
Enhancing secure multi-group data
sharing through integration of IPFS and
hyperledger fabric
Feng Wen1, Zhuo Wang1, Leda Qu1, Haixin Huang2 and Xiaojie Hu1

1 School of Information Science and Engineering, Shenyang Ligong University, Shenyang,
Liaoning, China

2 School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang,
Liaoning, China

ABSTRACT
Data sharing is increasingly important across various industries. However, issues
such as data integrity verification during sharing, encryption key leakage, and
difficulty sharing data between different user groups have been identified. To address
these challenges, this study proposes a multi-group data sharing network model
based on Consortium Blockchain and IPFS for P2P sharing. This model uses a
dynamic key encryption algorithm to provide secure data sharing, avoiding the
problems associated with existing data transmission techniques such as key cracking
or data leakage due to low security and reliability. Additionally, the model establishes
an IPFS network for users within the group, allowing for the generation of data
probes to verify data integrity, and the use of the Fabric network to record log
information and probe data related to data operations and encryption. Data owners
retain full control over access to their data to ensure privacy and security. The
experimental results show that the system proposed in this study has wide
applicability.

Subjects Data Science, Network Science and Online Social Networks, Security and Privacy,
Blockchain
Keywords Blockchain, IPFS, Data sharing, Data integrity, Dynamic key, Multiple groups

INTRODUCTION
The Internet has revolutionized data access, making data sharing a ubiquitous aspect of
daily life. However, sharing data over public networks exposes it to significant security
risks, such as data error handing and tampering (Anwar et al., 2022). This has led to a
major challenge in ensuring data integrity and verifiability. Trusted third parties play a
crucial role in facilitating secure data sharing, as they can authenticate and reliably
transmit data (Naz et al., 2019). Therefore, it is of utmost importance to develop data
sharing techniques that guarantee both data integrity and verifiability, as well as reliable
transmission.

Group data sharing is an essential requirement for various industries, where multiple
users in a group share information for collaborative purposes. The complexity of such data
sharing scenarios includes medical institutions wishing to share medical databases, schools
wishing to share their research results, etc (Huang, Chen &Wang, 2020). Existing research
approaches to implement data sharing between users in a group consist of one-to-many

How to cite this article Wen F, Wang Z, Qu L, Huang H, Hu X. 2024. Enhancing secure multi-group data sharing through integration of
IPFS and hyperledger fabric. PeerJ Comput. Sci. 10:e1962 DOI 10.7717/peerj-cs.1962

Submitted 9 August 2023
Accepted 5 March 2024
Published 29 March 2024

Corresponding author
Xiaojie Hu,
xiaojie.hu.wmu@gmail.com

Academic editor
Anwitaman Datta

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.1962

Copyright
2024 Wen et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1962
mailto:xiaojie.�hu.�wmu@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1962
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

and many-to-many. The one-to-many approach is suitable when only one data owner is
present, and authorized users can access their data resources. On the other hand, the
many-to-many approach allows authorized users to access the data resources of different
data owners within the same group. However, current research mainly focuses on a single
scenario where all users within the group want to share data. In such scenarios, data is
usually stored for sharing using cloud servers.

The current data transmission technology typically employs data encryption prior to
transmission. The server uses a specific secret key to send the data to the client. The client
then processes the data with the secret key, obtains the encrypted data, and transmits it to
the server. Upon receiving the encrypted data, the server uses the same secret key to
decrypt the data and restore it to its original form. However, this approach is vulnerable to
data breaches during transmission due to the low security and reliability of data
transmission. Therefore, it is necessary to explore more secure and reliable methods of data
transmission to prevent data leakage.

In recent years, blockchain technology has been widely adopted to address the issues of
data loss, tampering and leakage in data sharing. Blockchain’s decentralized nature ensures
that each block release is not controlled by a central node, thereby ensuring the integrity
and traceability of data. Additionally, the security encryption algorithm of blockchain
provides security and privacy for data. Any attempt to intrude and modify the data will be
recorded and easily traceable. The distributed storage technology of blockchain further
ensures that data loss is avoided. The decentralized, tamper-evident, and traceable features
of blockchain provide the foundation for building a transparent, open, secure, and
trustworthy data sharing environment that can connect big data in various fields.

Hyperledger Fabric is a popular open-source framework for hyperledger technology. It
is a consortium blockchain open-source framework that enables multi-sector participation
in data sharing operations, while its multi-module design allows users to customize the
service according to their needs.

The InterPlanetary File System (IPFS) is an innovative distributed file storage system
that utilizes P2P network, content addressing, and distributed hash table (DHT)
technology to provide high levels of security and integrity. Peers in the IPFS network can
exchange files efficiently without mutual trust.

The use of blockchain and IPFS in data sharing still presents some challenges. First,
since the resource data is encrypted and shared on the blockchain, this leads to a lack of
control over the data and increases the storage pressure and block generation time of the
blockchain. Second, it is difficult to encrypt data during transmission in IPFS-based data
sharing. Once the content identifier (CID) of the data is leaked, any user with the CID can
share the data, rendering data privacy meaningless. Moreover, there is a risk of data
interception during data transmission.

We propose a data sharing system based on IPFS and Hyperledger Fabric. All data in
the system is stored locally by the data owner. When the data owner requests to upload
data, a data probe is generated by uploading the data to IPFS. This probe is used only to
detect data tampering or duplication and other users cannot download the data using its
CID. The metadata of the data, along with its CID, are recorded in the Fabric ledger as a

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 2/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

data directory. The system uses Fabric’s built-in private data feature to implement the
sharing of data and the division of private data between groups. Data owners have
complete control over data access and can authenticate permissions through Fabric’s smart
contract. When a user requests to download data, a dedicated P2P network is established
between the data requester and owner to facilitate data transfer. During data transfer, the
system generates dynamic keys based on the data transmission time to encrypt the data,
ensuring secure data transfer and avoiding security risks from key leakage.

Our main contributions are summarized as follows:
(1) We design a data sharing model and a decentralized, transparent, and public

interaction environment based on consortium blockchain and IPFS. The model enables
reliable recording of important information during interactions, which are traceable and
immutable. The environment allows for secure sharing of multiple groups of data between
data owners and data requesters.

(2) We propose a scheme to verify data integrity using IPFS technology, which can
realize automatic verification of integrity verification in data sharing.

(3) We present a P2P data transmission mode and a dynamic key generation algorithm.
Data is encrypted during transmission between owners and requesters, and dynamic keys
are generated to prevent key leakage and ensure data security.

