated using CFSA. Hence, the integration of chronological concept in FSA
improves complete performance and the steps of CFSA are illustrated below:

Step 1) Initialization

The first chore is the initiation of solutions, and can be represented by,

]:{]17127"'7]&"'7]»'} (30)

where, v stands for total solutions, and J; provides a ¢ solution.

Step 2) Compute error

After initiating the solutions, the error of each solution is calculated. Thus, the Mean
Square Error (MSE) is utilized and specified by,

4

— 1 * 2
Err = EZ (Y:-Y,) (31)

v=1

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 13/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Thus, Y, and expresses the original and predicted output of Transfer learning-based
CNN with LeNet and e signifies the total samples used.

Step 3) Update using foraging behavior

The moving task of flamingo forages in I'" iteration and it is stated by,

niy:/hxinijtlzx‘leini—i—/sziiy (32)
The expression to update flamingo position using foraging behavior is given by,

5= (i, + i xin 4 1 x ‘11 X in,+ Ja x i) /U (33)

where iijl indicates the location of the i* flamingo in j™ size and (I + 1)™ iteration, i’ is

Xy

I iteration, inﬁ, expresses the flamingo

the location of the i flamingo in j** size and
location with best fitness in I iteration and yth size, U is the diffusion factor, I; and I,
depicts random numbers that undergo normal distribution and /4 are randomized by -1
or 1.

Step 4) Update using migrating behavior

Whenever food is limited, the flamingos travel to subsequent regions where food is
abundant. Consider that the food-rich position in y*dimension is in, and formulation of
migration behavior of flamingo is stated as

il =i+ X x (z‘n; — ifw) (34)

where, X is Gaussian random number.

i) =i, + X xin, — X X i, (35)

i) =1, 1= X]+ X x in). (36)
The above equation is rewritten as

iy (I4+1) = ix, (D[l — X] + X x in,(I). (37)
At iteration /, the above expression is written as

ixy(l) = iy (I = [l = X] + X x in,(I - 1). (38)
Substitute Eq. (38) in Eq. (37),

iey(I+ 1) = [ix,(I— 1)[1 = X] + X x in,(I— 1)][1 = X] + X x in,(]) (39)

iy (14 1) = i, (1= D[1 = XJ* + X x in, (I = 1)(1 — X) + X x in,(]) (40)

iey(14+ 1) = iy (1= 1)[1 — X + X[in, (I = 1)(1 — X) + iny(])] (41)

Apply chronological concepts:

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 14/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

iy 1) + iy (1 4+ 1)

iey(I4+1) = > (42)
Substitute Eq. (37) and Eq. (41) in Eq. (42),
ix,y(l*_l):ixﬁy(l)[l — X]+X x iny (1) +ix, (1—1)[1 =X+ X [in,(1—1) (1 = X) +in,(])] - 43)

2

Step 5) Re-evaluate error

The optimum solution is identified by calculating the error of newly generated position
vectors and the position having the least error value is notified as the optimum solution.

Step 6) Termination

Steps are continued until the maximal iteration count is attained.

Second-level classification to classify multi-class plant disease

Earlier detection and aversion of disease in plants are imperative factors in harvesting
crops as they can effectually minimize any disorders of growth and hence reduce the
application of pesticides for attaining better crop production. Hence, automatic
classification of plant disease is an effective technique for attaining precision agriculture.
Here, the second level classification involves the classification of multi-class plant diseases
using TL with LeNet. Here, the tuning of TL with LeNet is done by CSFA.

DISCUSSION OF OUTCOMES

Proficiency of CFSA+TL-based CNN+LeNet is produced by altering learning epoch and
swarm size and it is examined using various kinds of criterions.

Set-up of experiment
CFSA+TL-based CNN+LeNet is programmed in Python. The CFSA+TL-based CNN
+LeNet parameters are presented in Table 1.

Dataset description

The technique evaluation is performed with the Plant Village Dataset (Mohanty, 2022;
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color). It comprises
54,303 healthy and unhealthy images of the leaf which is split into 38 classes by species as
well as disease. It is an open-access image repository that evaluates plant health to enable
the design of mobile disease diagnosis. It is a dataset containing images of diseased plant
leaf and their labels. There are 14 crop species available in the dataset, such as tomato,
strawberry, squash, soy, raspberry, potato, pepper, peach, orange, grape, cherry, blueberry,
and apple. There are 17 fundamental diseases, such as mold disease 2, mite disease 1, viral
disease 2, and bacterial disease 4 in this dataset.

Experimental upshots

Figure 4 shows experimental outputs of CFSA+TL-based CNN+LeNet using different
images. The input image is explicated in Fig. 4A. The pre-processed image produced by
adaptive anisotropic filtering is exposed in Fig. 4B. The segmented image obtained by U-

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 15/29

https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Parameter details.

