
Combined spatial and frequency dual
stream network for face forgery detection
Hui Zhao1,2,*, Xin Li1,2,*, Bingxin Xu1,2 and Hongzhe Liu1,2

1 Department of Robotics, Beijing Union University, Beijing, China
2 Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing,
China

* These authors contributed equally to this work.

ABSTRACT
With the development of generative model, the cost of facial manipulation and
forgery is becoming lower and lower. Fraudulent data has brought numerous hidden
threats in politics, privacy, and cybersecurity. Although many methods of face
forgery detection focus on the learning of high frequency forgery traces and achieve
promising performance, these methods usually learn features in spatial and
frequency independently. In order to combine the information of the two domains, a
combined spatial and frequency dual stream network is proposed for face forgery
detection. Concretely, a cross self-attention (CSA) module is designed to improve
frequency feature interaction and fusion at different scales. Moreover, to augment the
semantic and contextual information, frequency guided spatial feature extraction
module is proposed to extract and reconstruct the spatial information. These two
modules deeply mine the forgery traces via a dual-stream collaborative network.
Through comprehensive experiments on different datasets, we demonstrate the
effectiveness of proposed method for both within and cross datasets.

Subjects Artificial Intelligence, Computer Vision, Multimedia, Security and Privacy, Visual
Analytics
Keywords Face forgery detection, Multi-scale feature extraction, Cross self attention, Image
frequency analysis

INTRODUCTION
In the development process of image generation technology, the early variational
autoencoder (VAE) (Kingma & Welling, 2013) and the generative adversarial network
(GAN) (Creswell et al., 2018) laid the foundation for the deepfake technology. Nowadays,
StyleGAN (Karras, Laine & Aila, 2019) and ProGAN (Gao, Pei & Huang, 2019) models are
capable of synthesizing high-quality generated images. In recent years, the diffusion model
(Ho, Jain & Abbeel, 2020) has brought the image generation technology to a new height,
followed by the trust crisis in financial, political, and other fields caused by generated
information. Therefore, constructing an effective and accurate face forgery detection
method is of great practical significance.

At present, deep learning based face forgery detection methods can be roughly divided
into two categories, namely spatial feature based detection methods and frequency based
detection methods. The first type of methods attempt to extract features from image’s
spatial pixels and further investigate forgery traces in the generated image, such as texture
differences generated during local forgery (Zhao et al., 2021a; Liu, Qi & Torr, 2020) and
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inconsistencies in the sources of different forgery regions (Ju et al., 2022; Zhao et al.,
2021b). These observable differences are gradually rectified as generative technology
progress. These methods solely focus on high-level semantic information in the spatial
domain and ignore low-level signal variations in forged images, limiting their robustness
and effectiveness. This also motivates researches into frequency domain based face forgery
detection (Qian et al., 2020; Li et al., 2021). In terms of frequency feature extraction,
researchers often use several kinds of frequency transformation methods to extract
manipulated traces hidden in forgery images. However, some methods tend to become
extremely complex and suffer from parameter redundancy, making it difficult to learn
simple and useful features. Therefore, how to properly extract invisible frequency features
is a pressing issue that must be addressed. To achieve a proper integration of spatial and
frequency features, some dual-stream networks (Gu et al., 2022; Shuai et al., 2023; Li et al.,
2022) have been proposed in the existing studies. These methodologies duly recognize the
inherent synergy between frequency and spatial features, endeavoring to foster their
interactive learning by means of attention mechanisms or mid-level fusion techniques.
Nonetheless, a crucial aspect often overlooked in these investigations pertains to the
distinct characteristics exhibited by various frequency bands within the frequency domain.
In Luo et al. (2021), pointed out that the information contained in high frequency reveals
imperceptible artifacts, which helps to better distinguish between true and manipulated
faces. Hence, we endeavor to decompose and select the high-frequency information,
aiming to guide the model towards a more comprehensive understanding within both the
spatial and frequency domains.

In this work, we propose a novel dual-stream framework that integrates both spatial and
frequency features for face forgery detection. One branch of our framework incorporates a
multi-scale frequency decomposition module, which is specifically designed to extract
informative high-frequency cues. Notably, we discard low-frequency information and
solely focus on learning from multi-scale high-frequency features. This allows us to
emphasize the forgery clues in the frequency domain and suppressing the network’s
reliance on complex semantic information. Additionally, we introduce a novel cross self-
attention (CSA) module to capture the fusion of features across different frequency scales.
In the other branch, we introduce a high-frequency guided multi-scale spatial feature
extraction module to extract semantic features and contextual information. Experiments
demonstrate that the proposed method works well on both within-dataset and cross-
dataset testing compared with other approaches.

