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ABSTRACT
Recent years small object detection has seen remarkable advancement. However,
small objects are difficult to accurately detect in complex scenes due to their low
resolution. The downsampling operation inevitably leads to the loss of information
for small objects. In order to solve these issues, this article proposes a novel Multi-
branch Attention Network (MBAN) to improve the detection performance of small
objects. Firstly, an innovative Multi-branch Attention Module (MBAM) is proposed,
which consists of two parts, i.e. Multi-branch structure consisting of convolution and
maxpooling, and the parameter-free SimAM attention mechanism. By combining
these two parts, the number of network parameters is reduced, the information loss
of small objects is reduced, and the representation of small object features is
enhanced. Furthermore, to systematically solve the problem of small object
localization, a pre-processing method called Adaptive Clustering Relocation (ACR) is
proposed. To validate our network, we conducted extensive experiments on two
benchmark datasets, i.e. NWPU VHR-10 and PASCAL VOC. The findings from the
experiment demonstrates the significant performance gains of MBAN over most
existing algorithms, the mAP of MBAN achieved 96.55% and 84.96% on NWPU
VHR-10 and PASCAL VOC datasets, respectively, which proves that MBAN has
significant performance in small object detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Small object detection, Attention mechanism, Clustering, Multi-branch

INTRODUCTION
Object detection remains one of the most challenging topics, maintaining a large number
of computer vision tasks, for instance, automatic driving (Dai, 2019), face recognition
(Yu et al., 2022), defect detection (Jing et al., 2020), remote sensing image detection
(Xu &Wu, 2020). However, small object detection remains challenging because of limited
information and its sensitivity to background interference, which hinders its further
development in real-world scenarios.

At present, there are mainly two types of object detection algorithms based on deep
learning, namely two-stage algorithms R-CNN (Girshick et al., 2014), SPP-Net (He et al.,
2015), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), R-FCN (Dai et al.,
2016) and Mask R-CNN (He et al., 2017), one-stage algorithms YOLO (Redmon et al.,
2016), SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017) and EfficientDet (Tan, Pang & Le,
2020). The two-stage object detection algorithms first use a region proposed module to
offer all regions, and then select the most matched one as the object. Although these
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algorithms achieve better detection accuracy, they suffer from slow detection speed and
inadequate real-time performance. The one-stage algorithms use an end-to-end
convolutional neural network to detect objects. One-stage object detection algorithms not
only maintain high detection accuracy but also have the advantages of fast detection speed
and strong real-time performance. Therefore, we select a one-stage framework, i.e.
YOLOv5l (Cui et al., 2023), as a baseline in the study. However, YOLOv5l as a generalized
object detection network model does not show significant advantages in identifying small
objects. The dimensions of small objects are relatively small, while YOLOv5l has a large
downsampling factor, which can lead to information loss of small objects during the
downsampling process, making it difficult to learn the feature information of small objects
through deeper feature maps. Therefore, it is crucial to improve the ability to better
accommodate scenarios that involve small objects.

It is a natural thought to aggregate low-level and high-level features to enhance the
localization information of high-level features. Meanwhile, in order to decrease
transmission loss of low-level feature information, a “short-cut” has been added between
the lowest and highest levels, e.g. PANet (Liu et al., 2018). Moreover, downsampling entails
the loss of valuable information for small objects. This issue is particularly pronounced for
objects with dimensions smaller than 32� 32 pixels, as they can easily blend into the
background, thereby impeding small object detection (Yan et al., 2022).

With the development of technology, the demand for detecting small objects is
constantly increasing. In production, many places require the detection of small objects,
such as detecting defects in product components and detecting pollutants in the air. Due to
the low resolution of small objects, they may appear blurry and have unclear details in the
image, making it difficult to accurately recognize the features of small objects. Meanwhile,
small objects may be affected by the environment, which may reduce their visibility and
make them more difficult to detect.

To resolve the aforementioned problems, this article proposes an MBAN. Our method
mitigates the loss of small object information when the downsampling process by
incorporating a carefully designed MBAM. Additionally, it leverages the ACR to localize
the position of small objects, notably enhancing the accuracy of small object detection. We
performed a wide range of experiments on the NWPU VHR-10 and PASCAL VOC
datasets to verify the excellent performance of the MBAN compared to mainstream
algorithms such as SSD, EfficientNet-YOLOv3, YOLOv3, YOLOv4, GhostNet-YOLOv4,
and YOLOv5l.

The main contributions of this work can be summarized as follows:
(1) A novel MBAN is proposed for small object detection, where the core MBAM of

MBAN reduces the problem of small object information loss during downsampling, and
the network significantly improves the detection accuracy of small objects.

(2) The use of ACR method to accurately locate the position of small objects
significantly improves the accuracy of small object detection.

(3) The proposed MBAN conducted experiments on NWPU VHR-10 and PASCAL
VOC datasets. The experimental results indicate that the MBAN significantly improves
detection accuracy in small object detection without sacrificing detection speed.
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The subsequent sections of this article are structured as outlined below. “Related Work”
describes a review of the literature. “Proposed Method” outlines unique MBAN.
“Experiments and Discussion” showcases the experimental results and discussion.
“Qualitative Analysis” displays visualization results. Last, “Conclusion” summarizes in this
article.

RELATED WORK
Within this part, we review the related work on small object detection methods, attention
mechanism, and multi-branch attention methods.

