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ABSTRACT
Diatoms are a type of algae with many species. Accurate and quick classification of
diatom species is important in many fields, such as water quality analysis and weather
change forecasting. Traditional methods for diatom classification, specifically
morphological taxonomy and molecular detection, are time-consuming and may not
provide satisfactory performance. However, in recent years, deep learning has
demonstrated impressive performance in this task, just like other image classification
problems. On the other hand, networks with more layers do not guarantee increased
accuracy. While increasing depth can be useful in capturing complex features and
patterns, it also introduces challenges such as vanishing gradients, overfitting, and
optimization challenges. Therefore, in our work, we propose DiatomNet, a
lightweight convolutional neural network (CNN) model that can classify diatom
species accurately while requiring low computing resources. A recently introduced
dataset consisting of 3,027 diatom images and 68 diatom species is used to train and
evaluate the model. The model is compared with well-known and successful CNN
models (i.e., AlexNet, GoogleNet, Inceptionv3, ResNet18, VGG16, and Xception)
and their customized versions obtained with transfer learning. The comparison is
based on several success metrics: accuracy, precision, recall, F-measure, number of
learnable parameters, training, and prediction time. Eventually, the experimental
results reveal that DiatomNet outperforms the other models regarding all metrics
with just a few exceptions. Therefore, it is a lightweight but strong candidate for
diatom classification tasks.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Computer Vision, Neural
Networks
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INTRODUCTION
Diatoms are one of the main groups of eukaryotic algae and one of the leading
phytoplankton. The most important feature of these small microorganisms is that they
have two covers made of asymmetric and silica. These covers are very robust and have a
porous structure. Therefore, they are very durable compared to other living skeletons.

There are 250 genera and approximately 100,000 species of diatoms distributed
worldwide (Round, Crawford & Mann, 1990). Diatoms can be found in seas, freshwater,
soil, and humid areas. The vast majority of diatoms live deep in water. However, some of
them can live on the surface of the water. It is essential for oceans that diatom populations
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are much larger than other living groups because these creatures work as the primary
producers of the oceans.

In recent years, the number of research on diatoms has increased by revealing the
relationships between diatoms and environmental factors (Truchy et al., 2022; Antonija
et al., 2023). In particular, the changes in diatom diversity are used for different research
purposes, such as climate change and water quality assessment. To this end, the
classification of diatoms has become very important. Also, the amount and variety of
diatoms in a region can be used to estimate the environmental background of water
sources in that region (Archibald, 1972; Kong, 2022).

Diatoms are the only organisms with cell walls composed of transparent, opaline silica.
The cell walls of diatoms are decorated with intricate and striking patterns of silica. Despite
their geometrically similar appearances, most diatom species are distinguished by these
patterns. Due to the wide variety of diatoms, manual classification of them is a challenging
as well as a time-consuming task. For this reason, automated approaches mostly based on
image processing and machine learning methods have emerged. The first annotated
dataset for the automatic classification of diatoms was proposed in Du Buf et al. (1999). In
that study, classification was done using an unsupervised model, Automatic Diatom
Identification and Classification (ADIAC). For classifying diatoms, the most appropriate
diatom resemblance was determined using the graphical valve definitions of the diatoms.
In Bayer & Du Buf (2002), geometrical, textural, morphological, and frequency descriptors
were obtained from diatom images and classified with decision trees. In Luo et al. (2010),
only round diatoms were considered, and the classification was carried out with the help of
artificial neural networks using texture features containing the spectrum information. In
Dimitrovski et al. (2012), a hierarchical multi-label classification model was proposed to
classify diatoms. In Kloster, Kauer & Beszteri (2014), diatoms were classified by extracting
the shape attributes with elliptic Fourier transform and comparing those attributes to those
of the diatom templates. In Bueno et al. (2017), local binary pattern (Ahonen, Hadid &
Pietikäinen, 2006) and log-Gabor (Fischer et al., 2007) features, as well as some
morphological and statistical features, were used with a bagging decision tree to classify
diatoms. In Sánchez, Cristóbal & Bueno (2019), proposed to characterize the diatom life
cycle by the contour shape and the texture features that change during the algae life cycle
Gabor filters were used to describe the inner ornamentation and Elliptical Fourier
Descriptors were used to describe the diatom contour while phasing congruency. Then,
they used several supervised and unsupervised learning techniques to classify diatoms.

In recent years, for the classification of diatoms, deep learning-based methods have
emerged, as well. In Pedraza et al. (2017), deep neural networks were used for diatom
classification rather than traditional feature engineering approaches. Libreros et al. (2019)
detected diatoms based on the combination of Scale and Curvature Invariant Ridge
Detector followed by a post-processing method and the nested convolutional neural
network (CNN) to classify diatom genus. Kloster et al. (2020) proposed a CNN-based
method for taxonomic classification of microalgal groups of diatoms. They used
microscopic slides of diatoms and applied some techniques to obtain a high-quality image,
then a focus stacking technique to obtain the focus-enhanced image. Slide stitching
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combines these highly enhanced image regions into gigapixel-sized virtual slides. Then,
they annotated the virtual slides and classified them with CNNs. Chaushevska et al. (2020)
applied transfer learning using a pre-trained Inceptionv3 model and extracted features to
train a tree-ensemble classifier. They used ensembles of predictive clustering trees for a
hierarchical multi-label diatom classification. In Pu et al. (2023), to identify diatoms,
collected diatom images and employed deep learning techniques, utilizing the ResNet50,
ResNet152, MobileNetV2, and VGG16 networks. Additionally, their method, which
incorporates model prediction and cosine similarity, enhances accuracy in low-probability
predictions.

