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ABSTRACT
Causality testing methods are being widely used in various disciplines of science.
Model-free methods for causality estimation are very useful, as the underlying model
generating the data is often unknown. However, existing model-free/data-driven
measures assume separability of cause and effect at the level of individual samples of
measurements and unlike model-based methods do not perform any intervention to
learn causal relationships. These measures can thus only capture causality which is by
the associational occurrence of ‘cause’ and ‘effect’ between well separated samples. In
real-world processes, often ‘cause’ and ‘effect’ are inherently inseparable or become
inseparable in the acquired measurements. We propose a novel measure that uses an
adaptive interventional scheme to capture causality which is not merely associational.
The scheme is based on characterizing complexities associated with the dynamical
evolution of processes on short windows of measurements. The formulated measure,
Compression-Complexity Causality is rigorously tested on simulated and real datasets
and its performance is compared with that of existing measures such as Granger
Causality and Transfer Entropy. The proposed measure is robust to the presence of
noise, long-termmemory, filtering and decimation, low temporal resolution (including
aliasing), non-uniform sampling, finite length signals and presence of common driving
variables. Our measure outperforms existing state-of-the-art measures, establishing
itself as an effective tool for causality testing in real world applications.

Subjects Adaptive and Self-Organizing Systems, Data Science, Scientific Computing and
Simulation
Keywords Causality, Causal inference, Intervention, Compression-complexity, Model-based,
Dynamical complexity, Negative causality

INTRODUCTION
The ‘Ladder of Causation’ very rightly arranges hierarchically the abilities of a causal
learner (Pearl & Mackenzie, 2018). The three levels proposed are: 1. Association, 2.
Intervention and 3. Counterfactuals, when arranged from the lower rung to the higher
rung. Currently, causality learning and inferring algorithms using only data are still stuck
at the lowermost rung of ‘Association’.

Measures such as Granger Causality (GC) (Granger, 1969) and its various
modifications (Dhamala, Rangarajan & Ding, 2008; Marinazzo, Pellicoro & Stramaglia,
2008), as well as, Transfer Entropy (TE) (Schreiber, 2000) that are widely being used across
various disciplines of science—neuroscience (Seth, Barrett & Barnett, 2015; Vicente et al.,
2011), climatology (Stips et al., 2016; Mosedale et al., 2006), econometrics (Hiemstra &
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Jones, 1994; Chiou-Wei, Chen & Zhu, 2008), engineering (Bauer et al., 2007) etc. are largely
‘model-free’/ ‘data-driven’ measures of causality. They make minimal assumptions about
the underlying physical mechanisms and depend more on time series characteristics (Seth,
Barrett & Barnett, 2015). Hence, they have a wider scope compared to specific model
assumptions made by methods such as Dynamic Causal Modelling (Friston, Harrison &
Penny, 2003) and Structural Equation Modeling (Pearl, 2009). However, the assumptions
made by these methods are often ignored in practice, resulting in erroneous causality
estimates on real world datasets. These measures can accurately quantify the degree of
coupling between given time series only if assumptions (such as linearity, stationarity and
presence of Gaussian noise in case of GC and stationarity, markovian in case of TE) are
satisfied. Thus, these methods, when correctly applied, can infer the presence of causality
when it is by ‘association’ alone and not due to higher levels on the Ladder of Causation. To
explain this better, consider a case where the ‘cause’ and ‘effect’ are inseparable. This can
happen even when the time series satisfies stationarity but is non-markovian or in several
instances when it is non-stationary. In fact, the stated assumptions are quite unlikely to be
met in practice considering that acquired data are typically samples of continuous/discrete
evolution of real world processes. These processes might be evolving at spatio-temporal
scales very different from the scales of measurements. As a result, cause and effect may
co-exist in a single measurement or overlap over blocks of measurements, making them
inseparable. In such a scenario, it would be incorrect to estimate causality by means
of correlations and/or joint probabilities which implicitly assumes the separability of
‘cause’ and ‘effect’. Both GC and TE make this assumption of separability. Circularly, to
characterize a time series sample as purely a ‘cause’ or an ‘effect’ is possible only if there
is a clear linear/markovian separable relationship. When cause and effect are inseparable,
‘associational’ measures of causality such as GC and TE are insufficient and we need a
method to climb up the ladder of causation.

Intervention based approaches to causality rank higher than association. It involves
not just observing regularities in the data but actively changing what is there and then
observing its effect. In other words, we are asking the question—what will happen if we ‘do’
something? Given only data and not the power to intervene on the experimental set up,
intervention can only be done by building strong, accurate models. Model-based causality
testing measures, alluded to before, will fall in this category. They invert the model to
obtain its various parameters, and then intervene to make predictions about situations
for which data is unavailable. However, these methods are very domain specific and the
models require specific knowledge about the data. With insufficient knowledge about the
underlying model which generated the data, such methods are inapplicable.

Given only data that has already been acquired without any knowledge of its generating
model or the power to intervene on the experimental/real-world setting, we can ask the
question—what kind of intervention is possible (if at all) to infer causality? The proposed
‘interventional causality’ approach will not merely measure ‘associational causality’ because
it does not make the assumption that the cause and its effect are present sample by sample
(separable) as is done by existing model-free, data based methods of causality estimation.
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Even in cases where cause and its effect are inseparable, which is probably true for most
real-world processes, the change in the dynamics of processes would contain information
about causal influences between them. With this understanding, we propose the novel
idea of data-based, model-free Interventional Complexity Causality (ICC). In this paper,
we formalize the notion of ICC using Compression-Complexity to define Compression-
Complexity Causality (CCC). CCC shows some interesting properties. We test CCC on
simulated and real datasets and compare its performance with existing model-free causality
methods. Our results demonstrate that CCC overcomes the limitations of ‘associational’
measures (GC and TE) to a large extent.

Other methods for causality estimation based on compression have been proposed in
literature (Budhathoki & Vreeken, 2016; Wieczorek & Roth, 2016), but the very philosophy
behind our method and its implementation are very different from these existing methods.