RELATED WORK
Blockchain technology, which originated from Bitcoin (Nakamoto, 2008), offers a
decentralized approach for establishing trust relationships between anonymous parties
while ensuring document privacy and security (Nair & Dorai, 2021). PDPChain (Liang
et al., 2022) proposed a personal data privacy protection scheme based on consortium
blockchain that stores original data encrypted with an improved Paillier homomorphic
encryption mechanism, namely PDPChain, where users realize fine-grained access control
based on ciphertext policy attribute-based encryption (CP-ABE) on blockchain. As the
functionality of shared encrypted data is relatively constrained and the construction of the
CP-ABE model is intricate, the method for constructing the access model is not detailed in
this study. The integration of multi-party secure computing and blockchain facilitates
privacy-preserving computation (Zhou et al., 2021). However, it is noteworthy that multi-
party secure computing introduces a trade-off by exerting a certain impact on the system’s
performance. To address the issue of increasing storage costs associated with blockchain
ledgers, several studies have proposed the use of IPFS to generate transaction hashes that
replace original data in blocks with CIDs of the transactions (Zheng et al., 2018; Kumar &
Tripathi, 2019). Recent research have focused on developing file management systems that
utilize both IPFS and Hyperledger Fabric blockchain (Huang et al., 2020). For instance,
BlockIPFS (Nyaletey et al., 2019) proposes an innovative approach to achieve traceability of
file access through Hyperledger Fabric. FileWallet (Chen et al., 2022) proposes a peer-to-
peer (P2P) file management system architecture based on IPFS and Hyperledger Fabric to
support file content updates and direct file synchronization across devices. These studies
primarily center on leveraging the IPFS for data sharing, which is a systematic storage
framework founded on distributed files. However, utilization of a third-party file system to

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 3/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

store data poses certain threats to data security, necessitating efforts to fortify data
integrity. This study proposes a novel approach for ensuring data integrity by leveraging
the CID returned by IPFS as a probe. Specifically, the approach involves verifying data
integrity by comparing the CID of the original data with the CID of the data retrieved from
IPFS. The study demonstrates the effectiveness of this approach in verifying the integrity of
both text and image data, and highlights its potential applications in fields such as
copyright protection and data forensics.

Designing an appropriate data sharing scheme for group data sharing requires a tailored
approach that takes into consideration the complex application scenarios. One potential
solution, presented in a recent study (Shen et al., 2017a), is based on symmetric balanced
incomplete block design (SBIBD) and group signature technique. This approach enables
anonymous and secure group data sharing within the same group. Other studies propose
privacy-preserving and untraceable data sharing schemes that utilize proxy re-encryption
and Oblivious Random Access Memory (ORAM) to support multiple users in a group to
share data in cloud computing (Shen et al., 2021). Such schemes hold promise for
advancing group data sharing and facilitating secure collaborations among multiple
parties.

To ensure secure data sharing, data integrity verification is a crucial security
requirement (Chen et al., 2014; Zhang et al., 2019). Recently, research involve two
solutions, the two-party auditing model and the third-party auditing model schemes. The
two-party auditing model (Deswarte, Quisquater & Saidane, 2004; Gazzoni Filho &
Barreto, 2006) is the first data auditing model used in data sharing schemes, where a
separate auditing service was required for data integrity verification. However, with the
advent of cloud servers and IPFS, these platforms have been leveraged for data storage and
sharing. Subsequently, a third-party auditing model scheme, known as the provable data
possession (PDP) model, was introduced for data integrity verification (Ateniese et al.,
2007). This scheme incorporates an attribute-based multi-verifier cryptographic
verification control algorithm for remotely outsourced data integrity verification (Xu et al.,
2022). Despite their differences, both approaches rely on a third-party to verify data
integrity. Wang, Zhang & Zhang (2019) proposed a new personal health records sharing
scheme based on blockchain with data integrity verifiable. In particular, the new scheme in
this study stores the hash values of encrypted personal health records in blockchain, and
the related index set is stored in smart contract, which can further improve the efficiency of
data integrity verification. This study advocates the utilization of smart contracts for the
verification of data integrity. However, the storage of data via cloud servers poses a
potential threat to data security. Furthermore, it is essential to note that this investigation
relies on Ethernet implementation. Given that transactions in Ether necessitate the
involvement of currency, the applicability of this approach may be limited in certain
scenarios.

The encryption of data during transmission is a crucial aspect of secure communication.
Research on encryption methods and key management has therefore gained significant
attention. For instance, Shen et al. (2017b) proposed a key negotiation protocol based on
block design, which utilizes SBIBD and group data sharing models to generate a public key

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 4/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

IC for multiple participants, enabling secure data sharing within and outside a group in
cloud computing environments. Capar et al. (2010) implemented an elliptic curve-based
DH key sharing method using fast frequency hopping to enhance the security of data
transmission. Wong, Shea & Wong (2008) developed a reliable auto-repeating fast fading
channel-based shared key generation method. Another proposed approach for secure
communication in wireless networks involves generating keys using wireless transmission
error randomness (Xiao & Gong, 2012). Dynamic secrets were generated by listening to
data link layer data, albeit using a high communication overhead RSA encryption scheme
for data encryption (Xiao, Gong & Towsley, 2010; Sun et al., 2012). Similarly, Liu et al.
(2013) proposed a dynamic key scheme using a 0–1 retransmission sequence to compute a
private shared key, thereby reducing communication overhead. However, this approach is
reliant on network environments and poses a risk of key leakage. In addition to symmetric
encryption algorithms like DES and AES, researchers also use asymmetric encryption
algorithms, such as homomorphic encryption for secure aggregation (Iyer, 2011) and
multiparty secure computation (Saputro & Akkaya, 2012). However, these methods only
perform specific and limited operations on encrypted data and are computationally
intensive, thus making them unsuitable for various types of data transmission. Conversely,
dynamic keys have the advantage of being used only once, and by designing dynamic keys
and encrypting files based on transmission time, the method obviates the need for key
transmission and storage.

METHOD
This section presents the model architecture of data sharing, including the design of data
structure, smart contract, and user authentication function, as well as the functional
modules and security analysis of the system. Specifically, we describe the system’s data
storage and access function, and how the smart contract is designed to facilitate the storage
and access of the data directory. We also provide detailed insights into the implementation
of user access control through smart contracts, ensuring a robust framework for secure
access to shared data. Additionally, we provide an in-depth analysis of the security of the
system, and the design of its functional modules to achieve efficient and reliable data
sharing.