Though existing CNN models provide satisfactory performance in classifying diatom
images, their computational load is significantly high due to the complexity of network
architectures. Therefore, in our work, DiatomNet, a lightweight but strong CNN model, is
proposed for automated diatom image classification. The depth and number of learnable
parameters of DiatomNet are significantly small compared to well-known CNN models
such as AlexNet, GoogleNet, Inceptionv3, ResNet18, VGG16, and Xception. To validate
the efficiency of DiatomNet, an extensive set of experimental work was conducted using a
recently introduced dataset consisting of 3,027 diatom images and 68 diatom species.
Several success metrics were utilized during the experiments, including accuracy,
precision, recall, F-measure, number of learnable parameters, training time, and prediction
time. The results of the experimental work verify that DiatomNet, in most cases,
outperforms the other CNN models and their customized versions obtained with transfer
learning on the pre-trained versions of these models.

The rest of this article is organized as follows. In “Material and Methods”, the diatom
image dataset is described, convolutional neural networks and transfer learning are briefly
explained, and DiatomNet is introduced. In “Experimental Work”, the experimental work
is described, the results, discussions and, a comparison with the literature are given.
Finally, some concluding remarks and future work are given in “Conclusions”.

MATERIALS AND METHODS
In this section, the diatom image dataset, which is used to train and evaluate the proposed
model, is first described. Then, the architecture of typical CNNs and the transfer learning
approach are briefly explained. Finally, DiatomNet is introduced, the proposed lightweight
CNN architecture for diatom classification.

Dataset
A recently introduced diatom image dataset is used to evaluate the proposed model. The
dataset consists of 3,027 images of a total of 68 diatom species commonly found in the
rivers of Turkiye (Gunduz, Solak & Gunal, 2022). The spatial resolution of the images in
the dataset is 2,112 × 1,584 pixels. The boundaries of all diatoms in each image are
annotated at the pixel level and several diatom experts identify the species of the diatoms.
Sample diatom images from the dataset as well as their annotations are shown in Fig. 1.
The distribution of the diatom species in the dataset is summarized in Table 1.
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Figure 1 (A and B) Sample diatom images from the dataset and (C and D) their annotations.
Full-size DOI: 10.7717/peerj-cs.1970/fig-1

Table 1 Distribution of the diatom species in the dataset.

No. Diatom species #Diatoms No. Diatom species #Diatoms

1 Achnanthidium biasolettianum 60 35 Halamphora veneta 40

2 Achnanthidium minutissimum 13 36 Hantzschiana abundans 10

3 Adlafia minuscula 26 37 Humidophila contenta 53

4 Amphora inariensis 6 38 Humidophila perpusilla 35

5 Amphora pediculus 22 39 Luticola nivalis 7

6 Caloneis lancettula 10 40 Meridion circulare 65

7 Cocconeis pseudolineata 49 41 Navicula capitatoradiata 15

8 Cymbella cantonatii 54 42 Navicula cryptocephala 24

9 Cymbella excisa 59 43 Navicula cryptotenella 272

10 Cymbella excisa var. procera 6 44 Navicula cryptotenelloides 77

11 Cymbella excisa var. subcapitata 44 45 Navicula gregaria 22

12 Cymbopleura amphicephala 6 46 Navicula lanceolata 9

13 Denticula kuetzingii 14 47 Navicula moskalii 19

14 Diatoma mesodon 53 48 Navicula novaesiberica 9

15 Diatoma moniliformis 56 49 Navicula reichardtiana 165

16 Didymosphenia geminata 6 50 Navicula tripunctata 22

17 Diploneis fontanella 8 51 Navicula trivialis 34

18 Encyonema silesiacum 182 52 Navicula upsaliensis 45

19 Encyonema ventricosum 61 53 Neidiomorpha binodiformis 6

20 Epithemia argus 17 54 Nitzschia archibaldii 19
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All diatoms in the dataset are extracted using their annotations and then normalized
horizontally. Sample diatom images obtained after the preprocessing step are shown in
Fig. 2. The number of images for each diatom class in the dataset is listed in Table 1.

The dataset is further expanded by applying several augmentation techniques, including
vertical flip, horizontal flip, and vertical-horizontal flip. In this way, the augmented dataset,
which is four times larger than the original one, is obtained. Since the sizes of the images in
the dataset vary, each image is also resized to 432 × 128 pixels, corresponding to the
average width by the average height of all images in the dataset. An example of the resized
diatom images and their augmented versions are shown in Fig. 3.

The original and augmented datasets are split into three parts: 70% training, 15%
validation, and 15% test per class. The images are randomly selected with stratified
sampling to ensure the representation of every class in each split. The distributions of the
images on each part of the datasets are listed in Table 2.