Parameter Value
Batch size 128
Epoch 10
Verbose 0
Learning rate 0.5
Loss Categorical_crossentropy
Kernel size (5,5)
Optimizer CFSA
Lower bound 1
Upper bound 5
Maximum iteration 100

)

Figure 4 Experimental outputs of CFSA+TL-based CNN+LeNet with (A) input image (B) pre-

processed image (C) segmented image (D) contrast enhanced image (E) hue image (F) saturated

image (G) affine transformed image (H) padded image (I) rotated image (J) translated image.
Full-size Kl DOI: 10.7717/peerj-cs.1972/fig-4

Net++ is endowed in Fig. 4C. The contrast-enhanced image is depicted in Fig. 4D. The hue
image is exposed in Fig. 4E. The saturated image obtained is depicted in Fig. 4F. The Affine
transformed image is displayed in Fig. 4G. The padded image is depicted in Fig. 4H. The
Rotated image is endowed in Fig. 41. The translated image produced is explicated in Fig. 4].
Figure 5 depicts the outputs of CFSA+TL-based CNN+LeNet with different image
augmentation techniques along with extracted features. The affine transformation of

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 16/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-4
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 5 Experimental outcomes of CFSA+TL-based CNN+LeNet with (A) affine transformation of
DWT-OCLBP, LTP and SIFT (B) contrast of DWT-OCLBP image, LTP and SIFT (C) hue of DWT-
OCLBP image, LTP and SIFT (D) padding of DWT-OCLBP image, LTP and SIFT (E) rotation of
DWT-O. Full-size K&l DOTI: 10.7717/peerj-cs.1972/fig-5

DWT-OCLBP, LTP, and SIFT is explicated in Fig. 5A. The contrast of DWT-OCLBP
image, LTP, and SIFT is displayed in Fig. 5B. The hue of the DWT-OCLBP image, LTP,
and SIFT is induced in Fig. 5C. The Padding of DWT-OCLBP image, LTP, and SIFT is
notified in Fig. 5D. The Rotation of the DWT-OCLBP image, LTP, and SIFT is noted in
Fig. 5E. The Saturation of the DWT-OCLBP image, LTP, and SIFT is noted in Fig. 5F. The
Translation of DWT-OCLBP image, LTP, and SIFT is noted in Fig. 5G.

Metrics used
Proficiency of each scheme ability is observed by inspecting CFSA+TL-based CNN+LeNet
with different performance parameters which is explained below.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 17/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-5
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

(a) Accuracy
It is considered as a metric of closeness degree to its true value and can be expressed as

B+V

M=———. (44)
B+V+F+D

Hence, Vstates true positive, B offers true negative, D gives false positive, and displays
false negative.

(b) Sensitivity

It depicts the proportion of true positives number to the total number of positives, and is
presented by

v
N=——. (45)
V+F

(c) Specificity
It defines the ratio of negatives and is accurately identified and it is notated by

B
=—. 46
B+D (46)
(d) F-measure
It is the compromise between precision and recall and it is noted

MV (47)

I
V+2(D+F)

Algorithm methods

The algorithm efficiency estimation considered for analysis is PSO+TL-based CNN+LeNet
(Wang, Tan & Liu, 2018; Bouti et al., 2020), CSO+TL-based CNN+LeNet (Cheng ¢ Jin,
2014; Bouti et al., 2020), ROA+TL-based CNN+LeNet (Jia, Peng ¢» Lang, 2021; Bouti et al.,
2020), GTO+TL-based CNN+LeNet (Xiao et al., 2022; Bouti et al., 2020), FSA+TL-based
CNN+LeNet (Zhiheng ¢ Jianhua, 2021; Bouti et al., 2020), and proposed CFSA+TL-based
CNN+LeNet.

Algorithmic analysis
The evaluation of scheme efficacy with first-level and second-level classifications is
described with different metrics by altering swarm size along the x-axis.

a) Graphical estimation of algorithm efficacy with first-level classification

Figure 6 gives an evaluation of algorithm efficacy with first-level classification
considering different metrics. The graph depicting accuracy is explicated in Fig. 6A. When
the swarm’s size is 20, the accuracy produced by PSO+TL-based CNN+LeNet is 0.837,
CSO+TL-based CNN+LeNet is 0.865, ROA+TL-based CNN+LeNet is 0.887, GTO+ TL-
based CNN+LeNet is 0.898, FSA+TL-based CNN+LeNet is 0.918, and CFSA+TL-based
CNN-+LeNet is 0.946. The graph denoting analysis considering sensitivity is explicated in

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 18/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

10
08 o8
-
@
506 Zos
o g
€ 04 @ 0.4
- W P50+ TL-based CNN+ LeNet L B PSO+TL-based CHN+Leet
el B CS0+TL-based CNN+LeNet B CS0+TL-based CNN+LeNet
B ROA+TL-based CNN+ Leet I ROA+TL-based CNN+ LeNet
0z =51 GTO+TL-based CNN+LeNet 0.z 0 GTO+TL-based CHN+LeNet
B FSA+TL-based CHN+LeNet B FSA+TL-based CNN+LeNet
3 Proposed CFSA+TL-based CHM+LeMNet 3 Proposed CFSA+TL-based CNN+LeNet
0.0 1 e | e | || 0.0 | | SO B | SEN_ W] -
5 10 15 20 s 10 15 20
Swarm Size Swarm Size
(@) (b)
08 08
Zos 2os
S 2
-]]
]
g s
o 04 04
w B PS50+ TL-based CNM+LeNet b B P50+ TL-based CNN+LeNet
B CS50+TL-based CNN+LeNet B CSO+TL-based CNN+LeNet
B ROA+TL-based CHN+ LeNet W AOA+TL-based CNN+LeNet
02 =21 GTO+TL:-based CNN+LeNet 02 =2 GTO+TL-based CNN+LeNet
[FSA+TL-based CNN+LoNet N FSA+TL-based CNN+LeNet
0 Proposed CFSA+TL-based CNN+LaNet 1 Proposed CFSA+TL-based CNN+LeNet
00 1 . |) - 00 1 o | | NENC -
5 10 15 20 5 10 15 20
Swarm Size Swarm Size
(© (@