This paper is organized as follows. The idea of Dynamical Complexity and its specific
realization Dynamical Compression-Complexity are discussed in ‘Dynamical Complexity
(DC) and Dynamical Compression-Complexity (CC)’. Interventional Complexity
Causality and its specific case Compression-Complexity Causality (CCC) are discussed
in ‘Interventional Complexity Causality (ICC) and Compression-Complexity Causality
(CCC)’. How it is possible to obtain positive and negative values of CCC and what its
implications are on the kind of causal influence is detailed in ‘Positive and Negative CCC’.
Results and discussion on the performance of CCC and its comparison with existing
measures, GC and TE, are included in ‘Results and Discussion’. This is followed by
conclusions and future work in ‘Conclusions’. A list of frequently used abbreviations is
provided at the end of the paper.

DYNAMICAL COMPLEXITY (DC) AND DYNAMICAL
COMPRESSION-COMPLEXITY (CC)
There can be scenarios where cause and effect co-exist in a single temporal measurement
or blocks of measurements. For example, this can happen (a) inherently in the dynamics
of the generated process, (b) when cause and effect occur at different spatio-temporal
scales, (c) when measurements are acquired at a scale different from the spatio-temporal
scale of the cause–effect dynamics (continuous or discrete). In such a case, probabilities
of joint occurrence is too simplistic an assumption to capture causal influences. On the
other hand, the very existence of causality here is actually resulting in a change of joint
probabilities/correlationswhich cannot be captured by an assumption of static probabilities.
To overcome this problem, we capture causality using the idea of dynamical complexity.
Inseparable causal influences within a time series (or between two time series) would be
reflected in their dynamical evolution. Dynamical Complexity (DC) of a single time series
X is defined as below -

DC(1X |Xpast )=C(Xpast +1X)−C(Xpast ), (1)

where 1X is a moving window of length w samples and Xpast is a window consisting of
immediate past L samples of1X . ‘+’ refers to appending, for e.g., for time seriesA= [1,2,3]
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and B= [p,q], then A+B= [1,2,3,p,q].C(X) refers to complexity of time series X .DC ,
thus varies with the temporal index of 1X and can be averaged over the entire time series
to estimate its average DC .

It is important to note that dynamical complexity is very different from complexity rate
(CR), which can be estimated as follows -

CR(1X |Xpast )=C(Xpast ,1X)−C(Xpast ), (2)

where C(Xpast ,1X) is the joint complexity of Xpast and 1X . Complexity rate can be seen
as a generalization of Shannon entropy rate (Cover & Thomas, 2012), the difference being
that the former can be computed using any notion of complexity, not just entropy. As is
evident from Eqs. (1) and (2), CR is estimated based on the joint occurrences of 1X and
Xpast , whileDC captures temporal change in complexity on the evolution of the process. In
case of the inseparability of cause and effect, it would be inappropriate to use CR to infer
causal relationships.

Now for this notion of ‘‘complexity’’, that has been referred to in this section several
times, there is no single unique definition. As noted inNagaraj & Balasubramanian (2017b),
Shannon entropy (Shannon, 1948; Cover & Thomas, 2012) is a very popular and intuitive
measure of complexity. A low value of Shannon entropy indicates high redundancy and
structure (low complexity) in the data and a high value indicates low redundancy and
high randomness (high complexity). For ergodic sources, owing to Shannon’s noiseless
source coding theorem (Cover & Thomas, 2012), (lossless) compressibility of the data is
directly related to Shannon entropy. However, robustly estimating compressibility using
Shannon entropy for short andnoisy time series is a challenge (Nagaraj & Balasubramanian,
2017a). Recently, the notion of compression-complexity has been introduced (Nagaraj &
Balasubramanian, 2017a) to circumvent this problem. Compression-complexity defines
the complexity of a time series by using optimal lossless data compression algorithms. It is
well acknowledged that data compression algorithms are not only useful for compression
of data for efficient transmission and storage, but also act as models for learning and
statistical inference (Cilibrasi, 2007). Lempel–Ziv (LZ) Complexity (Lempel & Ziv, 1976)
andEffort-To-Compress (ETC) (Nagaraj, Balasubramanian & Dey, 2013) are twomeasures
which fall in this category.

As per the minimum description length principle (Rissanen, 1978), that formalizes the
Occam’s razor, the best hypothesis (model and its parameters) for a given set of data is the
one that leads to its best compression. Extending this principle for causality, an estimation
based on dynamical complexity (compressibility) of time series would be the best possible
means to capture causally influenced dynamics.

Out of the complexity measures discussed before, ETC seemed to be most suitable
for estimation of dynamical complexity. ETC is defined as the effort to compress the
input sequence using the lossless compression algorithm known as Non-sequential
Recursive Pair Substitution (NSRPS). It has been demonstrated that both LZ and ETC
outperformShannon entropy in accurately characterizing the dynamical complexity of both
stochastic (Markov) and deterministic chaotic systems in the presence of noise (Nagaraj
& Balasubramanian, 2017a; Nagaraj & Balasubramanian, 2017b). Further, ETC has shown

Kathpalia et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.196 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.196


to reliably capture complexity of very short time series where even LZ fails (Nagaraj &
Balasubramanian, 2017a), and for analyzing short RR tachograms from healthy young and
old subjects (Balasubramanian & Nagaraj, 2016). Recently, ETC has been used to propose
a compression-complexity measure for networks (Virmani & Nagaraj, 2019).

In order to faithfully capture the process dynamics, DC is required to be estimated
on overlapping short-length windows of time series data. Infotheoretic quantities (like
shannon entropy), which are based on the computation of probability densities, are not
the ideal choice here (owing to finite-length effects). Compression-Complexity measures
are more appropriate choices. Because of the advantages of ETC over LZ mentioned above,
we use ETC to formulate our measure of causality discussed in the next section. Before
that, we describe how individual and joint compression complexities are computed using
ETC (Nagaraj, Balasubramanian & Dey, 2013) in the subsections below.