Convolutional neural networks
A CNN is basically the regularized version of a multilayer perceptron. A typical CNN
mainly consists of an input layer, several convolutional and pooling layers, and a fully
connected layer. The input layer receives the input. The convolutional and pooling layers
perform the feature learning task, and the classification is realized in the fully connected
layer. In CNNs, various pooling methods, ReLU activation functions, and soft-max
activation functions can be used to obtain different architectures. An optimization
algorithm in the training phase learns unknown parameters of a CNN. The performance of
a CNN depends on the size and balance of the training dataset as well as the computational
resources on which the CNN is trained.

Table 1 (continued)

No. Diatom species #Diatoms No. Diatom species #Diatoms

21 Epithemia goeppertiana 7 55 Nitzschia hantzschiana 30

22 Fragilaria recapitellata 184 56 Nitzschia linearis 36

23 Frustulia vulgaris 12 57 Nitzschia palea 6

24 Gomphonema calcifugum 39 58 Nitzschia recta 7

25 Gomphonema drutelingense 15 59 Pantocsekiella ocellata 27

26 Gomphonema exilissimum 8 60 Pinnularia brebissonii 36

27 Gomphonema micropus 16 61 Planothidium frequentissimum 26

28 Gomphonema minutum 15 62 Planothidium lanceolatum 132

29 Gomphonema olivaceum 386 63 Rhoicosphenia abbreviata 77

30 Gomphonema pumilum 11 64 Sellaphora radiosa 9

31 Gomphonema pumilum var. rigidum 33 65 Sellaphora saugerresii 6

32 Gomphonema supertergestinum 14 66 Stauroneis blazenciciae 7

33 Gomphonema tergestinum 85 67 Surella minuta 6

34 Halamphora paraveneta 33 68 Surirella brebissonii var. kuetzingii 64
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CNNs offer several advantages over other classification methods. One major advantage
of CNNs is that they automatically extract features from images without needing pre-
extraction. These features are then optimally adjusted to produce the desired result.
Additionally, CNNs are robust to noise and can recognize patterns in distorted images.
Transfer learning is also supported by CNNs, which means they can be trained on one task
and used for another with little or no additional training. Another key benefit of CNNs is
that they can learn to recognize complex image patterns by analyzing large datasets to
achieve significantly high accuracy rates.

Figure 2 Sample images for each diatom species. The images are ordered from left to right and top to
bottom according to their class numbers from 1 to 68. Full-size DOI: 10.7717/peerj-cs.1970/fig-2
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However, it’s important to note that CNNs also have some limitations. Due to their
complex architecture and numerous layers and parameters require a significant amount of
memory and processing power to train and run. This makes them computationally
expensive, which may not be feasible for all applications. Additionally, to achieve high
accuracy rates, CNNs require large datasets with many examples of the patterns they are
being trained to recognize. If the dataset is too small, the CNNmay overfit the training data
and perform poorly on new, unseen data.

In this work, in addition to the proposed CNN model, six well-known CNN models,
including AlexNet (Krizhevsky, Sutskever & Hinton, 2012), VGG16 (Simonyan &
Zisserman, 2015), GoogleNet (Szegedy et al., 2015), ResNet18 (He et al., 2016), Inception
(Szegedy et al., 2016), and Xception (Chollet, 2016) are also used for comparison purposes.
AlexNet consists of eight layers. Five of them are convolutional layers and the others are
fully connected. AlexNet has been trained with 1,000 class labels available in the ImageNet
dataset (Krizhevsky, Sutskever & Hinton, 2012). The main feature of a VGG network is that
the depth of the network is increased using a small filter size of 3 × 3 (Simonyan &
Zisserman, 2015). VGG16 consists of 16 convolutional layers. The input image size of VGG
is 224 × 224 and the fully connected layer is designed to classify 1,000 classes as described
in Simonyan & Zisserman (2015). GoogleNet is the architecture used in the ILSVRC 2014
competition. This network consists of 22 layers and uses average pooling before the
classification. GoogleNet also uses a linear layer before the softmax layer to easily adapt the
network to other label sets (Szegedy et al., 2015). ResNet is the winner of the 2015 ILSVRC.

Figure 3 (A) A resized diatom image and its augmented versions with (B) vertical flip, (C) horizontal
flip, and (D) vertical-horizontal flip. Full-size DOI: 10.7717/peerj-cs.1970/fig-3

Table 2 The number of images in the original and augmented datasets.

Original Augmented

Train 2,115 8,479

Validation 459 1,814

Test 453 1,815
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This network presents a residual learning framework, and the layers are reformulated as
residual functions. The ResNet18 architecture contains 18 layers. Inceptionv3 has 48
layers, uses label smoothing, and factorizes 7 × 7 convolutions and an auxiliary classifier
(Szegedy et al., 2016). Xception architecture, inspired by Inception, uses depth-wise
separable convolutions instead of inception modules (Chollet, 2016). This model might
offer better performance than Inceptionv3, especially with large datasets.