Figure 6 Evaluation of algorithm efficacy with first level classification considering (A) accuracy (B)
sensitivity (C) specificity (D) F-measure. Full-size 4] DO 10.7717/peerj-cs.1972/fig-6

Fig. 6B. For swarms size is 20, the elevated sensitivity of 0.958 is produced by CFSA+TL-
based CNN+LeNet whilst sensitivity of PSO+TL-based CNN+LeNet, CSO+TL-based
CNN-+LeNet, ROA+TL-based CNN+LeNet, GTO+TL-based CNN+LeNet, FSA+TL-based
CNN-+LeNet are 0.837, 0.858, 0.877, 0.887, and 0.908. The graph regarding specificity
analysis is considered in Fig. 6C. Considering swarms size as 20, the specificity generated is
0.827 for PSO+TL-based CNN+LeNet, 0.848 for CSO+TL-based CNN+LeNet, 0.859 for
ROA+TL-based CNN+LeNet, 0.865 for GTO+TL-based CNN+LeNet, 0.877 for FSA+TL-
based CNN+LeNet, and 0.936 for CFSA+TL-based CNN+LeNet. The graph regarding F-
Measure analysis is considered in Fig. 6D. Considering swarms size as 10, the F-measure
generated is 0.808 for PSO+TL-based CNN+LeNet, 0.822 for CSO+TL-based CNN
+LeNet, 0.842 for ROA+TL-based CNN+LeNet, 0.857 for GTO+TL-based CNN+LeNet,
0.872 for FSA+TL-based CNN+LeNet, and 0.907 for CFSA+TL-based CNN+LeNet.

b) Graphical evaluation of algorithm efficacy with second-level classification

Figure 7 gives the evaluation of algorithm efficacy with second-level classification
considering different metrics. The graph depicting accuracy analysis is explicated in
Fig. 7A. When swarms size is 20, the accuracy noted by PSO+TL-based CNN+LeNet is
0.877, CSO+ TL-based CNN+LeNet is 0.887, ROA+TL-based CNN+LeNet is 0.898, GTO

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 19/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-6
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

1.0 1.0
0.8 0.8
>
9
S z
o S 0.6
> =}
o 2
£ 04 0.4
n Il PSO+TL-based CNN+LeNet 0 Il PSO+TL-based CNN+LeNet
;q_) =1 CSO+TL-based CNN+LeNet =1 CSO+TL-based CNN+LeNet
B ROA+TL-based CNN+LeNet B ROA+TL-based CNN+LeNet
0.2 =31 GTO+TL-based CNN+LeNet 0.2 =1 GTO+TL-based CNN+LeNet
Bl FSA+TL-based CNN+LeNet Bl FSA+TL-based CNN+LeNet
[Proposed CFSA+TL-based CNN+LeNet [Proposed CFSA+TL-based CNN+LeNet
0.0 ! I | | || 0.0 y | CUE N e | | |
S 10 15 20 5 10 15 20
Swarm Size Swarm Size
(@) (b)
1.0
0.8 0.8
206 2os
S ?
= @
8 [
Q. 0.4 = 0.4
0 BBl PSO+TL-based CNN+LeNet w BB PSO+TL-based CNN+LeNet
= CSO+TL-based CNN-+LeNet =1 CSO+TL-based CNN-+LeNet
[ROA+TL-based CNN+LeNet [ROA+TL-based CNN+LeNet
0.2 =1 GTO+TL-based CNN+LeNet 02 =1 GTO+TL-based CNN+LeNet
Bl FSA+TL-based CNN+LeNet B FSA+TL-based CNN+LeNet
[Proposed CFSA+TL-based CNN+LeNet [Proposed CFSA+TL-based CNN+LeNet
0.0 || 0.0 I | o | | |
S 10 15 20 S 10 15 20
Swarm Size Swarm Size
© (@)

Figure 7 Evaluation of algorithm efficacy with second level classification with (A) accuracy (B)
sensitivity (C) specificity (D) F-measure. Full-size 4] DOI: 10.7717/peerj-cs.1972/fig-7

+TL-based CNN+LeNet is 0.908, FSA+TL-based CNN+LeNet is 0.927, and CFSA+TL-
based CNN+LeNet is 0.957. The graph denoting analysis considering sensitivity is
explicated in Fig. 7B. When swarms size is 20, the elevated sensitivity of 0.965 is produced
by CFSA+TL-based CNN+LeNet whilst sensitivity of PSO+TL-based CNN+LeNet, CSO
+TL-based CNN+LeNet, ROA+TL-based CNN+LeNet, GTO+TL-based CNN+LeNet,
FSA+ TL-based CNN+LeNet are 0.848, 0.858, 0.865, 0.898, 0.908. The graph regarding
specificity analysis is considered in Fig. 7C. For swarms size is 20, the specificity produced
is 0.858 for PSO+ TL-based CNN+LeNet, 0.877 for CSO+TL-based CNN+LeNet, 0.887 for
ROA+TL-based CNN+LeNet, 0.898 for GTO+TL-based CNN+LeNet, 0.928 for FSA+TL-
based CNN+LeNet, and 0.947 for CFSA+TL-based CNN+LeNet. The graph regarding F-
Measure analysis is considered in Fig. 7D. For swarms size is 10, the F-measure produced is
0.826 for PSO+ TL-based CNN+LeNet, 0.842 for CSO+TL-based CNN+LeNet, 0.856 for
ROA+TL-based CNN+LeNet, 0.876 for GTO+TL-based CNN+LeNet, 0.892 for FSA+TL-
based CNN+LeNet, and 0.927 for CFSA+TL-based CNN+LeNet.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 20/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-7
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