Overall, the main contributions of this article include three aspects:

(1) We propose a multi-scale frequency feature decomposition module to efficiently
capture the high-frequency clues between forgery and real images. The low-frequency
components are discarded after performing the first level wavelet-packet transform.
The second level wavelet-packet transform is followed to apply the high-frequency
components. By combining different levels of wavelet coefficients, the model can learn
more subtle variations in high-frequency;
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(2) A novel cross self-attention module is proposed to efficiently integrating multi-scale
frequency features while selectively emphasizing regions of interest;

(3) In the spatial feature learning branch, the inverse wavelet-packet transform (IWPT) is
employed to construct a high frequency guided spatial feature extraction module. The
reconstructed spatial domain can pay more attention to spatial features in different
directions.

The article is organized as follows. “Related Work” provides an in-depth analysis of
prior research, highlighting the limitations of existing methods, and elucidating the
distinctions and advancements presented by the proposed approach. The “Proposed
Method” describes comprehensive details and explanations of the proposed method. In the
“Experiments” demonstrates the validity and robustness of the proposed method through
extensive experiments. Finally, the “Conclusion” section encapsulates the proposed
method, discussing its main strengths and weaknesses, thereby aiming to foster further
exploration and advancement in this field.

RELATED WORK
The rapid growth and popularization of face forgery technology poses security issues to
facial recognition systems. To address this challenge, various methods (Miao et al., 2023;
Guo et al., 2023a) for detecting face forgery have been proposed. Early methods primarily
used intrinsic statistics or handcrafted features for modeling. However, these methods are
labor-intensive and have poor detection performance for complex face forgery methods
such as deep learning-based facial synthesis. Therefore, employing convolutional neural
network (CNN)-based models to automatically learn and recognize forged attributes is a
more common strategy. A type of method attempts to mine subtle artifacts from the spatial
domain. Attribute network architecture is presented by Yu, Davis & Fritz (2018). This
model detects forged videos by using the GAN fingerprint information obtained. Zhao
et al. (2021a) identified face forged images by using attention maps to guide the
aggregation of low-level textural features and high-level semantic information. Some
methods, such as face X-ray (Li et al., 2020a), focus on model generalization and provide
an effective method for detecting mixed boundaries using self-supervised datasets. These
methods, however, only mining spatial information from pixels and cannot efficiently
analyze and utilize the relations between spatial information and frequency information.

Other researchers have attempted to introduce frequency information to learn the
abnormal distribution in forgery images. Li et al. (2021) transformed the image into YUV
color space and performed DCT transform to a channel attention for constructing an
adaptive frequency extraction module. Liu et al. (2022) proposed a frequency and spatial
feature fusion (FSF) module for aggregating spatial and multi-scale wavelet
representations. However, forgery traces in frequency are often hidden in high frequencies.
The introduction of low-frequency information often leads to model confusion.
Meanwhile, these methods are coarse-grained for the use of frequency information, and
thus cannot effectively select important components in high-frequency of different scales.
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Therefore, we propose a multi-scale frequency decomposition module, which effectively
alleviates the mentioned issues. In order to focus on the high-frequency components at
different levels, the low-frequency components in the wavelet-packet transform are
removed. Additionally, a high-frequency guided spatial feature extraction module is
designed for that reconstructs and analyzes multi-directional spatial features.

Table 1 provides a comprehensive overview of the relevant works on face forgery
detection, consist of the utilized clues, backbone networks, and datasets considered.

PROPOSED METHOD
Overall architecture
Prior studies (Xu, Zhang & Xiao, 2019) have revealed distinctions in frequency
information between forged face images and real ones. During the feature learning process,
neural networks often exhibit a bias towards prioritizing low-frequency information over
high-frequency counterparts, despite the potential presence of incriminating forgery clues
within the latter. Inspired by this observation, we introduce a novel dual stream network
that integrates spatial and frequency features. A comprehensive depiction of the network’s
architecture is presented in Fig. 1, which contains the following sequential steps:

(1) First, the original image is fed to the multi-scale frequency decomposition module. In
order to effectively extract the high-frequency features, the first level wavelet-packet
transform (WPT) is performed, followed by discarding the low-frequency components
and retaining only the high-frequency components (horizontal, vertical, and diagonal)
of each channel. The process is shown in Fig. 1A. In order to further capture fine-
grained high-frequency features, second level wavelet packet transform is performed
on the selected components and conduct selection and combination again. Details is
present in Fig. 1B. Subsequently, the multi-scale high-frequency features are send to the
backbone network.

(2) The CSA module is applied to promote the fusion of frequency features at the above
two levels. Combining both self-attention and cross-attention mechanisms, CSA
demonstrates its efficiency in promoting feature exchange and fusion across multiple
scales of frequency information.

Table 1 Overview of the relevant works on face forgery detection.