Transfer learning
As the previously explained CNNmodels can be trained from the scratch for a given image
classification task, their pre-trained versions on a significantly large image dataset, for
example ImageNet (Deng et al., 2009), can be directly used, as well. However, pre-trained
models may not work well for certain classes of images that are relatively rare in the
training dataset. In such cases, a pre-trained model can be customized with the help of
transfer learning to be able to classify images belonging to new classes, as previously
described in Pan & Yang (2010), Kaplan Berkaya, Sora Gunal & Gunal (2021), Messaoudi
et al. (2023). Thus, well-learned feature representations of a pre-trained network can be
utilized to classify new images with a small amount of training data. To perform this
process, classification and fully-connected layers at the end of the pre-trained network
are substituted, aligning with the number of classes for the new classification task.
Subsequently, the adapted pre-trained network undergoes re-training with the dataset
pertaining to the recently introduced classes. Consequently, as opposed to the construction
of a new network from scratch, this method improves both classification performance and
training time, demanding a notably small training dataset. Due to these advantages of the
transfer learning approach, in this work, the performances of the pre-trained CNNmodels
with transfer learning are also analyzed and compared with our proposed model.

Proposed model: DiatomNet
In recent years, the successful results of deep learning in image classification have led
researchers to strive for better accuracy. This therefore gave rise to deep architectures with
millions of parameters (Krizhevsky, Sutskever & Hinton, 2012; Simonyan & Zisserman,
2015). However, simply increasing depth does not always lead to improved accuracy (He &
Jian, 2015).

The success of networks may not increase with deeper architectures. Although deeper
networks can capture complex features, they also introduce challenges such as vanishing
gradients, overfitting, and optimization challenges.

As networks become deeper, gradients in backpropagation may become very small, and
in this case, learning may slow down or stop. This is the vanishing gradient problem, which
hinders the training of deep networks. Deeper networks with more parameters are
susceptible to overfitting, especially with smaller training datasets. While overfitting allows
the model to learn from training data, including noise and outliers, it causes it to have
difficulty generalizing to unseen data.

Deeper networks are harder to optimize. Effective optimization techniques and
appropriate weight initialization are crucial to ensure that the model converges to a good
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solution. Deeper networks require more computational resources for both training and
inference. It can be a limitation in situations where limited computing power is available,
such as embedded systems or mobile devices.

Beyond a certain depth, accuracy may not increase as computational costs continue to
increase. This concept, known as the law of diminishing returns, suggests that adding more
layers provides diminishing benefits in terms of performance gains.

In this study, we propose DiatomNet, a new lightweight CNN architecture for the
diatom classification task, to overcome the above-mentioned problems. The layers and
parameters of DiatomNet are depicted in Table 3 and Fig. 4. DiatomNet is a variant of the
Inception network (Szegedy et al., 2015). The area occupied by the object in each image
may be different. Therefore, the choice of filter size is very important in the convolutional
layer. With a large filter size, global information can be gathered. On the other hand, a
smaller filter size can get the local information. Therefore, in the Inception networks, the
convolution is performed using different filter sizes in each inception module. In the
literature, there are different versions of the Inception network (Szegedy et al., 2015, 2016,
2017). While a popular inception-based network, GoogleNet, has nine inception modules,
DiatomNet has only three inception modules. While designing DiatomNet, it was
experimentally verified that only three inception modules would be enough and provide
satisfactory performance with less complexity. Before the inception modules, 7 × 7
convolutions and 3 × 3 max-pooling are used. After cross-channel normalization, 3 × 3
convolutions and 3 × 3 max-pooling take their place. Then, the first inception module
comes forward. In this work, each inception layer is used with dimension reduction.
Otherwise, convolutions would be computationally expensive. In each inception module,
1 × 1 convolution is first applied before 3 × 3 and 5 × 5 convolutions to reduce the
computations. However, 3 × 3 max-pooling is first applied before 1 × 1 convolution, as

Table 3 Parameters of the DiatomNet architecture.

Type Patch size/stride Output size Depth #1 × 1 #3 × 3 reduce #3 × 3 #5 × 5 reduce #5 × 5 Pool Proj

Convolutional 7 × 7/2 216 × 64 × 64 1 – – – – – –

Max pool 3 × 3/2 108 × 32 × 64 0 – – – – – –

Convolutional 3 × 3/1 108 × 32 × 192 2 – 64 – – – –

Max pool 3 × 3/2 54 × 16 × 192 0 – – – – – –

Inception – 54 × 16 × 256 2 64 96 128 16 32 32

Max pool 3 × 3/2 27 × 8 × 256 0 – – – – – –

Inception – 27 × 8 × 512 2 192 96 208 16 48 64

Max pool 3 × 3/2 13 × 4 × 512 0 – – – – – –

Inception – 6 × 2 × 1,024 2 384 192 384 48 128 128

Avg pool 6 × 2/1 1 × 1 × 1,024 0 – – – – – –

Dropout (40%) – 1 × 1 × 1,024 0 – – – – – –

Linear – 1 × 1 × 68 1 – – – – – –

Softmax – 1 × 1 × 68 0 – – – – – –
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Figure 4 Overview of the layers of the DiatomNet architecture.
Full-size DOI: 10.7717/peerj-cs.1970/fig-4
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illustrated in Fig. 4. Then, the filter concatenation part comes, and an inception module is
finalized.