Small object detection methods
Small object detection has always been a challenge and a focal point in computer vision.
Driven by deep learning, significant breakthroughs have been made in this area. Zhang
et al. (2021) argued that the problem of small objects and object aggregation leads to less
extractable information. Most studies mainly utilize large networks to enhance the
detection accuracy, which results in the problem of large model size and sluggish detection.
Therefore, a combination based on MobileNet v2 and depthwise separable convolution
was introduced to decrease the quantity of model size. Furthermore, the semantically and
scale inconsistent features are fused using an improved attentional feature fusion (AFFM)
module, which aims to enhance the model’s accuracy for small objects. Gong et al. (2021)
found that the detection of small objects is impacted by the top-down connections between
neighboring layers of the FPN, therefore, they proposed a fusion factor to control the
information passed from the deeper layers to the shallower layers, significant performance
improvement was achieved on small object detection datasets, for instance, TinyPerson
and TinyCityPersons. Yang, Huang &Wang (2022) believed that the way to facilitate small
object detection was to leverage high-resolution images or feature maps. Nevertheless, such
an approach entails computationally intensive processes. In response to this, they
introduced QueryDet, which quickens feature-pyramid based object detectors inference
speed through the use of a revolutionary query technique. Significant enhancement in
detection performance was observed on the baseline datasets COCO and VisDrone. Zhang
& Shen (2022) offered a multi-stage feature enhancement pyramid network to effectively
resolve the problem of small-scale objects blurring and large-scale objects changing
detected in remote sensing images. The network solves the issue of feature map fusion of
neighboring stages by using Feature Enhancement Module (FEM) and Content-Aware
Feature Up-Sampling (CAFUS).

Although these methods enhance the detection performance of small objects, persistent
challenges in the realm of small object detection necessitate further in-depth research.
Firstly, small objects have small dimensions, limited information, and extracting
discriminative features is difficult. Secondly, small objects have high requirements for
positioning accuracy, and downsampling can easily lead to information loss and prevent
accurate positioning of small objects. Thirdly, small objects are prone to interference from
background information, and the changes in light and the aggregation of small objects in
complex environments make it difficult to accurately detect them.
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Attention mechanism
Attention Mechanism in Deep Learning (Attention Mechanism (Chen et al., 2021b))
is a method that mimics the visual and cognitive system of humans, which enables
neural networks to closely concentrate on relevant parts when processing input data. The
neural networks learn automatically and selectively concentrate on the significant
information to promote the performance and generalization of the network by introducing
attention mechanism. Currently, common attention mechanisms include SE, CBAM,
ECA, etc.

Hu, Shen & Sun (2018) introduced the Squeeze-and-Excitation (SE) block adaptively
recalibrate channel feature responses. This block improves detection performance. Woo
et al. (2018) devised Convolutional Block Attention Module (CBAM) deduces the
attention map along the channel and spatial order before multiplying it by the input
feature map to enable adaptive feature refining. Wang et al. (2020) devised an Efficient
Channel Attention (ECA) module, this module preserves performance while avoiding
dimensionality reduction and efficiently capturing cross channel interaction information.

Although adding the above attention mechanisms to the algorithm can improve
detection performance, they all increase the quantity of algorithm parameters. Compared
with the aforementioned attention mechanisms, the SimAM attention mechanism (Yang
et al., 2021) does not require additional learning parameters, therefore, this article adopts
the SimAM parameter-free attention mechanism, which not only improves the detection
performance of the algorithm, but also does not increase the quantity of algorithm
parameters.

Multi-branch attention methods
Multi-branch attention method is an approach that utilizes multiple attention branches to
focus on different aspects of input, thereby capturing richer feature information and
improving network detection capabilities. Chen et al. (2019) designed a multi-branch
attentional neural network for separate detection of vehicles and license plates using
different convolutional layers, thereby eliminating mutual interference between each other.
By incorporating a task-specific anchor design strategy, as well as attention mechanisms
and feature-fusion strategies, the network improves the detection accuracy of targets. Chen
et al. (2021a) proposed a Multi-Branch Local Attention Network (MBLANet). It combines
the Convolutional Local Attention Module (CLAM) with the ResNet50 deep residual
network. Additionally, it parallelly integrates the Convolutional Channel Attention
Module (CCAM) and the Local Spatial Attention Module (LSAM) to form CLAM. This
combination facilitates better extraction of crucial feature information. To address the
challenges posed by densely arranged and arbitrarily oriented in remote sensing images.
Zhou, Wang & Chen (2023) introduced a Single-Stage Rotation Object Detector named
FTANet, which primarily employs Balanced Feature Pyramid (BFP) and Triple Branch
Attention (TBA) modules. BFP integrates information from different levels to mitigate the
impact of complex backgrounds on targets in remote sensing images. TBA enhances
classification accuracy and prediction of rotated anchors angles by decoupling the angle
parameter from five parameters and using the attention mechanism to highlight key
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foreground features. It enriches the semantic information of images and highlights key
features, resulting in higher detection accuracy.

Although the aforementioned multi-branch attention methods improve the
performance of detection of small objects, they also increase the number of network
parameters. Therefore, we propose a novel MBAN to enhance the detection capability of
small objects, which not only does not increase the number of the network parameters, but
also improves the performance of the network detection of small objects.

PROPOSED METHOD
Within this part, we first introduce MBAN. Subsequently, we elaborate on the core
component of MBAN: MBAM. Finally, we further introduce pre-processing method ACR
to methodically address the object location issue.