ETC measure for a time series: ETC(X )
Since ETC expects a symbolic sequence as its input (of length > 1), the given time series
should be binned appropriately to generate such a sequence. Once such a symbolic sequence
is available, ETC proceeds by parsing the entire sequence (from left to right) to find that
pair of symbols in the sequence which has the highest frequency of occurrence. This pair
is replaced with a new symbol to create a new symbolic sequence (of shorter length). This
procedure is repeated iteratively and terminates only when we end up with a constant
sequence (whose entropy is zero since it consists of only one symbol). Since the length of
the output sequence at every iteration decreases, the algorithm will surely halt. The number
of iterations needed to convert the input sequence to a constant sequence is defined as the
value of ETC complexity. For example, the input sequence ‘12121112’ gets transformed as
follows: 12121112 7→ 33113 7→ 4113 7→ 513 7→ 63 7→ 7. Thus, ETC(12121112)= 5. ETC
achieves its minimum value (0) for a constant sequence and maximum value (m−1) for
a m length sequence with distinct symbols. Thus, we normalize the ETC complexity value
by dividing by m−1. Thus, normalized ETC(12121112)= 5

7 . Note that normalized ETC
values are always between 0 and 1 with low values indicating low complexity and high
values indicating high complexity.

Joint ETC measure for a pair of time series: ETC(X ,Y )
We perform a straightforward extension of the above mentioned procedure (ETC(X))
for computing the joint ETC measure ETC(X ,Y ) for a pair of input time series
X and Y of the same length. At every iteration, the algorithm scans (from left to
right) simultaneously X and Y sequences and replaces the most frequent jointly
occurring pair with a new symbol for both the pairs. To illustrate it by an example,
consider, X = 121212 and Y = abacac . The pair (X ,Y ) gets transformed as follows:
(121212,abacac) 7→ (1233,abdd) 7→ (433,edd) 7→ (53,fd) 7→ (6,g ). Thus, ETC(X ,Y )= 4
and normalized value is 4

5 . It can be noted that ETC(X ,Y )≤ ETC(X)+ETC(Y ).
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INTERVENTIONAL COMPLEXITY CAUSALITY (ICC) AND
COMPRESSION-COMPLEXITY CAUSALITY (CCC)
To measure how the dynamics of a process Y influence the dynamics of a process X ,
we intervene to create new hypothetical blocks of time series data, Ypast +1X , where
Ypast is a window of length L samples, taken from the immediate past of the window
1X . These blocks are created by ‘surgery’ and do not exist in reality in the data that is
already collected. Interventional Complexity Causality (ICC) is defined as the change in
the dynamical complexity of time series X when 1X is seen to be generated jointly by the
dynamical evolution of both Ypast and Xpast as opposed to by the reality of the dynamical
evolution of Xpast alone.

This formulation is actually in line with Wiener’s idea, according to which, time series
Y causes X , if incorporating the past of Y helps to improve the prediction of X (Wiener,
1956). While GC is based on the notion of improved predictability and TE on the reduction
of uncertainty, ICC is based on the notion of change in ‘dynamical complexity’ when
information from the past of Y is brought in, in order to check its causal influence on X .
The difference between existing approaches and the proposedmeasure is that the effect of Y
onX is analyzed based on ‘associational’ means in case of the former and by ‘interventional’
means in case of the latter. With this formulation, ICC is designed tomeasure effect, like GC
and TE, and not the mechanism, as in Dynamic Causal Modelling (Seth, Barrett & Barnett,
2015; Barrett & Barnett, 2013). To elaborate on this aspect, ICC cannot explicitly quantify
the interaction coefficients of the underlying generative model (physical mechanism),
but will only estimate causal influence based on change in dynamical complexities. It is,
however, expected that ICC will be closer to the underlying mechanism than existing
methods, because, by its very formulation, it taps on causes and their effects based on
dynamical evolution of processes.

Mathematically,

ICCYpast→1X =DC(1X |Xpast )−DC(1X |Xpast ,Ypast ), (3)

where DC(1X |Xpast ) is as defined in Eq. (1) and DC(1X |Xpast ,Ypast ) is as elaborated
below:

DC(1X |Xpast ,Ypast )=C(Xpast +1X ,Ypast +1X)−C(Xpast ,Ypast ), (4)

where C(·,·) refers to joint complexity. ICC varies with the moving temporal window1X
and its corresponding Ypast , Xpast . To estimate average causality from time series Y to X ,
ICCYpast→1X obtained for all 1X s are averaged.

The above is the generic description of ICC that can be estimated using any complexity
measure. For the reasons discussed in ‘Dynamical Complexity (DC) and Dynamical
Compression-Complexity (CC)’, we would like to estimate ICC using the notion of
Dynamical Compression-Complexity estimated by the measure ETC. The measure would
then become Interventional Compression-Complexity Causality. For succinctness, we refer
to it as Compression-Complexity Causality (CCC). To estimate CCC, time series blocks
Xpast ,Ypast ,Xpast+1X , and surgically createdYpast+1X are separately encoded (binned)—
converted to a sequence of symbols using ‘B’ uniformly sized bins for the application of
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1Henceforth, the same variables are used to
denote the binned/encoded versions of the
blocks.

ETC.1 For the binned time series blocks, Xpast , Ypast , Xpast +1X , Ypast +1X , to determine
whether Ypast caused 1X or not, we first compute dynamical compression-complexities,
denoted by CC ,

CC(1X |Xpast )= ETC(Xpast +1X)−ETC(Xpast ), (5)

CC(1X |Xpast ,Ypast )= ETC(Xpast +1X ,Ypast +1X)−ETC(Xpast ,Ypast ), (6)

Equation (5) gives the dynamical compression-complexity of1X as a dynamical evolution
of Xpast alone. Equation (6) gives the dynamical compression-complexity for 1X as a
dynamical evolution of both Xpast and Ypast . ETC(·) and ETC(·,·) refer to individual and
joint effort-to-compress complexities. For estimating ETC from these small blocks of data,
short-term stationarity of X and Y is assumed.