1.0
0.8 0.8
>
@
5 06 Zos
v}
g B
o 2
£ 04 V0.4
i Il Dense CNN 0 Il Dense CNN
@ = Deep learning = Deep learning
[EfficientNet deep learning [l EfficientNet deep learning
02 =1 DPD-DS 02 =3 DPD-DS
I DbneAlexnet-MGRA B DbneAlexnet-MGRA
[Proposed CFSA+TL-based CNN+LeNet [Proposed CFSA+TL-based CNN+LeNet
0.0 0.0 .
60 70 80 60 70 80
Learning epoch(%) Learning epoch(%)
(@) ()
0.8 0.8
o6 2 os
S 2
= @
8 [
Q 0.4 = 0.4
v I Dense CNN w I Dense CNN
= Deep learning = Deep learning
Bl EfficientNet deep learning Bl EfficientNet deep learning
02 E=1 DPD-DS 02 E=1 DPD-DS
B DbneAlexnet-MGRA B DbneAlexnet-MGRA
[Proposed CFSA+TL-based CNN+LeNet [Proposed CFSA+TL-based CNN+LeNet
. | . | 0.0 | . |

0.0

60 60

70 80 70 80
Learning epoch(%) Learning epoch(%)

© @

Figure 8 Evaluation of scheme efficacy with first level classification considering (A) accuracy (B)
sensitivity (C) specificity (D) F-measure. Full-size 4] DOT: 10.7717/peerj-cs.1972/fig-8

Comparative methods

The schemes efficiency estimation adapted for assessment are dense CNN (Tiwari, Joshi ¢
Dutta, 2021), deep learning (Roy ¢» Bhaduri, 2021), EfficientNet deep learning (Atila et al.,
2021), DPD-DS (Lakshmi & Savarimuthu, 2021), DbneAlexnet-MGRA, and CFSA+TL-
based CNN+LeNet.

Comparative analysis
The valuation of technique efficacy with first and second-level categorization is defined
with various measures by altering the learning epoch along the x-axis.

a) Graphical estimation of scheme efficacy with first-level categorization

Figure 8 gives an evaluation of scheme efficacy with first-level classification considering
different metrics. The graph depicting accuracy analysis is noted in Fig. 8A. When the
learning epoch is 90%, the accuracy produced by dense CNN is 0.809, Deep learning is
0.827, EfficientNet deep learning is 0.848, DPD-DS is 0.877, DbneAlexnet-MGRA is 0.898,
and CFSA+TL-based CNN+LeNet is 0.946. The graph denoting analysis considering
sensitivity is noted in Fig. 8B. When the learning epoch is 90%, the sensitivity produced by

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 21/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-8
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

1.0 1.0
0.8 0.8
>
9
o >
a 0.6 =206
g 3
k7]
o =
£ 04 O 0.4
? Il Dense CNN 0 Il Dense CNN
ﬂ == Deep leaming == Deep leaming
B EfficientNet deep learning B EfficientNet deep learning
0.2 =1 DPD-DS 02 =1 DPD-DS
I DbneAlexnet-MGRA [DbneAlexnet-MGRA
[Proposed CFSA+TL-based CNN+LeNet [Proposed CFSA+TL-based CNN-+LeNet
0.0 | I | 0.0 u s T | | SOH N L |
60 70 80 60 70 80 90
Learning epoch(%) Learning epoch(%)
(@) (b)
1.0
0.8 0.8
206 2o
5 5
= 0
= ©
g [
Q 0.4 = 0.4
"z I Dense CNN w Il Dense CNN
= Deep leaming =1 Deep leaming
Bl EfficientNet deep learning B EfficientNet deep learning
02 =1 DPD-DS 02 E=1 DPD-DS
I DbneAlexnet-MGRA EEE DbneAlexnet-MGRA
[Proposed CFSA+TL-based CNN-+LeNet [Proposed CFSA+TL-based CNN-+LeNet
. | I | 0.0 I | e | L

0.0

60 60

70 80 70 80
Learning epoch(%) Learning epoch(%)

© (@)

Figure 9 Evaluation of scheme efficacy with second level categorization considering (A) accuracy (B)
sensitivity (C) specificity (D) F-measure. Full-size] DOT: 10.7717/peetj-cs.1972/fig-9

dense CNN is 0.837, Deep learning is 0.859, EfficientNet deep learning is 0.877, DPD-DS is
0.898, DbneAlexnet-MGRA is 0.908, and CFSA+TL-based CNN+LeNet is 0.958. The
graph regarding specificity analysis is considered in Fig. 8C. When the learning epoch is
90%, the specificity produced is 0.798 for dense CNN, 0.817 for deep learning, 0.848 for
EfficientNet deep learning, 0.877 for DPD-DS, 0.909 for DbneAlexnet-MGRA, and 0.936
for CFSA+TL-based CNN+LeNet. The graph regarding F-measure analysis is considered
in Fig. 8D. When the learning epoch is 90%, the specificity produced is 0.817 for dense
CNN, 0.837 for deep learning, 0.862 for EfficientNet deep learning, 0.887 for DPD-DS,
0.908 for DbneAlexnet-MGRA, and 0.947 for CFSA+TL-based CNN+LeNet.