The multi-branch attention network
The overall structure of the presented MBAN comprises three components: backbone
feature extraction network (Backbone), feature pyramid reinforcement network (Neck),
and prediction network (Prediction). The Neck part employs MBAM for downsampling
operations. MBAM consists of Multi-branch structure and SimAM attention mechanism,
which enables the network to prioritize salient information concerning small objects,
thereby enhancing the representation of their features and improving detection accuracy.
The network architecture of MBAN as shown in Fig. 1. The structure of MBAN is shown in
Table 1.

Backbone consists of the Input, Focus structure, CBS, SPP structure and CSP structure.
In the Backbone phase, the network acquires three feature layers named feat1, feat2, and
feat3. These layers have the following shapes: feat1 = (80, 80, 256), feat2 = (40, 40, 512) and
feat3 = (20,20,1,024). These feature layers serve as crucial inputs for constructing the
subsequent stages of the network.

Neck in YOLOv5l acts as a robust feature extraction network that undergoes feature
fusion on three key feature layers obtained from the backbone. This process aims to
combine feature information from different scales effectively. The architecture of PANet is
still used in YOLOv5l, where the features are not only upsampling for feature fusion, but
also downsampling again for feature fusion.

In this article, we use the detection of NWPU VHR-10 dataset as a case study. We start
with a 640� 640 input image, which undergoes a series of operations including a
Backbone network, a Neck, and subsequent feature integration and channel adjustment
through Prediction. These operations yield three sets of feature layers, each characterized
by dimensions (80, 80, 45), (40, 40, 45), and (20, 20, 45). Here, the number 45 can be
divided into 3� ð10þ 1þ 4Þ, 3 is the existence of three priori boxes for YOLOv5l at each
feature point of the feature layer, 10 represents the NWPU VHR-10 dataset is categorized
into 10 distinct categories, 1 indicates whether the box contains objects or not, and 4
represents the tuning parameters of the predicted box: centroid coordinates x, y and the
width and height of the box w, h. The category confidence scores for each grid can be
formulated as Eq. (1).
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PrðscoresÞ ¼ PrðClassijobjectÞ � PrðobjectÞ � IoUtruth
pred (1)

where PrðClassijobjectÞ denotes the probability that the grid corresponds to i category.
PrðobjectÞ denotes the probability of the object’s existence. PrðobjectÞ = 1 if there is an
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Figure 1 The network architecture of MBAN. Full-size DOI: 10.7717/peerj-cs.1965/fig-1
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object center falling at that grid point, and 0 otherwise. IoUtruth
pred is the intersection over

union of the predicted box and the real box.
The loss function includes of three sections: object confidence loss, object classification

loss and object localization loss. The loss function is shown in Eq. (2).

Lall ¼ kconf Lconf þ kclsLcls þ klocLloc (2)

where Lall contains three hyperparameters kconf , kcls and kloc, which represent the weights
of the three parts, and the corresponding weights are 1.0, 0.5 and 0.05, respectively.

The Intersection over Union (IoU) indicates evaluation of the extent of overlap between
the predicted and real detection boxes in object detection. IoU is calculated using Eq. (3).
Generally, as the IoU approaches 1, it means that the detection results are more accurate.
Since the non-sensitivity of IoU to the scale and overlap rate of the objects. GIoU loss
(Rezatofighi et al., 2019) is used as the loss function of the bounding box in YOLOv5l. The
computation process of GIoU is shown in Eq. (4), and the computation formula of the loss
of object localization is shown in Eq. (5).

IoU ¼ jA \ Bj
jA [ Bj (3)

where A and B represent the predicted box and the real box, respectively.

GIoU ¼ IoU � jC � ðA [ BÞj
jCj (4)

Lloc ¼ GIoULoss ¼ 1� GIoU ¼ 1� IoU þ jC � ðA [ BÞj
jCj (5)

where C is the smallest bounding box that covers both the predicted box and the real box.
The confidence loss for the objects employs the BCE (Binary Cross Entropy) loss as

illustrated in Eq. (6).

Table 1 The structure of MBAN.

Backbone Neck Prediction

Input (640,640,3) – – –

Focus (320,320,64) – – –

CBS (160,160,128) – – –

CSP1_3 (160,160,128) – – –

CBS (80,80,256) CSP2_3 (80, 80, 256) – CBS (80, 80, 45)

CSP1_9 (80,80,256) UpSampling (80, 80, 256) MBAM (40, 40, 256) –

CBS (40,40,512) CBS (40, 40, 256) CSP2_3 (40, 40, 512) CBS (40, 40, 45)

CSP1_9 (40,40,512) CSP2_3 (40, 40, 512) – –

CBS (20,20,1,024) – – –

SPP (20,20,1,024) UpSampling (40, 40, 512) MBAM (20, 20, 512) –

CSP2_3 (20,20,1,024) CBS (20, 20, 512) CSP2_3 (20, 20, 1,024) CBS (20, 20, 45)
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Lconf ¼ �
XS�S
i¼0

XB
j¼0

Iobjij ½bCj
ilogðCj

iÞ þ ð1� bCj
iÞlogð1� Cj

iÞ��

knobj
XS�S
i¼0

XB
j¼0

Inobjij ½bCj
ilogðCj

iÞ þ ð1� bCj
iÞlogð1� Cj

iÞÞ�
(6)

where S � S can take three different values depending on the image size, for instance, with
an input image size of 640� 640, they are 20� 20, 40� 40, and 80� 80, which illustrates
the quantity of grids on the feature maps produced by YOLOv5l at three different scales. B
is the quantity of priori boxes generated for each grid. Iobjij specifies whether the jth priori
box of the ith grid has an object. If the condition is satisfied, Iobjij is 1; otherwise it is 0. Inobjij

specifies whether the jth priori box of the ith grid does not contain the objects. If it does not
contain, Inobjij is 1; otherwise it is 0. bCj

i and Cj
i denote the real box confidence and the

predicted box confidence, respectively. knobj denotes the weight coefficient that does not
include the object confidence.