The model architecture
The system comprises two main components, namely the data sharing system and group
data management system, see Fig. 1. The data sharing system facilitates communication
with the Fabric network to access the data sharing directory. The group data management
systems respond to data download requests, generates dynamic keys for data encryption,
and transfers data to the requester via a peer-to-peer (P2P) network. Data owner A utilizes
the data sharing front-end processor within the data sharing system to update the data
directory. The data directory can be stored in either a public or private state, with a ledger
maintained by the group nodes. To monitor changes in the shared data, data probes are
generated and recorded in the chain, ensuring their immutability. Data requester B can be
a node from the same group as data sharing user A or from another group. The data

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 5/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

directory within the data sharing system is accessed through the request front-end
processor. In this data sharing platform, authentication of all group nodes is required. To
achieve autonomous authentication of permissions, this research employs smart contracts.
These smart contracts are pre-installed on the departmental nodes and require
endorsement for modification permissions. Consequently, the authentication of privileges
through smart contracts ensures system security.

The system network structure and transaction proposal process are illustrated in Fig. 2.
In our network structure, the smallest unit is represented by a node, which corresponds to
an individual user. Users can assume the roles of either data owners or data requesters,
depending on whether they are sharing or requesting data. User groups can be created,
resembling real-world entities such as an academic department or an information
management department within a school. Figure 2 demonstrates two distinct groups, A
and B, comprising different users. The affiliation of data owners and data requesters within
the same or different groups does not hinder the sharing of data among users. In the
Hyperledger Fabric network, each participating node must have a certificate issued by the
CA structure to join the network. Each organization in the Fabric is established as an
independent group with a dedicated IPFS network based on its members. When a user
initiates a data sharing request, the data is first uploaded to the group IPFS network, and
the CID of the data is returned by IPFS as a unique identifier for the data. The CID is then
stored in the Fabric ledger along with the data directory and other relevant information.
When the data requester obtains the data from the data owner, the CID of the data can be
calculated and compared with the information recorded in Fabric. The data probe serves to

Figure 1 The system architecture. Full-size DOI: 10.7717/peerj-cs.1962/fig-1

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 6/26

http://dx.doi.org/10.7717/peerj-cs.1962/fig-1
http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

detect whether the data has been tampered with or duplicated during the sharing process.
owner, the CID of the data can be calculated and compared with the information recorded
in the Fabric, and the data probe can be used to detect the data whether tampering or
repeated sharing occurred during the sharing process.

Figure 2 illustrates the transaction proposal process, commencing with the registration
of the client node with the certificate authority (CA) to procure a certificate authorizing its
integration into the Hyperledger Fabric network. Subsequently, the user-initiated
transaction proposal is distributed to each group, where group nodes endorse and return
the proposal to the client node. The endorsed proposal is then forwarded to the sorting
node. Utilizing the Raft consensus protocol, the sorting node achieves consensus and
organizes the proposal into a block. Finally, the newly formed block undergoes
dissemination to each group, and nodes within the group leverage the gossip protocol to
ensure uniform ledger data across users. In contrast to the Kafka consensus protocol, the
Raft protocol is embedded in the order node, offering strong consistency and enhanced
data consistency guarantees. Consequently, this research adopts the Raft consensus
protocol to achieve consistent consensus within the blockchain network.

Data structure
The default database used by Hyperledger Fabric, Leveldb, and the optional Couchdb are
both non-relational databases that store data in key-value pairs. Storing data in JSON
format is a convenient way to interact with these databases.

User profile
The implementation of data sharing operations by users involves the connection to both
the Hyperledger Fabric network and IPFS network nodes. The user’s password is a hash
value generated based on a certificate issued by the group CA authority. The user’s
Membership Service Provider (MSP) identifies the group to which the user belongs.

Figure 2 System network structure. Full-size DOI: 10.7717/peerj-cs.1962/fig-2

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 7/26

http://dx.doi.org/10.7717/peerj-cs.1962/fig-2
http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

During connection to the Fabric network, the hash value of the certificate is calculated to
verify the user’s identity. Table 1 shows the data structure of the user.

Data directory
To address the challenge of cumbersome data upload procedures associated with
substantial data capacity during data sharing, a targeted solution involves replacing specific
data with a data directory. This directory incorporates detailed description such as data
content, storage path, access policies, data ownership, and a unique identifier (CID).
Furthermore, to achieve nuanced control over data permissions, the delineation includes
collaborators (empowered for collaborative data editing), downloaders (authorized to
download shared data), and uploaders (enabled to upload shared data). This approach
affords users comprehensive control over the shared data during the process of data
sharing, ensuring a fine-grained division of permissions. The data structure of data
directory is shown in Table 2. The data directory records the metadata of shared data.

The access policy mainly records the groups that have permission to share the data.
Collaborators of data refer to all users who have data collaboration privileges, allowing
them to modify and delete the content of the shared data. Uploaders of data refer to all
users who have data sharing privileges and can publish shared data directories.
Downloaders of data refer to all users with data download permission, enabling them to
download shared data. Data sharers control access to the shared data and can modify the
data collaborators and downloaders of the shared data.

Table 1 Data structure of user profile.

Name Type Description

Id String The ID of the user.

Name String The name of the user.

Password String The keyword of the user.

Msp String The group tag of the user.

Table 2 Data structure of data directory.

Name Type Description

Key String The key of the data directory.

Description String The description of the data.

dataAddress String The storage location of the data.

accessPolicy Array The access policy of the data.

Owner String The ip address of the data owner.

Uptime String The creation timestamp of data directory.

Cooperator Array The array of the cooperator name.

Uploader Array The array of the uploader name.

Downloader Array The array of the downloader name.

CID String The CID of the data

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 8/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

Smart contract design
Serving as a pivotal interface for blockchain interactions, smart contracts inherently
possess attributes of automated execution and irrevocability, rendering them advantageous
for the automated storage of data directory and user access restriction. In light of these
characteristics, we have devised an access control function founded on smart contracts,
facilitating the effective implementation of user access control. Additionally, to discern
between data catalogs in private and public states within the Hyperledger Fabric
environment, we have tailored smart contracts capable of distinct operations on private
and public data directory. The delineation of the smart contract interface is shown in
Table 3.

First six smart contracts in Table 3, each of which is accompanied by a detailed
algorithmic flow described in the subsequent section. Among these contracts,
“updateCooperator” and “updateDownload” are employed to update the sets of
collaborators and downloaders associated with the shared data directory, respectively. The
“createUploader” contract is executed during the initialization of the blockchain network
and serves the purpose of recording users with permission to share the data directory.
Additionally, the “updateUpload” contract is utilized to modify the set of data uploaders.
Lastly, the “varifyDownload” contract is responsible for verifying a user’s eligibility to
download data.

Functional module design
This section presents the primary functional modules of the system, which consist of
shared data directory management, private data directory management, data probe
management, and data sharing.

Public data directory management
This module is responsible for managing new public state data, which is visible to all
groups. Firstly, the module verifies if the user has the uploader permission, and only

Table 3 Smart contract functions.