b) Graphical evaluation of scheme efficacy with second-level categorization

Figure 9 gives the evaluation of scheme efficacy using different metrics. The graph
depicting accuracy is noted in Fig. 9A. When the learning epoch is 90%, the accuracy
produced by dense CNN is 0.837, Deep learning is 0.858, EfficientNet deep learning is
0.877, DPD-DS is 0.898, DbneAlexnet-MGRA is 0.927, and CESA+TL-based CNN+LeNet
is 0.957. The graph denoting analysis considering sensitivity is explicated in Fig. 9B. When
the learning epoch is 90%, the elevated sensitivity of 0.965 is produced by CFSA+TL-based
CNN+LeNet whilst the sensitivity of the remaining schemes is 0.865, 0.887, 0.908, 0.916,

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 22/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-9
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

0.8
>
9
g
3
Y o6
©
c
2
-
]
€
o 0.4
£
o
]
n
SegCNN
0.2 U-Net
Region based segmentation
K-means algorithm
Unet plus plus
0.0 -)

60 70 80 90
Learning epoch

Figure 10 Estimation with segmentation accuracy. Full-size k& DOI: 10.7717/peerj-cs.1972/fig-10

and 0.936. The graph regarding specificity analysis is considered in Fig. 9C. When the
learning epoch is 90%, the specificity produced is 0.859 for dense CNN, 0.865 for deep
learning, 0.887 for EfficientNet deep learning, 0.908 for DPD-DS, 0.918 for DbneAlexnet-
MGRA, and 0.947 for CFSA+TL-based CNN+LeNet. The graph regarding F-measure
analysis is considered in Fig. 9D. When the learning epoch is 90%, the F-measure produced
is 0.862 for dense CNN, 0.876 for deep learning, 0.897 for EfficientNet deep learning, 0.912
for DPD-DS, 0.927 for DbneAlexnet-MGRA, and 0.956 for CFSA+TL-based CNN+LeNet.

Analysis using segmentation accuracy

Figure 10 provides the estimation with the segmentation accuracy metric. For the 60%
learning epoch, the segmentation accuracy noted by SegCNN is 0.808, U-Net is 0.827,
Region-based segmentation is 0.837, K-mean algorithm is 0.858, and U-Net++ is 0.898.
Considering the 90% learning epoch, the high segmentation accuracy of 0.949 is noted by
U-Net++ whilst the segmentation accuracy of the remaining schemes is 0.838, 0.859, 0.865,
0.887.

Comparative estimate
The efficiency of schemes and algorithms considering different metrics are described
below.

Algorithm estimate

Table 2 defines algorithm efficiency assessment considering diverse performance criteria.
Considering first-level classification, the augmented accuracy of 94.6% is observed by
CFSA+TL-based CNN+LeNet while the accuracy of enduring schemes is 83.7%, 86.5%,
88.7%, 89.8%, and 91.8%. The high sensitivity of 95.8% is produced by CFSA+TL-based

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 23/29

http://dx.doi.org/10.7717/peerj-cs.1972/fig-10
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Algorithm efficacy evaluation.

Level Metrics PSO+LeNet CSO+LeNet ROA+LeNet GTO+LeNet FSA+LeNet CFSA+TL-based CNN+LeNet
First level Accuracy (%) 83.7 86.5 88.7 89.8 91.8 94.6
Sensitivity (%) 83.7 85.8 87.7 88.7 90.8 95.8
Specificity (%) 82.7 84.8 85.9 86.5 87.7 93.6
F-measure (%) 83.2 85.3 86.8 87.6 89.2 94.7
Second level Accuracy (%) 87.7 88.7 89.8 90.8 92.7 95.7
Sensitivity (%) 84.8 85.8 86.5 89.8 90.8 96.5
Specificity (%) 85.8 87.7 88.7 89.8 92.8 94.7
F-measure (%) 85.3 86.7 87.6 89.8 91.7 95.6
Note:
The best results are shown in bold.
Table 3 Scheme efficacy evaluation.
Level Metrics Dense Deep EfficientNet deep DPD- DbneAlexnet- CFSA+TL-based CNN
CNN learning learning DS MGRA +LeNet
First level ~ Accuracy (%) 80.9 82.7 84.8 87.7 89.8 94.6
Sensitivity (%) 83.7 85.9 87.7 89.8 90.8 95.8
Specificity (%) 79.8 81.7 84.8 87.7 90.9 93.6
F-measure (%) 81.7 83.7 86.2 88.7 90.8 94.7
Second Accuracy (%) 83.7 85.8 87.7 89.8 92.7 95.7
level Sensitivity (%) 86.5 88.7 90.8 91.6 93.6 96.5
Specificity (%) 85.9 86.5 88.7 90.8 91.8 94.7
F-measure (%) 86.2 87.6 89.7 91.2 92.7 95.6

Note:

The best results are shown in bold.

CNN-+LeNet while the sensitivity of enduring schemes is 83.7%, 85.8%, 87.7%, 88.7%, and
90.8%. The high specificity of 93.6% is produced by CFSA+TL-based CNN+LeNet while
the specificity of enduring schemes is 82.7%, 84.8%, 85.9%, 86.5%, and 87.7%. The highest
F-measure is 94.7%. Considering second-level classification, the augmented accuracy of
95.7%, sensitivity of 96.5%, specificity of 94.7%, and F-measure of 95.6% is noted by CFSA
+TL-based CNN+LeNet. From the evaluation, it is observed that the CFSA+TL-based
CNN+LeNet has improved its ability to provide a better classification of plant leaf disease.