The object classification loss is shown in Eq. (7).

Lcls ¼ �
XS�S
i¼0

Iobjij

X
c2classes

½ ^P j
i logðP j

i Þ þ ð1� ^P j
i Þlogð1� P j

i Þ� (7)

where S � S and Iobjij are consistent with Eq. (6), c represents the object category, andcP j
i and

Pj
i denote the probability that the object in the jth predicted box within the ith grid

corresponds to the real value and the predicted value of a specific category, respectively.

Multi-branch attention module
We further propose an MBAM to better extract small object features while decreasing the
quantity of network parameters and raising the detection accuracy of the network. To be
specific, the execution of this module proceeds as outlined below. Firstly, channel
dimension and parameter count of the feature map are reduced using 1� 1 convolution.
Secondly, the module employs two branches: the first branch reduces the input feature
map size by half through max-pooling with a stride of 2 and a kernel size of 2, focusing on
learning edge information; the second branch resizes the input feature map to half its size
using a 3� 3 convolution with a stride of two. Both branches utilize a 1� 1 convolution to
learn small object feature information and facilitate cross-channel interaction and
integration. Thirdly, the outputs from the two branches are fused to obtain feature maps
with rich semantic information, enhancing feature expression in small objects. To resist
confusing information and focus on the key feature information of interest, we apply the
SimAM parameter-free attention mechanism. Finally, channel dimension is adjusted to
match the input channel dimension using a 1� 1 convolution to obtain the ultimate
feature map. Figure 2 presents the structure of the MBAM.

Specially, the parameter-free SimAM attention mechanism enhances the algorithmic
focus on the significant information of the objects. The SimAM attention mechanism can
balance the feature weights more comprehensively and efficiently, and reduce the
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background feature weights. Figure 3 illustrates the architecture of the SimAM attention
mechanism.

The SimAM attention mechanism is capable of assigning higher weights to important
neurons as a way of presenting the importance of these important neurons, and the
sigmoid is added to limit excessively large values in e�t . The computational procedure of the

SimAM attention mechanism is shown in Eq. (8).

~X ¼ sigmoid
1
E

� �
� X (8)

where X is the input feature, ~X is the output feature, e�t is the energy function, and E groups
all e�t across channel and spatial dimensions.

The SimAM attention mechanism identifies more important neurons by measuring the
linear separability between different neurons, and defines the energy function of each
neuron as shown in Eq. (9).

etðxt; bt; y; xiÞ ¼ ðyt � t̂Þ2 þ 1
M � 1

XM�1

i¼1

ðyo � bxiÞ2 (9)

where t̂ ¼ xt t þ bt and bxi ¼ xtxi þ bt are linear transforms of t and xi, t and xi are the
object neuron and other neurons within the individual channel of the input feature

X 2 RC�H�W , i is index in the spatial dimension. M ¼ H �W signifies the number of
neurons on that channel. xt and bt are weights and biases, respectively. yo and yt are two
different values, for simplicity, set yt and yo to 1 and -1 respectively, after regularization of
the energy function in Eq. (9). The final energy function is shown in Eq. (10).
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Figure 2 The structure of MBAM. Full-size DOI: 10.7717/peerj-cs.1965/fig-2

Figure 3 The SimAM attention mechanism architecture.
Full-size DOI: 10.7717/peerj-cs.1965/fig-3
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etðxt; bt; y; xiÞ ¼ 1
M � 1

XM�1

i¼1

ð�1� ðxtxi þ btÞÞ2 þ ð1� ðxtt þ btÞÞ2 þ kxt
2 (10)

Equation (10) has a fast closed-form solution with respect to xt and bt , which can be
obtained by the following Eqs. (11) and (12).

xt ¼ � 2ðt � ltÞ
ðt � ltÞ2 þ 2rt2 þ 2k

(11)

bt ¼ � 1
2
ðt þ ltÞxt (12)

where lt ¼ 1
M�1

PM�1
i¼1 xi and rt2 ¼ 1

M�1

PM�1
i ðxi � ltÞ2 are mean and variance

calculated over all neurons except t in that channel, respectively.
In order to avoid iteratively calculating l and r for each position, the computation of e�t

is represented by Eq. (13), as the energy e�t decreases, the difference between neuron t and
surrounding neurons increases, thereby indicating the greater significance of neurons, so
the significance of each neuron can be derived by 1=e�t .

e�t ¼
4ðr̂2 þ kÞ

ðt � l̂Þ2 þ 2r̂2 þ 2k
(13)

where k is the hyperparameter, l̂ ¼ 1
M

PM
i¼1 xi and r̂2 ¼ 1

M

PM
i¼1 ðxi � l̂Þ2. After

manipulating the neurons, the neurons with more critical information are given more
important weights, which enhances the network’s detection accuracy without introducing
additional parameters.