Function name Description

CreateNewdirectory Create a shared data directory in ledger.

updateDirectory Update a shared data directory in ledger.

deleteDirectory Remove a shared data directory in ledger.

CreateNewprivatedirectory Create a private data directory in ledger.

updatePrivateDirectory Update a private data directory in ledger.

deletePrivateDirectory Remove a private data directory in ledger.

updateCooperator Update cooperators in a data directory.

updateDownload Update downloaders in a data directory.

updateUpload Update uploaders in a data directory.

createUploader Create a data directory to store the uploaders.

varifyDownload Verify whether the user can download specific data.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 9/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

authorized users can share the data. Secondly, when modifying the public state data, it
verifies if the user has collaborator privileges. Users with the appropriate permissions can
modify the data in the public state. Finally, when deleting data from the public state, the
module checks whether the authenticated user has collaborator privileges. Only users with
the appropriate permissions can delete data from the public state. Algorithms 1–3 illustrate
the procedure of shared data directory management.

Algorithm 1 CreateNewDirectory.

Input: Data metadata datameta,data directory key k

Output: Excution results result

//Get the current user information of the system

1 Uploader ← getUserName();

2 T ← getTimestamp();

3 //Create a new data directory

4 data directory ← newDirectory(datameta,Uploader,T);

5 if The Uploader has upload privilege and file has not been shared then

6 //The data directory is recorded on the public ledger in the blockchain

7 putStringState (k,data directory);

8 return true;

9 else

10 Throw privilege error;

11 end

Algorithm 2 updateDirectory.

Input: Data directory key k,data metadata datameta

Output: Excution results result

//Get the data directory from the public ledger according to the k

1 data directory ← getStringState(k);

2 //Get the current user information of the system

3 user ← getUserName();

4 if The user has cooperator privilege then

5 new data directory ← updateDirectory(datameta,user);

6 putStringState(k,new data directory);

7 return true;

8 else

9 Throw privilege error;

10 end

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 10/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

Group private data directory management
This module is designed to manage private state data that is only visible within a specific
group. When adding new data to the private state, users must specify the access policy as
limited to a particular group. The functional module is similar to the shared data directory
management module, with the additional requirement that users specify the name of the
private state for the operation. Furthermore, the user’s group and the privileges are
authenticated during privilege authentication. Algorithms 4–6 illustrate the procedure of
private data directory management.

Data probe management
The data probe management module is responsible for ensuring the integrity and
uniqueness of shared data. To accomplish this, the system generates data probes that detect
data tampering and duplication. The probe generation function uploads the data directory
to the IPFS private network and returns the CID of the data as the data probe. During data
retrieval, the detection function calculates the CID of the data and compares it with the
CID of the data in the Fabric ledger. If the CIDs match, the data is considered authentic.
Furthermore, the probe screen for duplicates function checks for duplicate shared
resources. To this end, the data directory generates data CIDs through IPFS before
recording them in the Fabric ledger. These CIDs are then compared with the set of CIDs in
the ledger. If there is a match, it means that the data has already been shared, and the
system will reject the user’s data sharing request. Algorithms 7–9 illustrate the procedure
of data probe management.

Data sharing
Key leakage is a serious threat to data transmission security, and dynamic keys are essential
to ensure secure data transmission. Two common types of dynamic keys are counted-use
and timed-use OTPs. Counted-use OTPs can be used indefinitely, and a new password is
generated after each successful use by adding 1 to the counter. Time-based OTPs, on the

Algorithm 3 deleteDirectory.

Input: Data directory key k

Output: Excution results result

//Get the data directory from the public ledger according to the k

1 data directory ← getStringState(k);

2 if The user has cooperator privilege then

3 //Delete the data directory from the public ledger according to the k

4 delState(k);

5 return true;

6 else

7 Throw privilege error;

8 end

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 11/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

Algorithm 4 CreateNewprivatedirectory.

Input: data metadata datameta,group name namegroup, data directory key k

Output: Excution results result

//Get the current user information of the system

1 Uploader ← getUserName();

2 //Gets the group MSP name of the user

3 group Msp ← getUserMsp();

4 T ← getTimestamp();

5 data directory ← newDirectory(datameta,Uploader,T);

6 if The Uploader has upload privilege and belongs to this group and file has not been shared then

7 //The data directory is recorded on the private ledger of the group

8 putPrivateData(k,namegroup,data directory);

9 return true;

10 else

11 Throw privilege error;

12 end

Algorithm 5 updatePrivateDirectory.

Input: Data directory key k,data metadata datameta,group name namegroup

Output: Excution results result

1 user ← getUserName();

2 //Gets the group name of the user

3 group Msp ← getUserMsp();

4 if The user belongs to this group then

5 //Get the data directory from the private ledger of the group according to the k

6 data directory ← getPrivateDataUTF8(namegroup,k);

7 else

8 Throw privilege error;

9 end

10 if The user has cooperator privilege then

11 new data directory ← updateDirectory(datameta,user);

12 putPrivateData(namegroup,k,new data directory);

13 return true;

14 else

15 Throw privilege error;

16 end

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 12/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

other hand, use HMAC-Based One-Time Password Algorithm (HOTP) to implement the
dynamic password, and can set the validity period of the password between 30 s and 2 min.
Another algorithm used for time-based dynamic passwords is the Time-based One-time
Password (TOTP). The authentication principle for dynamic passwords involves sharing a
key, also known as a seed key, between the authenticating parties. The algorithm then
calculates the password using the same seed key for a particular event count or time value.
The algorithms used for this purpose are symmetric algorithms such as HASH, HMAC,
and others. These algorithms serve as the foundation for implementing all dynamic
cryptographic algorithms.

Algorithm 6 deletePrivateDirectory.

Input: Data directory key k,group name namegroup

Output: Excution results result

1 user ← getUserName();

2 group Msp ← getUserMsp();

3 if The user belongs to this group then

4 data directory ← getPrivateDataUTF8(namegroup,k);

5 else

6 Throw privilege error;

7 end

8 if The user has cooperator privilege then

9 //Delete the data directory from the private ledger according to the k

10 delPrivateData(namegroup,k);

11 return true;

12 else

13 Throw privilege error;

14 end

Algorithm 7 CreateProbe.