Scheme evaluation

Table 3 describes the scheme efficiency computation with various evaluation criteria.
Considering first-level classification, the augmented accuracy of 94.6% is observed by
CFSA+TL-based CNN+LeNet while the accuracy of enduring schemes is 80.9%, 82.7%,
84.8%, 87.7%, and 89.8%. The high sensitivity of 95.8% is noted by CFSA+TL-based CNN
+LeNet whilst the sensitivity of enduring schemes is 83.7%, 85.9%, 87.7%, 89.8%, and
90.8%. The high specificity of 93.6% is produced by CFSA+TL-based CNN+LeNet whilst
the specificity of enduring schemes is 79.8%, 81.7%, 84.8%, 87.7%, and 90.9%. The high F-
measure of 94.7% is produced by CFSA+TL-based CNN+LeNet whilst the F-measure of
enduring schemes are 81.7%, 83.7%, 86.2%, 88.7%, and 90.8%. Considering second-level

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 24/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Statistical analysis.

Methods Accuracy Sensitivity Specificity F-measure
Best Mean Variance Best Mean Variance Best Mean Variance Best Mean Variance
First level
Dense CNN 0.809 0.805 0.004 0.837 0.834 0.003 0.798 0.794 0.004 0.817 0.813 0.004
Deep learning 0.827 0.824 0.003 0.859 0.856 0.003 0.817 0.812 0.005 0.837 0.834 0.003
EfficientNet deep learning 0.848 0.845 0.003 0.877 0.873 0.004 0.848 0.845 0.003 0.862 0.859 0.003
DPD-DS 0.877 0.874 0.003 0.898 0.896 0.002 0.877 0.875 0.002 0.887 0.883 0.004
DbneAlexnet-MGRA 0.898 0.895 0.003 0.908 0.905 0.003 0.909 0.905 0.004 0908 0.904 0.004
CFSA+TL-based CNN+LeNet 0946 0.944 0.002 0.958 0.957 0.001 0936 0934 0.002 0947 0.945 0.002
Second level
Dense CNN 0.837 0.834 0.003 0.865 0.860 0.005 0.859 0.855 0.004 0.862 0.860 0.002
Deep learning 0.858 0.855 0.003 0.887 0.884 0.003 0.865 0.861 0.004 0.876 0.873 0.003
EfficientNet deep learning 0.877 0.874 0.003 0.908 0.904 0.004 0.887 0.884 0.003 0.897 0.893 0.004
DPD-DS 0.898 0.894 0.004 0916 0.913 0.003 0908 0.904 0.004 0912 0.910 0.002
DbneAlexnet-MGRA 0.927 0.924 0.003 0.936 0.933 0.003 0918 0916 0.002 0927 0.924 0.003
CFSA+TL-based CNN+LeNet 0.957 0.955 0.002 0.965 0.963 0.002 0947 0.946 0.001 0956 0.955 0.001

classification, the augmented accuracy of 95.7%, sensitivity of 96.5%, specificity of 94.7%,
and F-measure of 95.6% is noted by CFSA+TL-based CNN+LeNet. From the analysis, it is
revealed that the CFSA+TL-based CNN+LeNet is effective in performing the classification
to find and classify diseases present in plant leaves with improved accuracy.

Statistical analysis
Table 4 describes the statistical analysis of the CFSA+TL-based CNN+LeNet. It is based on
the best, mean, and variance of the model using various evaluation metrics.

CONCLUSION

The aim is to design a framework with leaf images using CFSA with TL-based CNN and
the LeNet model. Initially, the leaf image is acquired and offered to adaptive anisotropic
diffusion for filtering noise. Thereafter the segmentation of plant leaf is done with U-Net+
+ and trained using MGRA. After this, the image augmentation is done which is classified
into Position augmentation like padding, rotation, translation, affine transformation, and
color augmentation including contrast, saturation, and hue. Then the feature extraction is
done by using Hybrid OCLBP-based DWT with HoG, SIFT, and LTP. Next, the first level
of classification is considered as plant type classification and the second level of
categorization is considered as the multi-class plant disease classification, and both
classifications are done by using a CFSA with TL-based CNN and LeNet model. The
proposed CFSA-TL-based CNN with LeNet outperformed with a high accuracy of 95.7%, a
sensitivity of 96.5%, and a specificity of 94.7%. The goal is to optimize the features, reduce
computational time, and produce better accuracy in detecting and classifying plant leaf
disease. The proposed method is used to identify and classify the disease in its early stage,

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972

25/29

http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

which elevates the productivity and quality of food at less cost and more profit. However,
the limited dataset is used in this research for the analysis. In the future, other datasets will
be applied to reveal the reliability and performance of the designed scheme.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Malathi Chilakalapudi conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, and
approved the final draft.

o Sheela Jayachandran analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data are available at GitHub: https://github.com/spMohanty/PlantVillage-Dataset/
tree/master/raw/color (Sharada Mohanty).

The code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1972#supplemental-information.

REFERENCES

Al-Tuwaijari JM, Mohammed SI, Rahem MAB. 2018. Performance Evaluation of face image
recognition-based voila-joins with SVM. Iraqi Journal of Information Technology 9(3):48-64
DOI 10.34279/0923-009-001-007.

Annabel LSP, Annapoorani T, Deepalakshmi P. 2019. Machine learning for plant leaf disease
detection and classification-a review. In: Proceedings of International Conference on
Communication and Signal Processing (ICCSP). 538-542.

Arivazhagan S, Shebiah RN, Ananthi S, Varthini SV. 2013. Detection of unhealthy regions of
plant leaves and classification of plant leaf diseases using texture features. Agricultural
Engineering International: CIGR Journal 15(1):211-217.

Aslam MA, Cui D. 2020. Breast cancer classification using deep convolutional neural network.
Proceedings of Journal of Physics: Conference Series, IOP Publishing 1584(2020):012005
DOI 10.1088/1742-6596/1584/1/012005.