Adaptive clustering relocation
The YOLOv5l object detection algorithm originally utilized prior boxes derived from
clustering the COCO dataset. However, this approach proved inadequate for detecting
small objects due to their diminutive size. Consequently, it is necessary to cluster their
respective appropriate prior boxes according to the characteristics of different datasets. To
resolve this problem, this article introduces the K-means clustering algorithm (Yuan &
Yang, 2019), which takes the distance as a measure, furthermore, as the distance between
data decreases, the similarity increases. The final result is obtained by constantly updating
the position of the clustering center. The K-means clustering algorithm encompasses the
following steps:

(1) Randomly choose one sample as the original clustering center.
(2) Divide each sample dataset into the nearest cluster centers.
(3) The cluster center to which each sample belongs is updated.
(4) Repeat steps (2) and (3), until convergence, and output the results of the clustering

algorithm.
The priori boxes of COCO dataset are (10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59,

119), (116, 90), (156, 198), (373, 326) in order from smallest to largest. In this article, nine
prior boxes are clustered for each dataset using K-means clustering algorithm, and three
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prior boxes are distributed to every detection layer, and the prior boxes of the NWPU
VHR-10 dataset after clustering are illustrated in Table 2.

The priori boxes of the PASCAL VOC dataset after clustering are displayed in Table 3.

EXPERIMENTS AND DISCUSSION
In the remaining part, we conducted experiments using MBAN on the PASCAL VOC and
NWPU VHR-10 datasets and compared MBAN with some advanced algorithms.
Additionally, we devise ablation experiments to investigate the performance of the
methods introduced in MBAN.

Implementation details
The experimental environment is set up as shown below: the processor is 13th Gen Intel
Core i5-13500H, the graphics card is RTX 4050, 16 GB RAM, and the operating system is
Windows 11. The experiments are conducted using Pycharm compilation software,
Python programming language, and the deep learning framework is Pytorch. The
experiments are conducted using the Adam optimization ware (Yi, Ahn & Ji, 2020) to
optimize the network, and the dimensions of the input image for training all algorithms are
set to (640, 640). The experimental hyperparameters of this article are shown in Table 4.

Datasets
The PASCAL VOC dataset (Everingham et al., 2010) is an open object detection dataset
that includes 20 object categories of different scales and poses. In this article, we use the
trainval set of PASCAL VOC 2007 (Everingham et al., 2007) and PASCAL VOC 2012
(Everingham et al., 2012) (16,551 images) to train the MBAN. The test set of PASCAL
VOC 2007 (4,952 images) is used to evaluate the performance.

The NWPU VHR-10 dataset (Cheng & Han, 2016; Cheng et al., 2014; Cheng, Zhou &
Han, 2016) is an open remote sensing dataset consisting of 800 images, it contains 10

Table 2 The clustering results on the NWPU VHR-10 dataset.

Detection layer Prior box size

20� 20 (56, 84) (89, 113) (170, 297)

40� 40 (32, 53) (49, 56) (35, 82)

80� 80 (20, 32) (27, 42) (43, 37)

Table 3 The clustering results on the PASCAL VOC dataset.

Detection layer Prior box size

20� 20 (235, 440) (436, 296) (528, 547)

40� 40 (92, 85) (107, 274) (194, 179)

80� 80 (40, 34) (23, 64) (49, 144)
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object categories. In the training phase, the NUPU VHR-10 dataset is divided into trainval
set and test set in the ratio of 9:1, and 90% in the trainval set is used for train and 10% for
validation.

Evaluation metrics
In this article, frame per second (FPS), average precision (AP), mean average precision
(mAP), F1 score, P and R are used as the evaluation metrics to evaluate the algorithm
performance. FPS is the quantity of frames per second of processed images. AP represents
the area surrounded by a P-R curve and coordinate axes. The P-R curve is the curve plotted
with the recall as the horizontal axis and the precision as the vertical axis. Precision and
Recall are defined using Eqs. (14) and (15).

Precision ¼ TP
TP þ FP

(14)

Recall ¼ TP
TP þ FN

(15)

where TP denotes the quantity of accurately detected positive samples, FP represents the
amount of inaccurately detected positive samples, and FN represents the quantity of
inaccurately detected negative samples, i.e. the quantity of missed detections.

AP ¼
Z 1

0
PðRÞdR (16)

where AP represents the area surrounded by a P-R curve and coordinate axes. It can be
calculated by Eq. (16).

The mAP is the average value of different kinds of AP. The mAP can be calculated by
Eq. (17).

mAP ¼ AP1 þ AP2 þ � � � þ APn
n

(17)

where n is the amount of all object categories.

Table 4 The experimental hyperparameters.

Experimental hyperparameters Value

Initial learning rate 0.001

Minimum learning rate 0.00001

Freezing stage epochs 50

Unfreezing stage epochs 50

Total stage epochs 100

Freezing stage batch size 4

Unfreezing stage batch size 2

Optimizer type Adam

Momentum 0.937
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F1 ¼ 2� R� P
Rþ P

(18)

where F1 is the reconciled mean of P and R, it can be calculated by Eq. (18).

RESULTS AND DISCUSSION
Discussion of results on NWPU VHR-10 dataset
To showcase the efficacy of the MBAN, we compared the experimental results of some
mainstream algorithms on the NWPU VHR-10 dataset, it includes YOLOv3, YOLOv4,
SSD, EfficientNet-YOLOv3, GhostNet-YOLOv4, and YOLOv5l. Table 5 presents the
comparison results. The best results are highlighted in bold.