Input: Upload data dataupload

Output: data probe CID

1 if The user has upload privilege and file has not been shared then

2 CID ← IPFSUpload(dataupload) and add the CID to the blockchain network;

3 return CID;

4 else

5 Throw privilege error;

6 end

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 13/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

The generation of dynamic keys is dependent on both a static key K and a random
number C. The design of C is crucial to implementing dynamic keys. The HOTP algorithm
is a one-time cipher generation algorithm based on event counting, with its shift factor C
being a binary representation of the counter’s value. Conversely, TOTP utilizes the current
timestamp as the time difference, which is divided by the time window (default of 30 s) to
obtain the time window count, which is used as the movement factor C for the dynamic
cryptographic algorithm. Therefore, the design of a time-based dynamic key algorithm can
be achieved to ensure secure transmission of files during data transmission. The process of
dynamic key algorithm TOTP256 is shown in Algorithm 10:

The data sharing module consists of three components: data directory uploading, data
collaboration sharing, and data downloading. Users must be authenticated before
uploading a data sharing directory. If they have permission to share data, the data directory
can be added to the Fabric ledger. The access policy determines whether the data directory
is shared or private. Data collaborators can update shared data, while data downloaders
can only download data. When a data requester sends a data download request, the system
verifies their download or collaborator permission. The data owner then responds to the

Algorithm 9 ProbeDuplicateproof.

Input: upload data dataupload

Output: Verification results result

CID ← IPFSUpload(dataupload);

1 if CID already exists in blockchain network then

2 Throw Duplicate sharing error;

3 else

4 you can add the CID to the blockchain network and upload data directory;

5 return true;

6 end

Algorithm 8 ProbeTamperproof.

Input: Download data datadownload, data directory key k

Output: Verification results result

CID ← getStringState(k);

new CID ← IPFSUpload(datadownload);

1 if: CID == new CID then

2 return true;

3 else

4 return false;

5 end

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 14/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

data download request. If the download request is granted, a P2P data transfer channel is
established between the two parties through sockets. The data owner generates a dynamic
key based on the agreed point in time and encrypts the data during transmission. The data
requester generates a dynamic key based on the same point in time when receiving the data
and decrypts the received data. The socket connection is terminated at the end of the data
transfer to complete the data download. The network transmission procedure for data
sharing is illustrated in Fig. 3. Algorithm 11 illustrates the procedure of data download
management.

Analysis
This section provides an overview of the analytics system, which includes data security,
data privacy, and data record traceability features.

Security and privacy
The security and privacy of the system are crucial for the success of the analytics system.
The reliability of Hyperledger Fabric is a key factor in ensuring the security of the system.
The Hyperledger Fabric network is a permissioned blockchain, and all nodes that join the
network must be licensed and issued certificates by a CA authority. If an organization does

Algorithm 10 TOTP256.

Input: Static Secret secretstatic, Timestamp T, key length length

Output: Dynamic Secret secretdynamic

1 X ← 30;

2 T ← T/X;

3 //Generate a 16-digit string based on the timestamp

4 steps ← Long.toHexString(T).toUpperCase();

5 if steps.length , 16 then

6 steps ← “0” + steps;

7 end

8 //Generate key using HmacSHA256 encryption algorithm

9 hmac ← Mac.getInstance(“HmacSHA256”);

10 macKey ← new SecretKeySpec(secretstatic, “RAW”);

11 hmac.init(macKey);

12 hmackey ← hmac.doFinal(steps);

13 //Intercept the dynamic key of fixed length length

14 secretdynamic new String(hmackey,StandardCharsets.UTF_8);

15 if secretdynamic.length < length

16 secretdynamic “0” + secretdynamic;

17 end

18 return secretdynamic;

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 15/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

Figure 3 Network transmission mode of data sharing. Full-size DOI: 10.7717/peerj-cs.1962/fig-3

Algorithm 11 dataDownload.

Input: Data directory key k

Output: Execution results result

1 if The user has download privilege then

2 data directory ← getStringState(k);

3 ipAddress,port ← get from the data directory;

4 //Establish a socket connection with the data recipient and the data owner

5 socket ← new Socket(InetAddress.getByName(ipAddress),port);

6 send data download request to the data owner;

7 else

8 Throw privilege error;

9 end

10 if The data owner agree the request then

11 T ← getTimestamp();

12 //Generate a dynamic key with the immutable Static secret and timestamp T

13 dynamic secret ← generateTOTP256(Static secret,T,keylength);

14 //Encrypt data with the dynamic secret

15 Encrypted data ← encry(dynamic secret,data);

16 and the data recipient decrypts data according to the same sending time

17 //close the socket connection

18 socket.close();

19 return true;

20 else

21 return false;

22 end

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 16/26

http://dx.doi.org/10.7717/peerj-cs.1962/fig-3
http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

not trust a user, the organization administrator can reject the user from joining the Fabric
network and revoke the user’s certificate at the same time. User certificates also need to be
renewed on time to ensure the reliability of the Hyperledger Fabric network, which can
guarantee the security of the data.

To protect the privacy of the data, the data is not directly uploaded to the Fabric ledger
but rather the metadata of the data is recorded on the ledger as a data directory. This
approach ensures that the privacy of the data is not compromised.

Additionally, the data is uploaded to the IPFS network without informing others, and
the IPFS private network strictly controls the nodes that join the network. Therefore, even
if the CID is leaked, others cannot access the data based on the data CID. The only way for
users to access the shared data is to initiate a data request to the data owner and get the
data owner’s approval for the request. Thus, the system can ensure both data privacy and
security. Furthermore, the schemes are subject to comparative analysis across various
dimensions, encompassing data integrity verification, resistance to tampering, data
security, and the utilization of dynamic key and IPFS-based technology (Liang et al., 2022;
Zhou et al., 2021; Xu et al., 2022; Wang, Zhang & Zhang, 2019). The outcomes of the
security analysis are presented in Table 4.

Traceability

Traceability is a fundamental characteristic of blockchain technology that ensures
transparency and accountability in the system. In this analytics system, users can easily
view the historical data of the ledger by accessing the ledger data. The traceability feature
allows users to track the modifications made to the ledger data, which ensures
transparency and helps to prevent fraudulent activities. Users can view the historical
version of the data directory, the uploader, and the historical CID of the data, which helps
to identify any changes made to the data. This traceability feature is essential for data
record keeping and provides an added layer of security to the system.

Data integrity
This study advocates the adoption of the IPFS to securely store the hash values of shared
data in a permanent manner. The hash values, once stored within the blockchain, remain
immune to tampering and offer traceability, thereby safeguarding the integrity of the
associated data. Subsequent to the successful download by the data requester, the system

Table 4 Comparison results of similar schemes.

Features Ours Pro. (Liang et al., 2022) Pro. (Zhou et al., 2021) Pro. (Xu et al., 2022) Pro. (Wang, Zhang & Zhang, 2019)

Data integrity verification Yes No No Yes Yes

TAMPER-PROOF Yes Yes Yes Yes Yes

Data security Yes Yes Yes No No

Dynamic key Yes No No No No

IPFS Yes Yes No No No

Data cloud storage No No No Yes Yes

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 17/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

autonomously generates the hash value for the acquired data and conducts a verification
process. This rigorous verification mechanism serves to guarantee that the downloaded
data remains immune to malicious tampering and inadvertent processing errors during
the sharing process.