Atila U, Ugar M, Akyol K, Ugar E. 2021. Plant leaf disease classification using EfficientNet deep
learning model. Ecological Informatics 61:1-13 DOI 10.1016/j.ecoinf.2020.101182.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 26/29

https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
http://dx.doi.org/10.7717/peerj-cs.1972#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1972#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1972#supplemental-information
http://dx.doi.org/10.34279/0923-009-001-007
http://dx.doi.org/10.1088/1742-6596/1584/1/012005
http://dx.doi.org/10.1016/j.ecoinf.2020.101182
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Bayram HY, Bingol H, Alatas B. 2022. Hybrid deep model for automated detection of tomato leaf
diseases. Traitement du Signal 39(5):1781-1787 DOI 10.18280/ts.390537.

Bingol H. 2022a. NCA-based hybrid convolutional neural network model for classification of
cervical cancer on Gauss-enhanced pap-smear images. International Journal of Imaging Systems
and Technology 32(6):1978-1989 DOI 10.1002/ima.22751.

Bingol H. 2022b. Classification of OME with Eardrum otoendoscopic images using hybrid-based
deep models, NCA, and Gaussian method. International Information and Engineering
Technology Association 39(4):1295-1302 DOI 10.18280/ts.390422.

Bouti A, Mahraz MA, Riffi J, Tairi H. 2020. A robust system for road sign detection and
classification using LeNet architecture based on a convolutional neural network. Soft Computing
24(9):6721-6733 DOI 10.1007/s00500-019-04307-6.

Cheng R, Jin Y. 2014. A competitive swarm optimizer for large-scale optimization. IEEE
Transactions on Cybernetics 45(2):191-204 DOI 10.1109/TCYB.2014.2322602.

Fan X, Zhou R, Tjahjadi T, Choudhury SD, Ye Q. 2022. A segmentation-guided deep learning
framework for leaf counting. Frontiers in Plant Science 13:844522
DOI 10.3389/1pls.2022.844522.

Gavhale KR, Gawande U. 2014. An overview of the research on plant leaves disease detection using
image processing techniques. IOSR Journal of Computer Engineering (IOSR-JCE) 16(1):10-16
DOI 10.9790/0661-16151016.

Geetha G, Samundeswari S, Saranya G, Meenakshi K, Nithya M. 2020. Plant leaf disease
classification and detection system using machine learning. Journal of Physics: Conference Series
1712(2020):012012 DOI 10.1088/1742-6596/1712/1/012012.

Grinblat GL, Uzal LC, Larese MG, Granitto PM. 2016. Deep learning for plant identification
using vein morphological patterns. Computers and Electronics in Agriculture 127(1):418-424
DOI 10.1016/j.compag.2016.07.003.

Hossain E, Hossain MF, Rahaman MA. 2019. A color and texture-based approach for the
detection and classification of plant leaf disease using KNN classifier. In: International
Conference on Electrical, Computer and Communication Engineering (ECCE). 1-6.

Hussain N, Khan MA, Tariq U, Kadry S, Yar MAE, Mostafa AM, Alnuaim AA, Ahmad S. 2022.
Multiclass cucumber leaf diseases recognition using best feature selection. Computers, Materials
& Continua 70(2):3282-3294 DOI 10.32604/cmc.2022.019036.

Islam M, Dinh A, Wahid K, Bhowmik P. 2017. Detection of potato diseases using image
segmentation and multiclass support vector machine. In: IEEE 30th CIEEE 30th Canadian
Conference on Electrical and Computer Engineering (CCECE). Piscataway: IEEE, 1-4.

Jadhav SB, Udup VR, Patil SB. 2019. Soybean leaf disease detection and severity measurement
using multiclass SVM and KNN classifier. International Journal of Electrical and Computer
Engineering 9(5):4077-4091 DOI 10.11591/ijece.v9i5.pp4077-4091.

Jagtap SB, Hambarde MSM. 2014. Agricultural plant leaf disease detection and diagnosis using
image processing based on morphological feature extraction. IOSR Journal of VLSI and Signal
Processing 4(5):24-30 DOI 10.9790/4200-04512430.

Jasim MA, Al-Tuwaijari JM. 2020. Plant leaf disease detection and classification using image
processing and deep learning techniques. In: International Conference on Computer Science and
Software Engineering (CSASE). 259-265.

Jia H, Peng X, Lang C. 2021. Remora optimization algorithm. Expert Systems with Applications
185(2021):1-25 DOI 10.1016/j.eswa.2021.115665.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 27/29

http://dx.doi.org/10.18280/ts.390537
http://dx.doi.org/10.1002/ima.22751
http://dx.doi.org/10.18280/ts.390422
http://dx.doi.org/10.1007/s00500-019-04307-6
http://dx.doi.org/10.1109/TCYB.2014.2322602
http://dx.doi.org/10.3389/fpls.2022.844522
http://dx.doi.org/10.9790/0661-16151016
http://dx.doi.org/10.1088/1742-6596/1712/1/012012
http://dx.doi.org/10.1016/j.compag.2016.07.003
http://dx.doi.org/10.32604/cmc.2022.019036
http://dx.doi.org/10.11591/ijece.v9i5.pp4077-4091
http://dx.doi.org/10.9790/4200-04512430
http://dx.doi.org/10.1016/j.eswa.2021.115665
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

Krishnamoorthy N, Prasad LVN, Pavan Kumar CS, Subedi B, Abraha HB, Sathishkumar VE.
2021. Rice leaf disease prediction using deep neural networks with transfer learning.
Environmental Research 198(2021):111275 DOI 10.1016/j.envres.2021.111275.