A 3 × 3 max-pooling is used after the first and second inception modules, a 6 × 2 average
pooling is used after the third inception module. This design provides more accurate
results than using max-pooling all the time. After the third inception model, a 40%
dropout layer comes. Next, a fully connected layer takes its place. The network output is
then calculated using the softmax activation function. The output size is 1 × 1 × 68 since we
have 68 species of diatoms in our dataset. To train the network, rectified linear activation
function (ReLU) is used for the fully-connected and convolutional layers. The depths and
input image sizes of DiatomNet and the other CNNs are shown in Table 4 comparatively.

EXPERIMENTAL WORK
In our work, the experiments were conducted in two stages. In the first stage, DiatomNet
and the other CNN models were trained from the scratch and tested on both the original
and augmented datasets as previously depicted in Table 2. The training and validation
parts of the datasets were used to train the models, whereas the test parts were employed to
evaluate the performances of the models on unseen data. The Glorot (also known as
Xavier) (Glorot & Bengio, 2010) initializer was used to define the initial parameters of the
models so that each weight was initialized with a small Gaussian value with zero mean and
variance based on the fan-in and fan-out of the weight.

In the second stage, the transfer learning approach was used with the pre-trained
versions of the existing CNN models. In each stage, the performances of the models were
evaluated and compared in terms of several success metrics, including accuracy, precision,
recall, F-measure, number of learnable parameters, training time, and prediction time. Due
to the unbalanced structure of the dataset, weighted averages of accuracy, precision, recall,
and F-measure were considered for comparisons. The experimental setup of the diatom
classification system is illustrated in Fig. 5.

Input images were resized according to the input layer of each CNN model. Output
layers of the CNN models were adapted to the number of classes (68) of the diatom image
dataset. For all models, the mini-batch size was chosen as 16. Stochastic Gradient Descent
(SGD) was used as the learning function with a learning rate of 0.0001 and a momentum of
0.9. In this learning function, the momentum helps accelerate the gradient vectors in the

Table 4 Comparison of DiatomNet with the other CNN models.

Model Depth Input image size

AlexNet 8 227 × 227

DiatomNet 10 432 × 128

GoogleNet 22 224 × 224

Inceptionv3 48 299 × 299

ResNet18 18 224 × 224

VGG16 16 224 × 224

Xception 71 299 × 299
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right directions to enable faster convergence. The models were then trained for 300 epochs
from scratch, whereas 20 epochs were used for transfer learning. In all cases, early stopping
was used to avoid overfitting. The experiments were conducted on a computer with a
3.79 GHz Intel Core i7 CPU, 32 GB of RAM, and a GeForce RTX 2060 Super GPU with 8
GB of RAM. All models were implemented using MATLAB 2020b Deep Learning
Toolbox.

The results of each stage are elaborated on and discussed in the following subsections.
Also, a comparison with the literature is provided.

TestTrain Validation

Trained Model

Classification

Dataset 

Partitioned

Train From Scratch
AlexNet

DiatomNet

GoogleNet

Inceptionv3

ResNet18

VGG16

Xception

Transfer Learning
AlexNet

GoogleNet

Inceptionv3

ResNet18

VGG16

Xception

Original 

Dataset

Augmented 

Dataset

Figure 5 The experimental setup of the diatom classification system.
Full-size DOI: 10.7717/peerj-cs.1970/fig-5
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Results: DiatomNet vs. other CNNs
In this stage of the experimental work, DiatomNet and the other CNNmodels were trained
from the scratch using the training and validation parts of the original dataset. The loss and
accuracy plots for the training phase of the DiatomNet model are given in Figs. 6A and 6B,
respectively. Then, the trained models were evaluated on the test part of the original
dataset to find their performances on unseen data. As a result of this evaluation, the
accuracy, recall, precision, and F-measure values of all models are comparatively shown in
Fig. 7. As shown in this figure, DiatomNet, AlexNet, and GoogleNet achieved quite similar
performances in terms of all metrics and surpassed the other models. In this experiment,
the maximum accuracy, recall, precision, and F-measure values were all approximately
0.93. In contrast, the minimum values for the same metrics were achieved by the Xception
model as 0.89, 0.89, 0.86, and 0.87, respectively.

Later, all CNNmodels were trained from scratch using the training and validation parts
of the augmented dataset, which is four times largest than the original dataset as
mentioned earlier. For this experiment, the loss and accuracy plots for the DiatomNet
model's training phase are given in Figs. 8A and 8B, respectively. It is clear from these
figures that all models were trained without overfitting. Then, the trained models were
evaluated on the test part of the augmented dataset to reveal their performances on unseen
data. As a result of this evaluation, the accuracy, recall, precision, and F-measure values of
all models are comparatively shown in Fig. 9. Thanks to the augmentation, all models’
performances were much better compared to the previous experiment with the original
dataset. This time, DiatomNet offered the best performance in terms of all success metrics,
while the performances of the other models were close to but slightly lower than

Figure 6 (A) Loss and (B) accuracy plots for the training phases of the DiatomNet model on the original dataset.
Full-size DOI: 10.7717/peerj-cs.1970/fig-6
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DiatomNet. In this experiment, the maximum accuracy, recall, precision, and F-measure
values were approximately 0.99, whereas the minimum values for the same metrics were
around 0.97.