Trust model

The security model of a smart contract’s access control is contingent upon the
endorsement policy established during the installation of the chain code. In adherence to
the trust model, where tolerance extends to a maximum of n malicious nodes, the
endorsement policy for the smart contract can be configured to require validation from n
+1 endorsing peers. Consequently, this strategic setting ensures that transaction proposals
instigated by potentially malicious nodes are unable to garner the requisite endorsements,
fortifying the robustness of the access control mechanism.

Resistance to ciphertext only attack
This study advocates the adoption of a dynamic key algorithm to generate keys during data
transmission. The encryption of data involves the utilization of distinct keys for each
transmission event, ensuring the generation of a new key on every data transmission
instance. This innovative approach effectively mitigates the security concern of attackers
attempting to recover plaintext or decipher the key from encrypted ciphertext, a
vulnerability associated with the repeated use of the same encryption key.

EXPERIMENT AND RESULTS
This section presents the implementation of the system, including the environment setup
and network deployment.

Environment settings
Table 5 presents the versions of the dependencies required for the development
installation.

Network deployment
Certificates generation

In order to join the Hyperledger Fabric network, certificates play a vital role in the
authentication and establishment of TLS channels for secure communication between
users. Fabric employs two types of certificates, namely MSP certificates for authentication
and TLS certificates to prevent attacks during user communication.

To generate the necessary certificates for the network, the system uses the Fabric binary
package’s cryptogen tool. This process involves customizing the network node
configuration based on the template configuration file and defining the administrators and
users of the network group. Once the network configuration is defined, the certificates can
be automatically generated through a command.

Order and peer deployment
Hyperledger Fabric is designed to be modular, allowing sorting services and organizing
peer nodes to be deployed on different machines to reduce communication pressure on a

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 18/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

single machine. Prior to deploying nodes, it is necessary to generate channel files and write
configuration files to define relevant configuration and topology information across the
network. The configtxgen tool is then used to generate Genesis blocks and channel files
based on the configuration file.

In addition, this module writes yaml configuration files for the network order nodes and
peer nodes based on the network topology, and uses docker-compose to automatically pull
the required images and start the nodes. The channel file is used to generate the network
channel and organize the nodes to join the channel through the creation block.

Smart contract deployment

Smart contracts need to be deployed after the Hyperledger Fabric network. In this research,
we use Java to write the smart contracts. Once the smart contract is written, it is packaged
into a JAR file and uploaded to the peer node machine. This approach saves time during
chain code installation. The chain code needs to be installed on each peer node of the
group, and the group’s administrator needs to approve the installation to join the channel.
After all groups grant permission, one of the group’s administrators needs to commit the
chain code to the channel. Following this, Hyperledger Fabric can respond to client
requests to the smart contract.

IPFS deployment
The IPFS network plays a crucial role in the system. To begin with, it is essential to ensure
that all system users have IPFS installed. Users need to interact with the IPFS nodes
through the IPFS API and configure the API network IP and port number. The IPFS nodes
are started using the “ipfs daemon” command, after which all nodes joining the network
must be authorized. To implement a dedicated IPFS network within the group, users in the
same group are configured, while users from other groups are denied access to this
network.

System implementation
As both Hyperledger Fabric and IPFS offer Java SDKs, this system is primarily developed
using Java, with a lightweight front-end framework called Layui for the user interface. To
interact with the Hyperledger Fabric and IPFS networks, users must first install IPFS and
obtain the necessary certificates. The system consists of shared data management, private
data management, shared data upload, shared data download, and private data download

Table 5 The version of dependencies in our implementation environment.

Dependencies Version

Go 1.18.3

Hyperledger fabric 2.4.1

Docker engine 1.23.2

Docker-compose 20.10.14

IPFS 0.17.0

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 19/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

pages. Additionally, the data transfer system is implemented using Java sockets. To fulfill a
data sharing request, the user initiating the request must run this system to transfer the
requested data.

EVALUATION
The present study conducted an evaluation of the system, which comprised a sorting
service deployed on three order nodes on one server, as well as an organization deployed
on two servers. Each organization represented a group and included three peer nodes. All
three servers ran on the Centos7 system, while the client was a Windows server.

Functional evaluation
Public data directory management
The public data directory management function is evaluated by the following cases.

1. A user with data sharing privileges uploads a shared data directory. The access policy
selects two groups, and the evaluation result is whether the user can find the newly
shared data directory in the shared data directory page.

2. Users without data sharing privileges upload the shared data directory. The evaluation
result is that data sharing fails and there is no new shared data directory on the Shared
Data Directory page.

3. A user with collaborator privileges updates the data directory. The evaluation result is
that the updated data directory can be found on the Shared Data Directory page.

4. Users without collaborator privileges update the data directory. The evaluation results in
a message that no permission to modify the data directory appears on the page.

Group private data directory management
This part is evaluated in terms of whether different group users can see the group private
data directory. The functionality is evaluated using the following cases.

1. A user with data sharing privileges uploads a private data directory. The access policy
selects a single group and evaluates whether the newly added data directory can be found
on the Private Data directory page.

2. A user without data sharing privileges uploads a private data directory. Evaluate whether
data sharing fails and no new data directories are added to the Private Data directory
page.

3. The private data directory page is accessed after logging in users from two different
groups. Evaluate whether the data directories are different for private data, and the
newly added private data directories are only displayed in one group page.

Data probe management
This section tests whether the probe can detect data tampering and duplicate data sharing.
The functionality is evaluated by the following cases.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 20/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

1. Transferring data that is different from when the system is shared. The evaluation uses
probe detection to find whether data tampering has occurred.

2. Sharing data that has not been shared before. Evaluate whether the data CID is
generated and the shared data directory is uploaded to the Fabric ledger without errors.

3. Share data that has already been shared. Evaluate if a data CID is generated and prompt
for no duplicate sharing if the data was already shared at the time of upload.

Data sharing
This part evaluates the core modules of the framework, mainly to test whether the data can
be encrypted, decrypted and transmitted properly. And test the data collaborator and
downloader permission management. The following cases are used to evaluate the
function.

1. A user without data downloader permission downloads data. Test whether it prompts
data downloading failure and indicates that there is no data downloading permission.

2. A data sharer updates the set of data downloader and collaborator permissions. Test
whether the permission can be updated and the shared data directory page shows the
updated content.

3. Non-data sharers update the set of data downloader and collaborator permissions. Test
if the update fails and indicates that there is no permission to modify the collaborator
and downloader collections.