From Table 5, it is evident that the mAP of MBAN achieves 96.55%, and the detection
speed remains at 28 FPS. In comparison to YOLOv5l, the network size has decreased by
4.05 MB and the number of parameters has been reduced by 2.3%, MBAN’s mAP has
improved by 2.16%, while recall (R), precision (P), and F1 have seen improvements of
0.69%, 1.29%, and 0.01%, respectively, fully demonstrating the efficacy of this network. In
contrast with SSD, although the network size increased by 75.19 MB and the number of
parameters increased by 74.97%, MBAN’s mAP improved by 6.26%, and detection speed
increased by 14 FPS. Compared to YOLOv3, MBAN’s mAP increased by 5.35%, while the
network size decreased by 60.86 MB, the number of network parameters reduced by
25.75%, and the detection speed improved by 4 FPS. Despite the increase in network size
by 134.35 MB and the increase in the number of parameters by 38.78 M compared to
EfficientNet-YOLOv3, with a decrease in detection speed by 26 FPS, MBAN’s mAP
increased by 7.05%. Compared to YOLOv4, MBAN improved mAP by 4.01%, reduced
network size by 70.07 MB, reduced network parameter count by 28.53%, and improved
detection speed by 9 FPS. In comparison with GhostNet-YOLOv4, despite the increase in
network size by 131.86 MB and the increase in the number of parameters by 34.57 M, with
a decrease in detection speed by 33 FPS, MBAN’s mAP increased by 7.83%, still meeting
real-time detection requirements.

This article compares the detection accuracy of MBAN and some mainstream
algorithms for each category on the NWPU VHR-10 dataset, as shown in Table 6. Out of
the seven algorithms mentioned, bold indicates the highest AP for a single object category.
It is evident that MBAN outperforms the mainstream algorithms in the majority of
categories, indicating its superior accuracy. Compared to SSD, MBAN has improved
detection accuracy in eight categories. Compared with YOLOv3, although MBAN has
improved detection accuracy in only six categories, its network structure is complex and
has a large number of parameters. Compared with EfficientNet-YOLOv3, MBAN has
improved detection accuracy in nine categories and the detection accuracy is equal in one
category. Compared with YOLOv4, MBAN detection accuracy has only decreased in one
category, while achieving excellent detection results in other categories. Compared with
GhostNet-YOLOv4, MBAN has the same detection accuracy in two categories and
improved detection accuracy in eight categories. In contrast to the YOLOv5l, the detection
accuracy is equal in four categories and improved in three categories. MBAN’s detection
accuracy for small object categories of ship and vehicle has increased by 1.22% and 0.57%,
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Table 6 The AP (%) in each category of the NWPU VHR-10 dataset.

Category SSD YOLOv3 EfficientNet-YOLOv3 YOLOv4 GhostNet-YOLOv4 YOLOv5l MBAN

Airplane 99.98 100 99.79 100 99.98 100 100

Ship 81.32 88.12 91.67 91.73 84.89 93.84 95.06

St 99.29 98.35 99.44 98.79 97.91 99.88 99.80

Bd 97.27 95.48 92.42 95.19 91.71 99.73 98.65

Tc 93.28 99.97 90.89 98.89 96.97 99.97 99.84

Bc 100 100 98.89 100 100 100 100

Gtf 100 100 100 100 100 100 100

Harbor 85.40 91.28 86.68 90.18 78.10 100 100

Bridge 56.68 44.44 55.34 52.17 54.95 53.82 74.93

Vehicle 89.67 94.36 79.84 98.42 82.69 96.66 97.23

Note:
The AP (%) in each category of the NWPU VHR-10 dataset. The best results are highlighted in bold.

Table 5 The experimental results of different algorithms on the NWPU VHR-10 dataset.

Algorithm R/% P/% F1 mAP/% Size/MB Params/M FPS

SSD 82.90 89.35 0.87 90.29 100.27 26.29 14

YOLOv3 89.60 91.53 0.90 91.20 236.32 61.95 24

EfficientNet-YOLOv3 77.95 86.57 0.80 89.50 41.11 7.22 54

YOLOv4 89.86 90.92 0.90 92.54 245.53 64.36 19

GhostNet-YOLOv4 84.22 86.71 0.85 88.72 43.6 11.43 61

YOLOv5l 94.25 89.63 0.92 94.39 179.51 47.06 28

MBAN 94.94 90.92 0.93 96.55 175.46 46 28

Note:
The experimental results of different algorithms on the NWPUVHR-10 dataset. The best results are highlighted in bold.
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Figure 4 The comparison of AP of 10 categories on the NWPU VHR-10 dataset.
Full-size DOI: 10.7717/peerj-cs.1965/fig-4
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respectively. The number of parameters in MBAN has decreased by 2.3%, allowing it to
maintain the same detection speed while improving detection accuracy. Note: The ten
categories of NWPU VHR-10 are airplane, ship, storage tank, baseball diamond, tennis
court, basketball court, ground track field, harbor, bridge and vehicle, among them, storage
tank, baseball diamond, tennis court, basketball court, ground track field, use st (storage
tank), bd (baseball diamond), tc (tennis court), bc (basketball court), gtf (ground track
field) to refer to these categories respectively.

Figure 4 visually presents the results obtained from Table 6, clearly indicating that
MBAN consistently outperforms in the majority of categories.