The performance of DiatomNet was also compared to the other models considering the
number of learnable parameters, training time, and prediction time. The results of this
comparison are summarized in Table 5. As shown in the table, the number of learnable

AlexNet DiatomNet GoogleNet Inceptionv3 ResNet18 VGG16 Xception

Accuracy 0.9360 0.9316 0.9382 0.9183 0.9227 0.9183 0.8918

Recall 0.9360 0.9316 0.9382 0.9183 0.9227 0.9183 0.8918

Precision 0.9279 0.9231 0.9353 0.9060 0.9118 0.9123 0.8631

F-Measure 0.9284 0.9235 0.9323 0.9062 0.9138 0.9087 0.8726
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Figure 7 Performances of the CNN models on the original test dataset.
Full-size DOI: 10.7717/peerj-cs.1970/fig-7

Figure 8 (A) Loss and (B) accuracy plots for the training phases of the CNN models on the augmented dataset.
Full-size DOI: 10.7717/peerj-cs.1970/fig-8
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parameters of DiatomNet (1.85 M) is far (up to 61 times) less than those of the other
models. Thanks to this advantage and its architecture, DiatomNet achieved the shortest
training time/epoch (54 s) and prediction time/image (0.32 ms) for the augmented dataset.
The training time/epoch and prediction time/image of DiatomNet were up to 7 and 11
times shorter than the other models.

Feature map analysis of DiatomNet
In this section, feature maps (class activation maps) were obtained to visualize which
regions of diatom images contribute the most to the final classification decision (Zeiler &
Fergus, 2014). This helps in understanding which parts of the images are crucial for the
network to make a decision and provides insights into what features are indicative.

The feature maps associated with the early, intermediate, and deep layers of DiatomNet
were derived using the sample images of each class presented in Fig. 2. While obtaining the
feature maps, the channels exhibiting the maximum activations were considered. Through

AlexNet DiatomNet GoogleNet Inceptionv3 ResNet18 VGG16 Xception

Accuracy 0.9802 0.9895 0.9851 0.9774 0.9835 0.9758 0.9703

Recall 0.9802 0.9895 0.9851 0.9774 0.9835 0.9758 0.9703

Precision 0.9818 0.9898 0.9853 0.9788 0.9851 0.9769 0.9711

F-measure 0.9792 0.9892 0.9847 0.9771 0.9828 0.9747 0.9688
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Figure 9 Performances of the CNN models on the augmented test dataset.
Full-size DOI: 10.7717/peerj-cs.1970/fig-9

Table 5 Complexities of the CNN models.

Model Learnable parameters (millions) Prediction time per image (ms) Training time per epoch (s)

Original dataset Augmented
dataset

Original
dataset

Augmented
dataset

AlexNet 44.56 0.3331 0.3385 19 58

DiatomNet 1.85 0.3213 0.3223 15 54

GoogleNet 6.04 0.5471 0.5507 27 96

Inceptionv3 21.91 0.7072 0.6860 94 351

ResNet18 11.21 0.4153 0.4190 34 128

VGG16 113.57 2.2139 2.3018 160 584

Xception 20.94 1.3322 1.1116 101 382
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a meticulous comparison of the activation regions with the corresponding regions in the
original images, it was revealed which features the network had learned. Figure 10 shows
the feature maps associated with the early layer of the DiatomNet network. These maps
highlight basic and local features such as edges, color contrasts, and simple textures that
are indicative of the presence of certain patterns in the diatom images.

The feature maps derived from the intermediate layer are shown in Fig. 11. The maps
here capture mid-level features and patterns. Neurons in this layer respond to
combinations of low-level features and represent parts of more intricate textures. Hence,

Figure 10 The feature maps derived from the early layer of DiatomNet.
Full-size DOI: 10.7717/peerj-cs.1970/fig-10
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these maps help us identify specific structures within the diatom images that influence the
classification of the network.

Figure 12 illustrates the feature maps associated with the deep layer of DiatomNet.
These maps highlight high-level, abstract features of the diatom images that are crucial for
the final classification. These features, hence, represent distinctive patterns associated with
specific diatom classes.

Finally, heat maps corresponding to the feature maps of the deep layer are presented in
Fig. 13. This visual representation serves a crucial role in enhancing our understanding of

Figure 11 The feature maps derived from the intermediate layer of DiatomNet.
Full-size DOI: 10.7717/peerj-cs.1970/fig-11
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the pivotal regions within diatom images that play a significant role in classification. The
inclusion of these heat maps enables the identification and localization of specific features
and patterns within diatom images that exert the most influence on DiatomNet’s output.
Through the insights gained from these maps, one can readily discern the informative and
relevant regions critical for discriminating between diatom classes, even in instances where
the classes exhibit subtle similarities. The utilization of heat maps, therefore, proves
instrumental in unraveling the discriminative power of the network, shedding light on the
nuanced distinctions that contribute to its classification decisions.

Figure 12 The feature maps derived from the deep layer of DiatomNet.
Full-size DOI: 10.7717/peerj-cs.1970/fig-12
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Results: transfer learning
In the next stage of the experimental work, the pre-trained versions of the CNN models
were re-trained and customized with the transfer learning approach using the training and
validation parts of the original dataset. Then, the customized models were evaluated on the
test part of the original dataset to assess their performances on unseen data. As a result, all
models’ accuracy, recall, precision, and F-measure values are shown in Fig. 14. As shown in
this figure, VGG16 and Inceptionv3 achieved quite similar performances in terms of all

Figure 13 The heat maps corresponding to the feature maps derived from the deep layer of
DiatomNet. Full-size DOI: 10.7717/peerj-cs.1970/fig-13
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metrics and slightly surpassed the other models. For this experiment, the maximum
accuracy, recall, precision, and F-measure values were around 0.95, whereas the minimum
values for the same metrics were achieved with the Xception model at approximately 0.93.