4. The data owner sends data without invoking the dynamic key algorithm by the data
requester. Test if the data format is unrecognizable characters that received by the data
requestor.

5. The data owner sends the data and the data requestor invokes the dynamic key
algorithm. Test whether the data requestor can receive the shared data accurately.

Data sharing efficiency evaluation
The system’s performance is evaluated by generating data shares of various sizes to assess
the efficiency of data sharing. The initial evaluation involves generating 10 data with sizes
ranging from 100 to 1,000 MB. The results of the probe generation time and the time
required for verifying data integrity during data sharing are presented. Table 6 captures the
temporal demands associated with recording a transaction involving data directory
storage. The findings reveal consistent transaction times across varied data sizes. Notably,
the primary influencers on transaction time are network-related factors, encompassing
network latency and bandwidth. Activities involving data probe generation and data
integrity verification necessitate hash value computations, and the computational duration
exhibits an incremental trend with expanding data sizes. Users initiate probes by initially
computing the hash value of the data. Consequently, the timeframe dedicated to data
integrity verification during testing is observed to be comparatively less than the time
allocated for probe generation.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 21/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

The second evaluation assessed the efficacy of the dynamic key algorithm and the
associated time required for dynamic key generation. The testing involved five datasets
ranging in size from 100 to 500 megabytes. As depicted in Table 7, the dynamic key
generation consistently requires approximately 0.5 s, demonstrating its efficiency
irrespective of variations in data size. Notably, the results indicate that the dynamic key
generation time remains independent of data size fluctuations. Furthermore, the dynamic
key generation process proves successful, producing keys with a consistent length of 8 bits,
aligning with the predetermined setting in the algorithm.

The outcomes of evaluations indicate that the transaction time associated with sharing
data in the proposed scheme remains unswayed by variations in data size. Enhanced
deployment of peer nodes enables the equitable distribution of endorsement workload,
consequently reducing transaction times. Notably, the dynamic key generation time
exhibits independence from data size, with each iteration yielding distinct keys. Elevating
the complexity of the dynamic key can be achieved by adjusting its length, thereby
enhancing the security of data transmission.

CONCLUSION AND FUTURE WORK
In this study, we present a novel architecture for data sharing based on IPFS and
Consortium Blockchain to address the issues of data tampering and loss of encryption
keys. This architecture eliminates the need for central servers or uploading data to IPFS,

Table 6 Time usage with different file sizes.

File size (MB) Transaction (s) Data probe generation (s) Verify data integrity (s)

100 0.083 0.838 0.521

200 0.073 2.923 1.255

300 0.111 3.246 1.772

400 0.083 3.854 2.186

500 0.102 4.263 2.585

600 0.094 4.932 3.461

700 0.086 5.547 3.725

800 0.093 6.783 4.204

900 0.109 7.416 4.655

1,000 0.103 8.132 5.012

Table 7 Dynamic key generation time is independent of file sizes.

File size (MB) Dynamic key generation (s) Dynamic key

100 0.52 02611078

200 0.504 35820769

300 0.5 39365934

400 0.515 29849760

500 0.501 99935938

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 22/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

enabling users to store data locally without risking privacy breaches. Additionally, we
design an access control method based on smart contracts to achieve fine-grained access
control of shared data. Furthermore, the use of dynamic keys resolves the issue of key
transmission and storage. These features make our model architecture highly applicable
for secure and efficient data sharing.

However, there are still some shortcomings in this article. There are several aspects that
could be explored for further research. For instance, we will explore the integration of CP-
ABE within smart contracts to fortify access control mechanisms. Additionally, the
investigation aims to incorporate advanced privacy-preserving techniques, such as
homomorphic encryption and federated learning, to augment the privacy computation of
the system. Moreover, due to the nature of IPFS generating CIDs based on data content,
the CIDs generated for similar data content can vary greatly, making it difficult for the
system to identify whether similar data is already shared or not. Lastly, data can only be
transferred when the user is online, and data sharing is disabled when the user is offline,
which can be inconvenient for users. Future research could address these issues to improve
the functionality and security of the system.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the 2020 Program for Liaoning Excellent Talents (LNET) in
University (1100003000301), and the National Key Research and Development Projects
(2022YFC3302500). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
2020 Program for Liaoning Excellent Talents (LNET) in University: 1100003000301.
National Key Research and Development Projects: 2022YFC3302500.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Feng Wen conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.
� Zhuo Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
� Leda Qu performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 23/26

http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

� Haixin Huang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.
� Xiaojie Hu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at figshare: 王, 卓 (2023). row data.zip. figshare. Dataset.
https://doi.org/10.6084/m9.figshare.23904213.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1962#supplemental-information.

REFERENCES
Anwar S, Tulsyan R, Saha S, Sahana SK. 2022. AnonChain: a secure file sharing framework using

IPFS integrated blockchain. International Journal of Mathematical, Engineering and
Management Sciences 7(6):844 DOI 10.33889/24557749.

Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, Song D. 2007. Provable data
possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security. New York: ACM, 598–609.

Capar C, Zafer M, Goeckel D, Towsley D, Agrawal D. 2010. Physical-layer-enhanced wireless
secret key exchange. University of Massachusetts, Amherst, MA, Technical Report UM-CS-
2010-032. Available at https://web.cs.umass.edu/publication/docs/2010/UM-CS-2010-032.pdf.

Chen X, Li J, Huang X, Ma J, Lou W. 2014. New publicly verifiable databases with efficient
updates. IEEE Transactions on Dependable and Secure Computing 12(5):546–556
DOI 10.1109/TDSC.2014.2366471.

Chen J, Zhang C, Yan Y, Liu Y. 2022. FileWallet: a file management system based on IPFS and
hyperledger fabric. Computer Modeling in Engineering & Sciences 130(2):949–966
DOI 10.32604/cmes.2022.017516.

Deswarte Y, Quisquater JJ, Saidane A. 2004. Remote integrity checking. In: Jajodia S, Strous L,
eds. Integrity and Internal Control in Information Systems VI. Boston: Springer, 1–11.

Gazzoni Filho DL, Barreto PSLM. 2006. Demonstrating data possession and uncheatable data
transfer. Cryptology ePrint Archive.

Huang H, Chen X, Wang J. 2020. Blockchain-based multiple groups data sharing with anonymity
and traceability. Science China Information Sciences 63(3):1–13
DOI 10.1007/s11432-018-9781-0.

Huang H, Lin J, Zheng B, Zheng Z, Bian J. 2020.When blockchain meets distributed file systems:
an overview, challenges, and open issues. IEEE Access 8:50574–50586
DOI 10.1109/ACCESS.2020.2979881.