We now define Compression-Complexity Causality CCCYpast→1X as:

CCCYpast→1X =CC(1X |Xpast )−CC(1X |Xpast ,Ypast ). (7)

Averaged CCC from Y to X over the entire length of time series with the window 1X
being slided by a step-size of δ is estimated as—

CCCY→X =CCCYpast→1X =CC(1X |Xpast )−CC(1X |Xpast ,Ypast ), (8)

If CC(1X |Xpast ,Ypast )≈CC(1X |Xpast ), then CCCY→X is statistically zero, implying no
causal influence from Y to X . If CCCY→X is statistically significantly different from zero,
then we infer that Y causes X . A higher magnitude of CCCY→X implies a higher degree
of causation from Y to X . The length of Xpast ,Ypast , that is L is chosen by determining the
correct intervention point. This is the temporal scale at which Y has a dynamical influence
on X . Detailed criteria and rationale for estimating L and other parameters used in CCC
estimation: w (length of 1X), δ and B for any given pair of time series are discussed in
Section S3. CCC is invariant to local/global scaling and addition of constant value to the
time series. As CCC is based on binning of small blocks of time series data, it is noise
resistant. Furthermore, it is applicable to non-linear and short term stationary time series.
Being based on dynamical evolution of patterns in the data, it is expected to be robust to
sub-sampling and filtering.

For multivariate data, CCC can be estimated in a similar way by building dictionaries
that encode information from all variables. Thus, to check conditional causality from Y to
X amidst the presence of other variables (say Z andW ), two time varying dictionaries are
built—D that encodes information from all variables (X , Y , Z , W ) and D′ that encodes
information from all variables except Y (X , Z , W only). Once synchronous time series
blocks from each variable are binned, the dictionary at that time point is constructed by
obtaining a new sequence of symbols, with each possible combination of symbols from all
variables being replaced by a particular symbol. The mechanism for construction of these
dictionaries is discussed in Section S1. Subsequently, dynamical compression-complexities
are computed as:

CC(1X |D′past )= ETC(D′past +1X)−ETC(D′past ), (9)
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2It should be mentioned that, strictly
speaking, KL and JSD are not distance
measures since they don’t satisfy the
triangle inequality.

CC(1X |Dpast )= ETC(Dpast +1X)−ETC(Dpast ), (10)

whereD′past+1X represents the lossless encoding of joint occurrences of binned time series
blocks Xpast +1X , Zpast +1X , Wpast +1X and D′past refers to the lossless encoding of
joint occurrences of binned time series blocks Xpast , Zpast andWpast . Similarly, Dpast +1X
represents the lossless encoding of joint occurrences of binned time series blocksXpast+1X ,
Ypast +1X ,Zpast +1X , Wpast +1X and Dpast refers to the the lossless encoding of joint
occurrences of binned time series blocks Xpast , Ypast , Zpast andWpast .

Conditional Compression-Complexity Causality, CCCYpast→1X |Zpast ,Wpast , is then
estimated as the difference of Eqs. (9) and (10). Averaged Conditional Compression
Complexity-Causality over the entire time series with the window 1X being slided by a
step-size of δ is given as below:

CCCY→X |Z ,W =CC(1X |D′)−CC(1X |D). (11)

POSITIVE AND NEGATIVE CCC
The dynamical compression-complexities estimated for the purpose of CCC estimation,
CC(1X |Xpast ) and CC(1X |Xpast ,Ypast ), can be either positive or negative. For
instance, consider the case when CC(1X |Xpast ) becomes negative. This happens when
ETC(Xpast +1X) is less than ETC(Xpast ), which means that with the appending of 1X ,
the sequence Xpast has become more structured resulting in reduction of its complexity.
The value of CC(1X |Xpast ) is positive when appending of 1X makes Xpast less structured
(hence more complex). Similarly,CC(1X |Xpast ,Ypast ) can also become negative when ETC
realizes Xpast+1X , Ypast+1X to be more structured than Xpast , Ypast . When the opposite
is true, CC(1X |Xpast ,Ypast ) is positive.

Because of the values thatCC(1X |Xpast ) andCC(1X |Xpast ,Ypast ) can take,CCCYpast→1X

can be both positive or negative. How different cases result with different signs of the two
quantities along with their implication on CCC is shown in Table S1 of the supplementary
material. We see that the sign of CCCYpast→1X signifies the ‘kind of dynamical influence’
that Ypast has on 1X , whether this dynamical influence is similar to or different from that
of Xpast on 1X . When CCCYpast→1X is −ve, it signifies that Ypast has a different dynamical
influence on 1X than Xpast . On the contrary, when CCCYpast→1X is +ve, it signifies that
Ypast has a dynamical influence on 1X that is similar to that of Xpast . On estimating the
averaged CCC from time series Y to X , expecting that CCCYpast→1X values do not vary
much with time, we can talk about the kind of dynamical influence that time series Y has
on X . For weak sense stationary processes, it is intuitive that the influence of Y on X would
be very different from that on X due to its own past when the distributions of coupled time
series Y and X are very different.

We verify this intuition by measuring probability distribution distances2 between
coupled processes Y and X using symmetric Kullback–Leibler Divergence (KL) and
Jensen–Shannon Divergence (JSD). The trend of values obtained by these divergence

Kathpalia et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.196 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.196#supp-1
http://dx.doi.org/10.7717/peerj-cs.196


measures is compared with the trend of CCC for different cases such as when CCC is
positive or negative.

Coupled autoregressive (AR) processes were generated as per Eq. (15). Also, linearly
coupled tent maps were generated as per Eqs. (17) and (18). Symmetric KL and JSD
between distribution P and Q of coupled processes are estimated as per Eqs. (12) and (14)
respectively.

DSymm KL(P,Q)=DKL(P‖Q)+DKL(Q‖P), (12)

where,

DKL(P ‖Q)=
∑
i

P(i) log
(
P(i)
Q(i)

)
,

DKL(Q ‖ P)=
∑
i

Q(i) log
(
Q(i)
P(i)

)
. (13)

JSD(P ‖Q)=
1
2
D(P ‖M )+

1
2
D(Q ‖M ), (14)

where,M = 1
2(P+Q). KL and JSD values are in unit of nats.