Later, the pre-trained versions of the CNN models were re-trained with the transfer
learning approach using the training and validation parts of the augmented dataset, instead
of the original one. The customized models were then evaluated on the test part of the
augmented dataset to assess their performances on unseen data. As a result, all models’
accuracy, recall, precision, and F-measure values are shown in Fig. 15. Thanks to the
augmentation, all models' performances were much better than the previous experiment
with the original dataset. This time, Inceptionv3 got the best performance in all success

AlexNet GoogleNet Inceptionv3 ResNet18 VGG16 Xception

Accuracy 0.9492 0.9426 0.9536 0.9404 0.9559 0.9360

Recall 0.9492 0.9426 0.9536 0.9404 0.9559 0.9360

Precision 0.9351 0.9317 0.9485 0.9309 0.9415 0.9269

F-measure 0.9395 0.9350 0.9492 0.9320 0.9471 0.9287

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Accuracy Recall Precision F-measure

Figure 14 Performances of the CNN models with transfer learning on the original test dataset.
Full-size DOI: 10.7717/peerj-cs.1970/fig-14

AlexNet GoogleNet Inceptionv3 ResNet18 VGG16 Xception

Accuracy 0.9818 0.9818 0.9901 0.9807 0.9884 0.9873

Recall 0.9818 0.9818 0.9901 0.9807 0.9884 0.9873

Precision 0.9836 0.9829 0.9911 0.9827 0.9887 0.9878

F-Measure 0.9808 0.9816 0.9902 0.9808 0.9882 0.9868
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Figure 15 Performances of the CNN models with transfer learning on the augmented test dataset.
Full-size DOI: 10.7717/peerj-cs.1970/fig-15
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metrics, whereas the other models’ performances were similar and slightly lower than
Inceptionv3. In this experiment, the maximum accuracy, recall, precision, and F-measure
values were approximately 0.99, whereas the minimum values for the same metrics were
around 0.98.

The performances of the models with transfer learning were also compared based on the
number of learnable parameters, training time, and prediction time. The results of this
comparison are summarized in Table 6. As shown in the table, GoogleNet has the smallest
number of learnable parameters among all. AlexNet achieved the shortest training time/
epoch (57 s) and ResNet18 achieved the shortest prediction time/image (0.24 ms) for the
augmented dataset.

Considering the abovementioned results, DiatomNet, which is trained from scratch,
provided a classification performance comparable to or even better than most of the
customized models with transfer learning. While providing such a performance,
DiatomNet significantly surpassed the other models regarding the number of learnable
parameters, training time, and prediction time.

Comparison with the literature
Comparison of the proposed work with the literature is summarized in Table 7. As can be
seen from this table, the number of species in the studies varies between 6 and 80. The
number of images used varies between 78 and 160,000. While some studies measure the
classification performance of diatoms with only one morphology (Luo et al., 2010), others
have classified diatoms with a wide variety of morphologies (Bayer & Du Buf, 2002;
Dimitrovski et al., 2012; Bueno et al., 2017; Pedraza et al., 2017; Sánchez, Cristóbal &
Bueno, 2019; Libreros et al., 2019; Chaushevska et al., 2020). Earlier studies were based on
the classification of various feature extraction methods with different classifiers (Bayer &
Du Buf, 2002; Luo et al., 2010;Dimitrovski et al., 2012; Bueno et al., 2017; Sánchez, Cristóbal
& Bueno, 2019), state art of methods based on CNNs, which used well-known pre-trained
networks (Pedraza et al., 2017; Libreros et al., 2019; Chaushevska et al., 2020). In some
studies, only the original dataset was used (Bayer & Du Buf, 2002; Luo et al., 2010;
Dimitrovski et al., 2012; Sánchez, Cristóbal & Bueno, 2019; Libreros et al., 2019;
Chaushevska et al., 2020), while both the original and augmented datasets were used

Table 6 Complexities of the CNN models with transfer learning.

Model Learnable parameters (millions) Prediction time per image (ms) Training time per epoch (s)

Original
dataset

Augmented
dataset

Original dataset Augmented Dataset

AlexNet 44.56 0.2894 0.2451 21 57

GoogleNet 6.04 0.4335 0.3796 27 90

Inceptionv3 21.91 0.9965 0.9386 115 432

ResNet18 11.21 0.3067 0.2417 22 80

VGG16 113.57 1.6758 1.6971 109 541

Xception 20.94 2.2419 1.8831 142 815
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together in others (Bueno et al., 2017; Pedraza et al., 2017). Most of the previous
studies do not use a standard success metric, instead only a few metrics such as precision
(Bayer & Du Buf, 2002; Luo et al., 2010; Bueno et al., 2017; Pedraza et al., 2017; Sánchez,
Cristóbal & Bueno, 2019), whereas others use standard metrics, such as precision, recall, F-
measure (Libreros et al., 2019; Chaushevska et al., 2020).