Figure 5 shows the distribution of detection accuracy and detection speed of different
algorithms on the NWPU VHR-10 dataset. It can be seen that MBAN outperforms SSD,
YOLOv3 and YOLOv4 in terms of speed and outperforms SSD, YOLOv3, YOLOv4,
EfficientNet-YOLOv3, GhostNet-YOLOv4 and YOLOv5l in terms of mAP. On the whole,
we proposed MBAN achieves better detection performance on NWPU VHR-10 dataset.

Discussion of results on PASCAL VOC dataset
Table 7 presents the detection results of the proposed MBAN on the PASCAL VOC
dataset, in comparison our network to the YOLOv3, YOLOv4, SSD, EfficientNet-YOLOv3,
GhostNet-YOLOv4, and YOLOv5l. The best results are highlighted in bold.

From Table 7, it is clear that the mAP of MBAN achieves 84.96%, and the detection
speed remains at 28 FPS. In comparison to YOLOv5l, under the premise that the size of the
network has decreased by 4.05 MB, and the amount of parameters is reduced by 2.3%, the
R, P, F1 and the mAP are improved by 0.79%, 0.96%, 0.01, and 1.46 respectively, which
validates that the proposed network is capable of significantly increasing detection
precision while meeting the requirements of real-time detection. Compared with SSD,
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Figure 5 The distribution of accuracy and speed with different algorithms on the NWPU VHR-10
dataset. Full-size DOI: 10.7717/peerj-cs.1965/fig-5
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MBAN has improved mAP by 43.84% and detection speed by 14 FPS. Compared with
YOLOv3, MBAN has increased mAP by 7.1% and detection speed by 4 FPS. Compared
with EfficientNet-YOLOv3, although the detection speed has decreased by 27 FPS, the
mAP of MBAN has increased by 8.98%. Compared with YOLOv4, MBAN has increased
mAP by 0.23% and detection speed by 9 FPS. Compared with GhostNet-YOLOv4,
although the detection speed has decreased by 29 FPS, the mAP of MBAN has increased by
6.74%, which can still meet real-time detection requirements.

In order to analyze the detection performance of MBAN, this article also compares the
detection accuracies of MBAN and some mainstream algorithms for each category on the
PASCAL VOC dataset, as shown in Table 8. The best results are highlighted in bold. It is
evident that MBAN outperforms the mainstream algorithms in terms of accuracy in most
of the categories, and obtains the optimal detection results on nine object categories. In
comparison to YOLOv5l, MBAN optimizes the YOLOv5l to more accurately capture the
features, and achieves higher detection accuracy on 16 categories, and for the small objects
categories, for instance, aero, bus, chair, sheep, and plant, the detection accuracies are
improved by 1.8%, 2.74%, 2.73%,1.37% and 10.86%, respectively, while the detection
accuracy on 4 categories lower compared to YOLOv5l, MBAN not only maintains the
same detection speed, but also decreases the number of parameters and enhances the mAP
by 1.46%, which gives a better performance on most categories. Compared with SSD,
MBAN has improved detection accuracy in all 20 categories. Compared with YOLOv3,
MBAN has improved detection accuracy in 18 categories, with only two categories having
lower detection accuracy than YOLOv3. Compared with EfficientNet-YOLOv3, MBAN
has improved detection accuracy in 19 categories, with lower detection accuracy in one
category. Compared with YOLOv4, MBAN has improved detection accuracy in 10
categories. Although the detection accuracy in the other 10 categories is lower than
YOLOv4, the YOLOv4 algorithm has a large number of parameters, and its detection
speed and mAP are lower than MBAN. Compared with GhostNet-YOLOv4, MBAN has
improved detection accuracy in all 20 categories. Since YOLOv3, EfficientNet-YOLOv3,
YOLOv4, and YOLOv5l use different algorithm structures, they are made to have better
feature learning ability on individual categories, thus achieving better detection on
individual categories.

Table 7 The experimental results of different algorithms on the PASCAL VOC dataset.

Algorithm R/% P/% F1 mAP/% Size/MB Params/M FPS

SSD 18.19 77.62 0.27 41.12 100.27 26.29 14

YOLOv3 64.61 85.42 0.71 77.86 236.32 61.95 24

EfficientNet-YOLOv3 64.67 83.48 0.72 75.98 41.11 7.22 55

YOLOv4 75.69 86.81 0.80 84.73 245.53 64.36 19

GhostNet-YOLOv4 65.11 86.97 0.74 78.22 43.6 11.43 57

YOLOv5l 70.07 89.09 0.78 83.50 179.51 47.06 28

MBAN 70.86 90.05 0.79 84.96 175.46 46 28

Note:
The experimental results of different algorithms on the PASCAL VOC dataset. The best results are highlighted in bold.
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Table 8 The AP (%) in each category of the PASCAL VOC dataset.