Curves for KL, JSD and CCC estimated for increasing coupling between AR processes of
order 1 and linearly coupled tent maps are shown in Figs. 1 and 2 respectively. Results for
non-linear coupling of tent maps are similar to that for linear coupling and are included
(Fig. S10, Section S4.1). The values displayed represent the mean over 50 trials. As the
degree of coupling is varied for AR processes, there is no clear pattern in KL and JSD
values. CCC values increase in the positive direction as expected for increasing coupling,
signifying that the dynamical influence from Y to X is similar to the influence on X from
its own past. Also, when we took larger number of trials for AR, the values obtained by
KL and JSD become confined to a smaller range and seem to converge towards a constant
value indicating that the distributions of X and Y are quite similar. However, in case
of coupled tent maps (both linear and non-linear coupling), as coupling is increased, the
divergence between the distributions of the two coupled processes increases, indicating that
their distributions are becoming very different. The values of CCC grow in the negative
direction showing that with increasing coupling the independent process Y has a very
different dynamical influence on X compared to X ’s own past. Subsequently, due to the
synchronization of Y and X , KL, JSD as well as CCC become zero. With these graphs, it
may not be possible to find a universal threshold for the absolute values of KL/JSD above
which CCC will show negative sign. However, if the distributions of the two coupled
processes exhibit an increasing divergence (when the coupling parameter is varied) then it
does indicate that the independent process would have a very different dynamical influence
on the dependent one when compared with that of the dependent process’ own past,
suggesting that the value of CCC will grow in the negative direction. The fact that KL/JSD
and CCC do not have a one-to-one correspondence is because the former (KL and JSD)
operate on first order distributions while the latter (CCC) is able to capture higher-order
dynamical influences between the coupled processes. For non-stationary processes, our
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Figure 1 Mean values of divergence between distributions of coupled AR(1) processes using
Symmetric Kullback–Leibler (KL) (A) and Jensen Shannon (JSD) divergences (in nats) (B), and the
mean causality values estimated using CCC from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta), as the degree of coupling, ε is varied (C). CCC values increase with increasing ε.
There is no similarity in the trend of KL/JSD to CCC.
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Symmetric Kullback Leibler (KL) (A) and Jensen Shannon (JSD) divergences (in nats) (B), and the
mean causality values estimated using CCC from Y to X (solid line-circles, black) and X to Y (solid
line-crosses, magenta) (C), as the degree of coupling, ε is varied. For ε < 0.5, CCC and KL/JSD are
highly negatively correlated.
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measure would still be able to capture the kind of dynamical influence, though distributions
are not static.

Both positive and negative CCC imply significant causal influence (CCC≈0 implies
either no causal influence or identical processes), but the nature of the dynamical influence
of the cause on the effect is very different in these two cases. Causality turning ‘negative’
does not seem very intuitive at first, but all that it signifies is that the past of the cause
variable makes the dynamics of the effect variable less predictable than its (effect’s) own
past. Such a unique feature could be very useful for real world applications in terms of
‘controlling’ the dynamics of a variable being effected by several variables. If a particular
cause, out of several causes that makes the caused ‘less predictable’ and has ‘intrinsically
different’ dynamics from that of the effect, needs to be determined and eliminated, it can be
readily identified by observing the sign of CCC. Informed attempts to inhibit and enforce
certain variables of the system can then be made.

As the existing model-free methods of causality can extract only ‘associational causality’
and ignore the influence that the cause has on dynamics of the caused, it is impossible
for them to comment on the nature of this dynamical influence, something that CCC is

Kathpalia et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.196 10/24

https://peerj.com
https://doi.org/10.7717/peerjcs.196/fig-1
https://doi.org/10.7717/peerjcs.196/fig-2
http://dx.doi.org/10.7717/peerj-cs.196


uniquely able to accomplish. Obviously,model basedmethods give full-fledged information
about ‘the kind of dynamical influence’ owing to the model equations assumed. However,
if there are no equations assumed (or known), then the sign and magnitude of CCC seems
to be the best choice to capture the cause–effect relationship with additional information
on the similarity (or its lack of) between the two dynamics.

RESULTS AND DISCUSSION
A measure of causality, to be robust for real data, needs to perform well in the presence of
noise, filtering, low temporal and amplitude resolution, non-uniformly sampled signals,
short length time series as well as the presence of other causal variables in the system. In this
section, we rigorously simulate these cases and evaluate the performance of CCC measure
by comparing with existing measures—Granger Causality (GC) and Transfer Entropy
(TE). Owing to space constraints, some of these results are included in Section S4. In the
last sub-section, we test CCC on real-world datasets. In all cases, we take the averaged value
of CCC over entire time series as computed by Eq. (8) (or Eq. (11) in the conditional case)
and the parameters for CCC estimation are chosen as per the selection criteria and rationale
discussed in Section S3. GC estimation is done using the MVGC toolbox (Barnett & Seth,
2014) in its default settings and TE estimation is done using MuTE toolbox (Montalto, Faes
& Marinazzo, 2014). Akaike Information Criteria is used for model order estimation with
the maximum model order set to 20 in the MVGC toolbox, except where specified. The
maximum number of lags to take for autocorrelation computation is done automatically
by the toolbox. In the MuTE toolbox, the approach of Non Uniform Embedding for
representation of the history of the observed processes and of Nearest Neighbor estimator
for estimating the probability density functions is used for all results in this paper. The
number of lags to consider for observed processes was set to 5 and the maximum number
of nearest neighbors to consider was set to 10.

Varying unidirectional coupling
AR(1)
Autoregressive processes of order one (AR(1)) were simulated as follows. X and Y are the
dependent and independent processes respectively.

X(t )= aX(t−1)+εY (t−1)+εX ,t (15)

Y (t ) = bY (t−1)+εY ,t ,

where a= 0.9, b= 0.8, t = 1 to 1,000s, sampling period = 1s. ε is varied from 0−0.9 in
steps of 0.1. Noise terms, εY ,εX = νη, where ν = noise intensity = 0.03 and η follows
standard normal distribution. Figure 3 shows the performance of CCC along with that of
TE and GC as mean values over 50 trials, (CCC settings: L= 150, w = 15, δ= 80, B= 2).
Standard deviation of CCC, TE and GC values are shown in Fig. 4.
With increasing coupling, the causality estimated by CCC, TE as well as GC increases.
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Figure 3 Mean causality values estimated using CCC (A), TE (B) and GC (C) for coupled AR(1) pro-
cesses, from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the degree of
coupling, ε is varied. CCC, TE as well as GC are able to correctly quantify causality.