Table 7 Comparison of the proposed work with the literature.

Reference # Species # Images Features Classifier Accuracy Precision Recall F-measure

Bayer & Du Buf
(2002)

37 781 Geometrical, textural,
morphological, and frequency

Bagging Tree 0.9690 – – –

Luo et al. (2010) 6 78 Texture BP neural network 0.9600 – – –

Dimitrovski et al.
(2012)

38 837 Morphological, Texture Random forest 0.9797 – – –

48 1,019 0.9715 – – –

55 1,098 0.9617 – – –

Bueno et al.
(2017)

80 24,000 Morphological, statistical, textural,
space-frequency

Bagging tree 0.9810 – – –

Pedraza et al.
(2017)

80 24,000 AlexNet Softmax 0.9562 – – –

160,000 0.9951 – – –

Sánchez,
Cristóbal &
Bueno (2019)

8 703 Elliptical fourier descriptors, phase
congruency descriptors, gabor
filter

Supervised:
k-NN, SVM,
Unsupervised:
K-means,
hierarchical
agglomerative
clustering,
BIRCH

0.9900 – – –

Libreros et al.
(2019)

− 365 GoogleNet Softmax 0.9200 0.8400 0.9800 0.9000

ResNet 0.8900 0.6000 0.6700 0.6300

AlexNet 0.9900 0.8400 0.9500 0.8900

Chaushevska
et al. (2020)

55 1,100 Inceptionv3 Bagging
random forest
SVM
Fine-tuned CNN

0.8027
0.8636
0.9109
0.9872

– – –

Proposed work 68 12,108 AlexNet Softmax 0.9802 0.9818 0.9802 0.9792

DiatomNet 0.9895 0.9898 0.9895 0.9892

GoogleNet 0.9851 0.9853 0.9851 0.9847

Inceptionv3 0.9774 0.9788 0.9774 0.9771

ResNet18 0.9835 0.9851 0.9835 0.9828

VGG16 0.9758 0.9769 0.9758 0.9747

Xception 0.9703 0.9711 0.9703 0.9688

TL with AlexNet 0.9818 0.9836 0.9818 0.9808

TL with GoogleNet 0.9818 0.9829 0.9818 0.9816

TL with Inceptionv3 0.9901 0.9911 0.9901 0.9902

TL with ResNet18 0.9807 0.9827 0.9807 0.9808

TL with VGG16 0.9884 0.9887 0.9884 0.9882

TL with Xception 0.9873 0.9878 0.9873 0.9868
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In our study, we use 12,108 images with various morphologies. The original data set was
used directly as well as augmented. The effect of augmentation on classification tasks has
been well investigated. The dataset augmented with the original dataset was classified and
its effects were examined. Besides, it is the first time to compare the success of well-known
CNNs, trained from scratch, with pre-trained versions. While existing studies use well-
known models, in this study, a new model which is called DiatomNet is proposed and
compared with well-known CNNs in various aspects, such as precision, recall, F-measure,
training, and prediction times.

The most successful model so far is Pedraza et al. (2017) with AlexNet and an accuracy
of 0.9951. However, this model has 160,000 diatom samples. They reported an accuracy of
0.9562 with 24,000 samples with AlexNet. They used AlexNet with 44.56 million learning
parameters.

The DiatomNet proposed in our work offers an accuracy of 0.9895 with 12,108 samples
and has only 1.85 million parameters.

In previous studies, the authors did not mention training and prediction times. But our
study has shown that DiatomNet is also successful in terms of training and prediction
times. For AlexNet trained from scratch using the original and augmented dataset, the
training times for each epoch were 19 and 58 s, respectively. The prediction times of each
image were 0.3331 and 0.3385 milliseconds. For DiatomNet, the training time for each
epoch was 15 and 54 s, and the prediction time for each image was 0.3213 and 0.3223
milliseconds, respectively.

Our most successful model is the pre-trained Inceptionv3 model with an accuracy of
0.9901. If we can increase the number of samples in the dataset, we can achieve more
successful results with these models.

CONCLUSIONS
In our work, DiatomNet, a lightweight CNN model with 1.85 M learnable parameters and
a depth of 10, was proposed to classify diatom species with significantly high accuracy
while requiring low computing resources. The performance of DiatomNet was compared
with those of popular CNN models and their customized versions obtained with transfer
learning on the pre-trained versions of these models. A recently introduced diatom image
dataset was utilized to train and evaluate all models. The experiments were conducted with
both the original dataset and its augmented version. While comparing the performances,
various success metrics, including accuracy, precision, recall, F-measure, number of
learnable parameters, training time, and prediction time. The results of the experimental
work verified that DiatomNet outperforms not only the other CNN models but also their
customized versions (with just a few exceptions) in terms of all metrics. The augmentation
of the original dataset further improved the performance of all models, as expected.
Moreover, the utilization of feature maps and heat maps in our experiments enhanced the
interpretability of the features derived from different layers of DiatomNet by highlighting
the salient regions within diatom images that contribute most to the model's output. As a
result, DiatomNet has proven to be not only a lightweight but also a strong candidate for
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automated diatom classification tasks. In future work, DiatomNet would be tested on
different datasets and its architecture would be further improved.
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