Lakshmi RK, Savarimuthu N. 2021. DPD-DS for plant disease detection based on instance
segmentation. Journal of Ambient Intelligence and Humanized Computing 14(4):3145-3155
DOI 10.1007/s12652-021-03440-1.

Mohanty SP. 2022. Plant-Village Dataset. Available at https://github.com/spMohanty/Plant Village-
Dataset/tree/master/raw/color (accessed June 2022).

Roy AM, Bhaduri J. 2021. A deep learning-enabled multi-class plant disease detection model
based on computer vision. AI 2(3):413-428 DOI 10.3390/2i2030026.

Saccucci MS, Amin RW, Lucas JM. 1992. Exponentially weighted moving average control schemes
with variable sampling intervals. Communications in Statistics—Simulation and Computation
21(3):627-657 DOI 10.1080/03610919208813040.

Sachdeva G, Singh P, Kaur P. 2021. Plant leaf disease classification using deep convolutional
neural network with Bayesian learning. Materials Today: Proceedings 45:5584-5590
DOI 10.1016/j.matpr.2021.02.312.

Sathishkumar VE, Rahman ABM, Park J, Shin C, Cho Y. 2020. Using machine learning
algorithms for fruit disease classification. Basic & Clinical Pharmacology & Toxicology 126:253.

Shi Z, Hao H, Zhao M, Feng Y, He L, Wang Y, Suzuki K. 2019. A deep CNN-based transfer
learning method for false positive reduction. Multimedia Tools and Applications 78(1):1017-
1033 DOI 10.1007/s11042-018-6082-6.

Singh A, Kaur H. 2021. Potato plant leaves disease detection and classification using machine
learning methodologies. IOP Conference Series: Materials Science and Engineering
1022(1):012121 DOI 10.1088/1757-899X/1022/1/012121.

Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. 2016. Deep neural networks-
based recognition of plant diseases by leaf image classification. Computational Intelligence and
Neuroscience 2016(6):1-11 DOI 10.1155/2016/3289801.

Subramanian M, Prasad NLV, Janakiramaiah B, Babu AM, Sathishkumar VE. 2022.
Hyperparameter optimization for transfer learning of VGG16 for disease identification in corn
leaves using Bayesian optimization. Big Data 10(3):215-229 DOI 10.1089/big.2021.0218.

Tang J, Sun Q, Liu J, Cao Y. 2007. An adaptive anisotropic diffusion filter for noise reduction in
MR images. In: Proceedings of 2007 International Conference on Mechatronics and Automation.
Piscataway: IEEE, 1299-1304.

Tiwari V, Joshi RC, Dutta MK. 2021. Dense convolutional neural networks based multiclass plant
disease detection and classification using leaf images. Ecological Informatics 63:101289
DOI 10.1016/j.ecoinf.2021.101289.

Vishnoi VK, Kumar K, Kumar B. 2022. A comprehensive study of feature extraction techniques
for plant leaf disease detection. Multimedia Tools and Applications 81(1):367-419
DOI 10.1007/s11042-021-11375-0.

Wahlang I, Sharma P, Sanyal S, Saha G, Maji AK. 2020. Deep learning techniques for
classification of brain MRI. International Journal of Intelligent Systems Technologies and
Applications 19(6):571-588 DOI 10.1504/1JISTA.2020.112441.

Wang D, Tan D, Liu L. 2018. Particle swarm optimization algorithm: an overview. Soft Computing
22(2):387-408 DOI 10.1007/500500-016-2474-6.

Xiao Y, Sun X, Guo Y, Li S, Zhang Y, Wang Y. 2022. An improved gorilla troops optimizer based
on lens opposition-based learning and adaptive beta-hill climbing for global optimization.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 28/29

http://dx.doi.org/10.1016/j.envres.2021.111275
http://dx.doi.org/10.1007/s12652-021-03440-1
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
http://dx.doi.org/10.3390/ai2030026
http://dx.doi.org/10.1080/03610919208813040
http://dx.doi.org/10.1016/j.matpr.2021.02.312
http://dx.doi.org/10.1007/s11042-018-6082-6
http://dx.doi.org/10.1088/1757-899X/1022/1/012121
http://dx.doi.org/10.1155/2016/3289801
http://dx.doi.org/10.1089/big.2021.0218
http://dx.doi.org/10.1016/j.ecoinf.2021.101289
http://dx.doi.org/10.1007/s11042-021-11375-0
http://dx.doi.org/10.1504/IJISTA.2020.112441
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

PeerJ Computer Science

CMES-Computer Modeling in Engineeringe Sciences 131(2):815-850
DOI 10.32604/cmes.2022.019198.

Zhiheng W, Jianhua L. 2021. Flamingo search algorithm: a new swarm intelligence optimization
algorithm. IEEE Access 9:88564-88582 DOI 10.1109/ACCESS.2021.3090512.

Chilakalapudi and Jayachandran (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.1972 29/29

http://dx.doi.org/10.32604/cmes.2022.019198
http://dx.doi.org/10.1109/ACCESS.2021.3090512
http://dx.doi.org/10.7717/peerj-cs.1972
https://peerj.com/computer-science/

	Multi-classification of disease induced in plant leaf using chronological Flamingo search optimization with transfer learning
	Introduction
	Motivation
	Proposed cfsa-based tl for multi-classification of plant leaf disease
	Discussion of outcomes
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