Full-size DOI: 10.7717/peerjcs.196/fig-3

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

S
td

. d
ev

. C
C

C

(a)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

S
td

. d
ev

. T
E

(b)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

S
td

. d
ev

. G
C

(c)

Figure 4 Standard deviation of causality values estimated using CCC (A), TE (B) and GC (C) for cou-
pled AR(1) processes, from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as
the degree of coupling, ε is varied.
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AR(100)
Autoregressive processes of order hundred (AR(100): X dependent, Y independent) were
simulated as follows.

X(t )= aX(t−1)+εY (t−100)+εX ,t
Y (t )= bY (t−1)+εY ,t , (16)

where a= 0.9, b= 0.8, t = 1 to 1,000s, sampling period = 1s. ε is varied from 0−0.9 in
steps of 0.1. Noise terms, εY ,εX = νη, where ν = noise intensity = 0.03 and η follows
standard normal distribution. Figure 5 shows the performance of CCC along with that of
TE and GC, as mean values over 50 trials (CCC settings: L= 150, w = 15, δ= 80, B= 2).
Maximum model order was set to 110 in the MVGC toolbox.

CCC values increase steadily with increasing coupling for the correct direction of
causation. TE fails as it shows higher causality from X to Y for all ε. GC also shows
confounding of causality values in two directions. Thus, causality in coupled AR processes
with long-range memory can be reliably estimated using CCC and not using TE or GC.
Range of standard deviation of CCC values from Y to X is 0.0076 to 0.0221 for varying
parameter ε and that from X to Y is 0.0039 to 0.0053. These values are much smaller than
the mean CCC estimates and thus, causality estimated in the direction of causation and
opposite to it remain well separable. For TE, Y to X , standard deviation range is 0.0061 to
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Figure 5 Mean causality values estimated using CCC (A), TE (B) and GC (C) for coupled AR(100) pro-
cesses, from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the degree of
coupling, ε is varied. Only CCC is able to reliably estimate the correct causal relationship for all values of
ε while TE and GC fail.
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0.0090 and X to Y , standard deviation range is 0.0082 to 0.0118. For GC, Y to X , standard
deviation range is 0.0012 to 0.0033 and X to Y , standard deviation range is 0.0015 to
0.0034.

Tent map
Linearly coupled tent maps were simulated as per the following equations. Independent
process, Y , is generated as:

Y (t )= 2Y (t−1), 0≤Y (t−1)< 1/2, (17)

Y (t )= 2−2Y (t−1), 1/2≤Y (t−1)≤ 1.

The linearly coupled dependent process, X , is as below:

X(t )= εY (t )+ (1−ε)h(t ), (18)

h(t ) = 2X(t−1), 0≤X(t−1)< 1/2,

h(t ) = 2−2X(t−1), 1/2≤X(t−1)≤ 1,

where ε is the degree of linear coupling.
The length of the signals simulated in this case was 3,000, i.e., t = 1 to 3,000s, sampling

period = 1s and the first 2,000 transients were removed to yield 1,000 points for causality
estimation. Figure 6 shows the performance of CCC and TE for linearly coupled tent maps
as ε is varied (CCC settings: L= 100, w = 15, δ= 80, B= 8). CCC and TE comparison
was also done for increasing coupling in the case of non-linearly coupled tent maps. These
results are included in the Section S4.1. Results obtained are similar to the linear coupling
case. The assumption of a linear model for estimation of GC was proved to be erroneous
for most trials and hence GC values are not displayed. As ε is increased for both linear and
non-linear coupling, TEY→X increases in the positive direction and then falls to zero when
the two series become completely synchronized at ε= 0.5. The trend of the magnitude of
CCC values is similar to TE, however, CCCY→X increment is in the negative direction.
This is because of the fact that with increasing coupling the kind of dynamical influence
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Figure 6 Mean of causality values estimated using CCC (A) and TE (B) for linearly coupled tent maps,
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creases. CCC values are negative while TE are positive.
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from Y to X becomes increasingly different than the dynamical influence from the past
values of X to itself.

In case of linear coupling, range of standard deviation of CCC values from Y to X is
0.0050 to 0.0087 for different values of ε and that from X to Y is 0.0051 to 0.0100. For TE,
Y to X , standard deviation range is 0 to 1.4851 and X to Y , standard deviation range is 0
to 1.4225. For non-linear coupling, the range of standard deviation values are included in
Section S4.1.

For both CCC and TE, standard deviation values obtained indicate that there might be
confounding in the causality values in the direction of causation and the direction opposite
to causation for low values of ε.

Varying process noise
The performance of measures as process noise is varied is shown in Fig. 7 for coupled AR
processes simulated as in Eq. (15), where a= 0.9, b= 0.8, ε= 0.8, t = 1 to 1,000s, sampling
period = 1s, number of trials = 50. Noise terms, εY ,εX = νη, where ν = noise intensity, is
varied from 0.01 to 0.1 and η follows standard normal distribution. CCC settings: L= 150,
w = 15, δ= 80, B= 2. The range of standard deviation of CCC values from Y to X is 0.0162
to 0.0223 for different values of ε and that from X to Y is 0.0038 to 0.0058. For TE, Y to
X , standard deviation range is 0.0182 to 0.0267 and X to Y , standard deviation range is
0.0063 to 0.0104. For GC, Y to X , standard deviation range is 0.0314 to 0.0569 and X to
Y , standard deviation range is 0.0001 to 0.0002.

The performance of all three measures is fairly good in this case. Only GC values show
a slightly increasing trend with increasing noise intensity.