Iyer S. 2011. Cyber security for smart grid, cryptography, and privacy. International Journal of
Digital Multimedia Broadcasting 2011:1–8 DOI 10.1155/2011/372020.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 24/26

https://doi.org/10.6084/m9.figshare.23904213.v1
http://dx.doi.org/10.7717/peerj-cs.1962#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1962#supplemental-information
http://dx.doi.org/10.33889/24557749
https://web.cs.umass.edu/publication/docs/2010/UM-CS-2010-032.pdf
http://dx.doi.org/10.1109/TDSC.2014.2366471
http://dx.doi.org/10.32604/cmes.2022.017516
http://dx.doi.org/10.1007/s11432-018-9781-0
http://dx.doi.org/10.1109/ACCESS.2020.2979881
http://dx.doi.org/10.1155/2011/372020
http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

Kumar R, Tripathi R. 2019. Implementation of distributed file storage and access framework using
IPFS and blockchain. In: 2019 Fifth International Conference on Image Information Processing
(ICIIP). Piscataway: IEEE, 246–251.

LiangW, Yang Y, Yang C, Hu Y, Xie S, Li K-C, Cao J. 2022. PDPChain: a consortium blockchain-
based privacy protection scheme for personal data. IEEE Transactions on Reliability 72(2):586–
598 DOI 10.1109/TR.2022.3190932.

Liu T, Liu Y, Mao Y, Sun Y, Guan X, Gong W, Xiao S. 2013. A dynamic secret-based encryption
scheme for smart grid wireless communication. IEEE Transactions on Smart Grid 5(3):1175–
1182 DOI 10.1109/TSG.2013.2264537.

Nair PR, Dorai DR. 2021. Evaluation of performance and security of proof of work and proof of
stake using blockchain. In: 2021 Third International Conference on Intelligent Communication
Technologies and Virtual Mobile Networks (ICICV). Piscataway: IEEE, 279–283.

Nakamoto S. 2008. Bitcoin: a peer-to-peer electronic cash system. Decentralized Business
Review. Available at https://bitcoin.org/bitcoin.pdf.

NazM, Al-Zahrani FA, Khalid R, Javaid N, Qamar AM, Afzal MK, ShafiqM. 2019.A secure data
sharing platform using blockchain and interplanetary file system. Sustainability 11(24):7054
DOI 10.3390/su11247054.

Nyaletey E, Parizi RM, Zhang Q, Choo K-KR. 2019. BlockIPFS-blockchain-enabled
interplanetary file system for forensic and trusted data traceability. In: 2019 IEEE International
Conference on Blockchain (Blockchain). Piscataway: IEEE, 18–25.

Saputro N, Akkaya K. 2012. Performance evaluation of smart grid data aggregation via
homomorphic encryption. In: 2012 IEEE Wireless Communications and Networking Conference
(WCNC). Piscataway: IEEE, 2945–2950.

Shen J, Yang H, Vijayakumar P, Kumar N. 2021. A privacy-preserving and untraceable group
data sharing scheme in cloud computing. IEEE Transactions on Dependable and Secure
Computing 19(4):2198–2210 DOI 10.1109/TDSC.2021.3050517.

Shen J, Zhou T, Chen X, Li J, Susilo W. 2017a. Anonymous and traceable group data sharing in
cloud computing. IEEE Transactions on Information Forensics and Security 13(4):912–925
DOI 10.1109/TIFS.2017.2774439.

Shen J, Zhou T, He D, Zhang Y, Sun X, Xiang Y. 2017b. Block design-based key agreement for
group data sharing in cloud computing. IEEE Transactions on Dependable and Secure
Computing 16(6):996–1010 DOI 10.1109/TDSC.2017.2725953.

Sun Y, Mao Y, Liu T, Sun Y, Liu Y, Guan X. 2012. A dynamic secret-based encryption method in
smart grids wireless communication. In: IEEE PES Innovative Smart Grid Technologies.
Piscataway: IEEE, 1–5.

Wang S, Zhang D, Zhang Y. 2019. Blockchain-based personal health records sharing scheme with
data integrity verifiable. IEEE Access 7:102887–102901 DOI 10.1109/ACCESS.2019.2931531.

Wong CW, Shea JM, Wong TF. 2008. Secret sharing in fast fading channels based on reliability-
based hybrid ARQ. In: MILCOM 2008-2008 IEEE Military Communications Conference.
Piscataway: IEEE, 1–7.

Xiao S, Gong W. 2012. Wireless network security using randomness. US Patent 8,204,224
Available at https://patents.google.com/patent/US8204224B2/en.

Xiao S, Gong W, Towsley D. 2010. Secure wireless communication with dynamic secrets. In: 2010
Proceedings IEEE INFOCOM. Piscataway: IEEE, 1–9.

Xu G, Li S, Lai M, Gan Y, Feng X, Huang Q, Li L, Li W. 2022. Verification control algorithm of
data integrity verification in remote data sharing. KSII Transactions on Internet and Information
Systems (TIIS) 16(2):565–586 DOI 10.3837/tiis.2022.02.011.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 25/26

http://dx.doi.org/10.1109/TR.2022.3190932
http://dx.doi.org/10.1109/TSG.2013.2264537
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.3390/su11247054
http://dx.doi.org/10.1109/TDSC.2021.3050517
http://dx.doi.org/10.1109/TIFS.2017.2774439
http://dx.doi.org/10.1109/TDSC.2017.2725953
http://dx.doi.org/10.1109/ACCESS.2019.2931531
https://patents.google.com/patent/US8204224B2/en
http://dx.doi.org/10.3837/tiis.2022.02.011
http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

Zhang Z, Chen X, Li J, Tao X, Ma J. 2019. HVDB: a hierarchical verifiable database scheme with
scalable updates. Journal of Ambient Intelligence and Humanized Computing 10(8):3045–3057
DOI 10.1007/s12652-018-0757-8.

Zheng Q, Li Y, Chen P, Dong X. 2018.An innovative IPFS-based storage model for blockchain. In:
2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). Piscataway: IEEE,
704–708.

Zhou J, Feng Y, Wang Z, Guo D. 2021. Using secure multi-party computation to protect privacy
on a permissioned blockchain. Sensors 21(4):1540 DOI 10.3390/s21041540.

Wen et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1962 26/26

http://dx.doi.org/10.1007/s12652-018-0757-8
http://dx.doi.org/10.3390/s21041540
http://dx.doi.org/10.7717/peerj-cs.1962
https://peerj.com/computer-science/

	Enhancing secure multi-group data sharing through integration of IPFS and hyperledger fabric
	Introduction
	Related work
	Method
	Experiment and results
	Evaluation
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