Category SSD YOLOv3 EfficientNet-YOLOv3 YOLOv4 GhostNet-YOLOv4 YOLOv5l MBAN

Aero 57.26 88.57 84.34 94.66 87.15 91.76 93.56

Bike 50.12 89.23 86.48 92.00 84.92 93.24 94.00

Bird 27.98 82.96 79.85 85.62 78.23 85.15 86.26

Boat 26.59 61.36 65.53 70.47 70.92 76.15 76.98

Bottle 4.02 71.06 49.89 78.52 63.72 75.49 75.37

Bus 57.69 90.35 81.99 92.83 80.78 90.75 93.49

Car 71.61 93.13 90.15 94.80 89.75 94.84 94.92

Cat 51.02 86.54 82.85 86.48 87.17 88.76 88.22

Chair 16.30 65.28 51.60 67.59 59.24 70.24 72.97

Cow 40.08 82.63 84.47 92.83 82.65 90.14 91.25

Table 20.37 76.84 58.94 80.12 73.52 74.05 75.03

Dog 41.26 81.77 84.77 91.77 84.55 86.26 87.78

Horse 52.50 90.37 89.71 95.15 89.80 92.07 92.16

Mbike 54.74 89.05 84.94 93.14 82.40 91.88 93.01

Person 66.14 89.04 83.41 91.33 85.17 91.36 91.27

Plant 0.97 52.20 42.38 55.62 47.87 44.97 55.83

Sheep 42.58 17.68 80.75 85.40 83.04 82.62 83.99

Sofa 38.42 80.41 71.12 77.05 73.35 78.09 82.29

Train 50.64 86.99 87.28 87.09 86.08 88.00 86.61

TV 52.11 81.76 79.05 82.10 74.19 84.15 84.31

Note:
The AP (%) in each category of the PASCAL VOC dataset. The best results are highlighted in bold.
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The results in Fig. 6 confirm that MBAN performs better than other algorithms.
Moreover, it is apparent that MBAN has reached the highest point in majority of the
categories, which also indicates that MBAN has outstanding ability in small object
detection.

Figure 7 shows the distribution results on the PASCAL VOC dataset. It can be seen that
MBAN outperforms SSD, YOLOv3 and YOLOv4 in speed and outperforms SSD,
YOLOv3, YOLOv4, EfficientNet-YOLOv3, GhostNet-YOLOv4 and YOLOv5l in mAP. In
conclusion, the MBAN proposed achieves remarkable detection performance in the aspect
of detection accuracy while keeping the detection speed constant. The best results are
highlighted in bold.

Ablation experiments
A comprehensive evaluation of the proposed MBAN was conducted to assess the efficacy
of each method on the NWPUVHR-10 datasets, respectively. The best result is highlighted
in bold. Experiment A is the YOLOv5l algorithm, Experiment B uses the ACR, Experiment
C uses the MBAM, and Experiment D combines the methods of Experiment B and
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Figure 7 The distribution of accuracy and speed with different algorithms on the PASCAL VOC
dataset. Full-size DOI: 10.7717/peerj-cs.1965/fig-7

Table 9 The results of ablation experiments on the NWPU VHR-10 dataset.

Group MBAM ACR mAP (%) FPS

Experiment A � � 94.39 28

Experiment B � p
95.75 28

Experiment C
p � 96.30 28

Experiment D
p p

96.55 28

Note:
The results of ablation experiments on the NWPU VHR-10 dataset. The best result is highlighted in bold.
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Experiment C. Table 9 presents the results of the ablation experiments conducted on the
NWPU VHR-10 dataset, where “

p
” denotes the utilization of the proposed method and

“�” indicates its absence.
Experiment A denotes the YOLOv5l object detection algorithm with mAP of 94.39%

and FPS of 28. Experiment B uses the ACR, and the mAP improves from 94.39% to 95.75%
and the FPS is 28 compared to Experiment A, which proves that the ACR can more
accurately locate the position of objects. Experiment C uses the MBAM, and the mAP
increases from 94.39% to 96.30% compared to Experiment A. The FPS is still 28, which
proves that the effectiveness of MBAM. Experiment D combines the MBAM and the ACR,
which greatly improves the detection performance, the FPS is still 28, and the mAP is
improved from 94.39% to 96.55% compared with experiment A. Notably, it can be
concluded that according to the design of the two methods can be employed to strengthen
the detection accuracy of the network efficiently without change in detection speed, to
fulfill the demands for real-time detection.

Table 10 displays the results of the ablation experiments conducted on the PASCAL
VOC dataset. The best result is highlighted in bold.

Experiment A is the YOLOv5l object detection algorithm with mAP of 83.50% and FPS
of 28. Experiment B uses the ACR, and the mAP is improved from 83.50% to 83.94%
compared with Experiment A, which proves that the ACR can more accurately locate the
position of objects, thereby improving the object detection accuracy. Experiment C uses
the MBAM and the mAP is improved from 83.50% to 83.95% compared to Experiment A.
The FPS is still 28, which proves that the MBAM can raise the detection accuracy of the
algorithm well. Experiment D combines the MBAM and the ACR, which greatly improves
the detection performance, the FPS is still 28, and the mAP is improved from 83.50% to
84.96% compared with experiment A. The results indicate that the integration of the two
methods can be employed to strengthen the detection accuracy of the algorithms
efficiently.

CONCLUSION
This article proposes a novel MBAN. In order to make the network focus on the salient
feature information of small objects and reduce downsampling information loss, an
MBAM is designed to enhance the feature expression ability of small objects. Besides, we
use the ACR method to cluster small object datasets and improve the regression and
localization accuracy of small objects. The experimental results on the NWPU VHR-10

Table 10 The results of ablation experiments on the PASCAL VOC dataset.

Group MBAM ACR mAP (%) FPS

Experiment A � � 83.50 28

Experiment B � p
83.94 28

Experiment C
p � 83.95 28

Experiment D
p p

84.96 28

Note:
The results of ablation experiments on the PASCAL VOC dataset. The best result is highlighted in bold.
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and PASCAL VOC datasets show that MBAN outperforms most popular algorithms in
detection performance, achieving superior detection performance without sacrificing
detection speed. Although the network proposed in this article has significant advantages
in small object detection, it still needs improvement in future work for small objects with
severe occlusion.
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