Non uniform sampling
Results for causality testing on uniformly downsampled signals are included in the Section
S4.2. Non-uniformly sampled/non-synchronous measurements are common in real-
world physiological data acquisition due to jitters/motion-artifacts as well as due to the
inherent nature of signals such as heart rate signals (Laguna, Moody & Mark, 1998). Also, in
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Figure 7 Mean causality values estimated using CCC (A), TE (B) and GC (C) for coupled AR processes,
from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the intensity of noise, ν
is varied. All the three measures perform well in this case.
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Figure 8 Mean causality values estimated using CCC (A), TE (B) and GC (C) for coupled AR processes
from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the percentage of non-
uniform sampling α is varied. CCC is the only measure that shows reliable, consistent and correct esti-
mates of causality.
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economics, the case of missing data is common (Baumöhl & Vỳrost, 2010). To realistically
simulate such a scenario, non-uniform sampling was introduced by eliminating data from
random locations of the dependent time series and then presenting the resulting series
as a set with no knowledge of the time-stamps of the missing data. The percentage of
non-uniform sampling/non-synchronous measurements (α) is the percentage of these
missing data points.

AR processes with non-uniformly sampled signals were simulated as per Eq. (15) with
b= 0.7, a= 0.9, ε= 0.8. Noise terms, εY ,εX = νη, where ν = noise intensity = 0.03 and
η follows standard normal distribution. Length of original time series, N = 2,000, and is
reduced upon increasing the percentage non-uniform sampling α. In order to match the
lengths of the two time series, Y , the independent time series, is appropriately truncated
to match the length of the dependent signal, X (this results in non-synchronous pair
of measurements). CCC settings used: L= 150, w = 15, δ = 80, B= 2. Mean causality
estimated for 10 trials using the three measures with increasing α, while ν = 0.03, are
shown in Fig. 8.

Linearly coupled tent maps with non-uniformly sampled signals were simulated as per
Eqs. (17) and (18) with ε= 0.3. Length of original time series, N = 2000, and is reduced
upon increasing the percentage non-uniform sampling α. In order to match the lengths of
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Figure 9 Mean causality values estimated using CCC (A), TE (B) and GC (C) for coupled tent maps
from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the percentage of non-
uniform sampling is varied. CCC is able to distinguish the causality direction but the separation between
values is small. TE and GC completely fail.
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the two time series, Y , the independent time series, is appropriately truncated to match the
length of the dependent signal, X (this results in non-synchronous pair of measurements).
CCC settings used: L= 100, w = 15, δ= 80, B= 8. Mean causality estimated for 10 trials
using the three measures with increasing increasing α, while ν= 0.03, are shown in Fig. 9.

As the results clearly indicate, both TE and GC fail when applied to non-uniformly
sampled coupled AR and tent map processes. CCC values are relatively invariant to
non-uniform sampling and thus could be employed in such scenarios.

Filtering of coupled signals
Acquired data preprocessing often involves low pass filtering to smooth out the signal
(Teplan, 2002). At other times, high pass filtering is required to remove low frequency
glitches from a high frequency signal. Also, when the signals acquired are sampled at low
frequencies, the effects due to decimation and filtering may add up and result in poorer
estimates of causality. This is often the case in fMRI signals (Glover, 2011; Kim, Richter &
Uurbil, 1997).

To test these scenarios, AR processes were simulated as below:

Y (t )= 0.7Y (t−5)+εY ,t ,

X(t )= 0.9X(t−5)+0.8Y (t−1)+εX ,t , (19)

where, noise terms, εY ,εX = νη, where ν = noise intensity = 0.03 and η follows standard
normal distribution.

Causality values were estimated using CCC, TE and GC when simulated signals are low
pass filtered using a moving average window of length 3 with step size 1. The results are
shown in Table 1 as mean values over 10 trials. CCC settings used: L= 150, w = 15, δ= 80,
B= 2. The performance of the measures when coupled signals are decimated to half the
sampling rate and then low pass filtered are also included in the table. The length of the
original signal simulated is 2000 and is reduced to 1998 upon filtering and to 998 upon
filtering and decimation.

From the table, we see that CCC can distinguish the direction of causality in the original
case as well as in the filtering and decimation plus filtering case. Erroneously, TE shows
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Table 1 Mean CCC, TE and GC estimates for coupled AR processes Y (independent) and X (depen-
dent) as it is, upon filtering and upon decimation and filtering.

System CCC TE GC

Y →X X →Y Y →X X →Y Y →X X →Y

Original 0.0908 −0.0041 0.2890 0.0040 0.3776 0.0104
Filtered 0.0988 0.0018 0.2398 0.0170 0.4787 0.0056
Decimated and filtered 0.0753 0.0059 0.1270 0.0114 0.4321 0.0596

significant causality in the direction opposite to causation upon filtering as well as upon
decimation and filtering and GC shows significant causality in the direction opposite to
causation upon decimation and filtering. By this we can infer that CCC is highly suitable
for practical applications which involve pre-processing such as filtering and decimation of
measurements.

Conditional CCC on short length MVAR system
A system of three variables was simulated as per the following equations—

Z (t )= 0.8Z (t−1)+εZ ,t ,

X(t )= 0.9X(t−1)+0.4Z (t−100)+εX ,t ,

Y (t )= 0.9Y (t−1)+0.8Z (t−100)+εY ,t ,

(20)

where the noise terms, εZ ,εX ,εY = νη, ν = noise intensity = 0.03 and η follows standard
normal distribution. Length of time series simulated was 300 and first 50 transients were
removed to yield short length signals of 250 time points.

The coupling direction and strength between variables X , Y , Z are shown in Fig. 10A.
The mean values of causality estimated over 10 trials using CCC, TE and GC are shown
in Fig. 10 tables, (b), (c) and (d) respectively. CCC settings used: L= 150, w = 15, δ= 20,
B= 2. In the tables, true positives are in green, true negatives in black, false positives in
red and false negatives in yellow. CCC detects correctly the true positives and negatives.
GC, detects the true positives but also shows some false positive couplings. TE, performs
very poorly, falsely detecting negatives where coupling is present and also showing false
positives where there is no coupling.

Real Data
CCC was applied to estimate causality on measurements from two real-world systems and
compared with TE. System (a) comprised of short time series for dynamics of a complex
ecosystem, with 71 point recording of predator (Didinium) and prey (Paramecium)
populations, reported in Veilleux (1976) and originally acquired for Jost & Ellner (2000),
with first 9 points from each series removed to eliminate transients (Fig. 11A). Length of
signal on which causality is computed, N = 62, CCC settings used: L= 40, w = 15, δ= 4,
B= 8. CCC is seen to aptly capture the higher (and direct) causal influence from predator
to prey population and lower influence in the opposite direction (see Fig. 11). The latter is
expected, owing to the indirect effect of the change in prey population on predator. CCC
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Figure 10 Mean causality values estimated using CCC (B), TE (C) and GC (D) for a system of three AR
variables coupled as in (A). True positives are in green, true negatives in black, false positives in red and
false negatives in yellow.

Full-size DOI: 10.7717/peerjcs.196/fig-10

results are in line with that obtained using Convergent Cross Mapping (Sugihara et al.,
2012). TE, on the other hand, fails to capture the correct causality direction.
System (b) comprised of raw single-unit neuronal membrane potential recordings (V , in
10V) of squid giant axon in response to stimulus current (I , in V, 1V= 5µA/cm2), recorded
in Paydarfar, Forger & Clay (2006) and made available by Goldberger et al. (2000). We test
for the causation from I to V for three axons (1 trial each) labeled ‘a3t01’, ‘a5t01’ and
‘a7t01’, extracting 5,000 points from each recording. Length of signal on which causality
is computed, N = 5,000, CCC settings used: L= 75, w = 15, δ= 50, B= 2. We find that
CCCI→V is less than or approximately equal to CCCV→I and both values are less than zero
for the three axons (Fig. 11), indicating negative causality in both directions. This implies
bidirectional dependence between I and V . Each brings a different dynamical influence on
the other when compared to its own past. TE fails to give consistent results for the three
axons.

CONCLUSIONS
In this work, we have proposed a novel data-based, model-free intervention approach to
estimate causality for given time series. The Interventional Complexity Causality measure
(or ICC) based on capturing causal influences from the dynamical complexities of data is
formalized as Compression-Complexity Causality (CCC) and is shown to have the following
strengths—

• CCC operates on windows of the input time series (or measurements) instead of
individual samples. It does not make any assumption of the separability of cause and
effect samples.
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Figure 11 CCC, TE on real-world time series. (A) Time series showing population ofDidinium na-
sutum (Dn) and Paramecium aurelia (Pn) as reported in Veilleux (1976), (B) Stimulus current (I ) and
voltage measurements (V ) as recorded from a Squid Giant Axon (‘a3t01’) in Paydarfar, Forger & Clay
(2006). (C): Table showing CCC and TE values as estimated for systems (A) and (B).

Full-size DOI: 10.7717/peerjcs.196/fig-11

• CCC doesn’t make any assumptions of stochasticity, determinism, gaussianity,
stationarity, linearity or markovian property. Thus, CCC is applicable even on
non-stationary/ non-linear/non-gaussian/non-markovian, short-term and long-term
memory processes, as well as chaotic processes. CCC characterizes causal relationship
based on dynamical complexity computed from windows of the input data.
• CCC is uniquely and distinctly novel in its approach since it does not estimate
‘associational’ causality (first rung on Ladder of Causation) but performs ‘intervention’
(second rung on the Ladder of Causation) to capture causal influences from the dynamics
of the data.
• The point of ‘intervention’ (length L for creating the hypothetical data: Ypast +1X) is
dependent on the temporal scale at which causality exists within and between processes.
It is determined adaptively based on the given data. This makes CCC a highly data-
driven/data-adaptive method and thus suitable for a wide range of applications.
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• Infotheoretic causality measures such as TE and others need to estimate joint probability
densities which are very difficult to reliably estimate with short and noisy time series.
On the other hand, CCC uses Effort-To-Compress (ETC) complexity measure over
short windows to capture time-varying causality and it is well established in literature
that ETC outperforms infotheoretic measures for short and noisy data (Nagaraj &
Balasubramanian, 2017a; Balasubramanian & Nagaraj, 2016).
• CCC can be either positive or negative (unlike TE and GC). By this unique property,
CCC gives information about the kind of causal influence that is brought by one time
series on another, whether this influence is similar (CCC > 0) to or different (CCC < 0)
from the influence that the series brings to its own present.
• Negative CCC could be used for ‘control’ of processes by intervening selectively on those
variables which are dissimilar (CCC < 0)/similar (CCC > 0) in terms of their dynamics.
• CCC is highly robust and reliable, and overcomes the limitations of existing measures
(GC and TE) in case of signals with long-term memory, low temporal resolution, noise,
filtering, non-uniform sampling (non-synchronousmeasurements), finite length signals,
presence of common driving variables as well as on real datasets.

We have rigorously demonstrated the performance of CCC in this work. Given the
above listed novel properties of CCC and its unique model-free, data-driven, data-adaptive
intervention-based approach to causal reasoning, it has the potential to be applied in a
wide variety of real-world applications. Future work would involve testing the measure
on simulated networks with complex interactions as well as more real world datasets. We
would like to further explore the idea of negative CCC and check its relation to Lyaupnov
exponent (for chaotic systems) which can characterize the degree of chaos in a system.
It is also worthwhile to explore the performance of other complexity measures such as
Lempel–Ziv complexity for the proposed Interventional Complexity Causality.

We provide free open access to the CCC MATLAB toolbox developed as a part of this
work. See Section S5 for details.

List of abbreviations

AR Autoregressive
C(· ) Complexity
CC Dynamical Compression-Complexity
CCC Compression-Complexity Causality
CR Complexity Rate
ETC(· ) Effort-to-Compress
GC Granger Causality
JSD Jensen–Shannon Divergence
LZ Lempel–Ziv Complexity
MVAR Multivariate Autoregressive
C(·,· ) Joint Complexity
CC Averaged Dynamical Compression-Complexity
CCC Averaged Compression-Complexity Causality
DC Dynamical Complexity
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ETC(·,· ) Joint Effort-to-Compress
ICC Interventional Complexity Causality
KL Kullback–Leibler Divergence
TE Transfer Entropy
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