Research article Clues Backbone Dataset(s)

Miao et al. (2023) Frequency F2Trans (Transformer) FF++, Celeb-DF, DFDC, DeepFake-TIMIT-HQ

Guo et al. (2023a) Frequency & Spatial HiFi-Net (CNN) LSUN, CelebaHQ, FFHQ, AFHQ, MSCOCO

Yu, Davis & Fritz (2018) GAN fingerprint CNN ProGAN, SNGAN, CramerGAN, MMDGAN

Zhao et al. (2021a) Spatial EfficientNet-b4 (CNN) FF++, Celeb-DF, DFDC

Li et al. (2020a) Spatial HRNet (CNN) FF++, Celeb-DF, DFDC, DFD (Deep Fake Detection)

Li et al. (2021) Frequency & Spatial Xception (CNN) FF++

Liu et al. (2022) Frequency & Spatial Xception (CNN) FF++, Celeb-DF, FFIW, WildDeepfake (WDF)
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(3) In the spatial domain branch, the original image is transformed to grayscale and
processed by the multi-scale spatial information extraction module. In order to guide
the reconstruction of spatial information at different scales, a standard wavelet-packet
transform is applied for dividing input into four distinct frequency coefficients.
Subsequently, an inverse wavelet-packet transform is employed on the various group
coefficients to reconstruct spatial images. These reconstructed images are then fed into
the backbone, which as presented in Fig. 1C.

(4) The bilinear pooling (Lin, RoyChowdhury & Maji, 2015) is utilized for merging multi-
scale spatial-frequency information and sends the final features to classification heads
for binary prediction.

Multi-scale frequency decomposition module
Prior research (Wolter et al., 2022; Frank et al., 2020) has demonstrated that in
various frequency ranges, forged face images have notable differences which are very
helpful in identifying authenticity. Especially, as the frequency increases, the distinctions
between the real and forged images have become more pronounced. In an image, low-
frequency regions typically represent semantic information, while high-frequency
information describes edge and texture details. Unfortunately, neural networks often
exhibit a bias towards fitting the low-frequency distribution during feature learning,
thereby limiting the learning of high-frequency features. As a consequence, existing
detection methods frequently associated with redundant parameters and insufficient
information extraction. To address this issue, a multi-scale frequency decomposition
module is devised to selectively extract valuable frequency features. This module is
illustrated in Fig. 2.

Most of the frequency transformation involves a default operation of converting the
image into a grayscale representation. Nonetheless, this operation may result in the loss of
complex information contained in a single color channel. These channels may include
crucial features that contribute to the distinction between real and fake images.

Figure 1 The overall architecture of the proposed method. A denotes the approximation coefficients,
H denotes the horizontal coefficients, V denotes the vertical coefficients, and D denotes the diagonal
coefficients. Full-size DOI: 10.7717/peerj-cs.1959/fig-1
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Consequently, in the frequency branch, we retained the RGB channel, allowing for
independent frequency transformation of the three channels. This approach ensures the
retention of vital color information throughout the subsequent analysis.

The WPT is a widely employed method for extracting frequency information from an
image. Unlike the discrete wavelet transform (DWT), which solely decomposes the low-
frequency coefficients of the input data, WPT extends its capability by decomposing both
low-frequency and high-frequency coefficients. By decomposing images into coefficients of
varying resolutions and sizes, WPT facilitates the generation of diverse scale features,
thereby enhancing the performance of low-resolution image detection.

In this work, we choose WPT to achieve effective decomposition of input images.
Specifically, a two-level WPT is applied, resulting in the extraction of four distinct
direction frequency coefficients. They are low-frequency coefficients, horizontal high-
frequency coefficients, vertical high-frequency coefficients and diagonal high-frequency
coefficients. These coefficients are obtained for each of the three independent color
channels. Subsequently, the low-frequency components are discarded, and the first and
second wavelet-packet coefficients are concatenated, forming nine and 27 channels
respectively. These concatenated channels serve as inputs to the backbone network.
Furthermore, the cross self-attention mechanism is employed to facilitate interaction and
fusion of the multi-scale frequency features. We examined the efficiency between utilizing
only high-frequency coefficients vs. using all frequency coefficients, more detailed
information can be found in the “Experiments”.

Cross self-attention mechanism
Self-attention mechanism is an effective strategy which draws inspiration from human
cognitive processes. The individuals can allocate their limited attention to the most
relevant information during perception. Specifically, the self-attention method enables the
model to learn the intrinsic relationships among different elements within the input. By
computing an attention weight matrix, it establishes associations between each element

Figure 2 The structure of the multi-scale frequency decomposition module.
Full-size DOI: 10.7717/peerj-cs.1959/fig-2
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and other parts of the input sequence. Therefore, self-attention is particularly adept at
capturing dependencies within single-scale frequency information. Conversely, the cross
attention facilitates the supervision of relationships between two distinct input sequences.
Through the calculation of an attention weight matrix, it establishes correlations between
each element of one sequence and all components of the other sequence. This
characteristic enables the model to effectively connect and fuse the output coefficients
derived from the first and second wavelet-packet transforms, thereby facilitating a deeper
understanding of the interplay among multi-scale frequency features.

The proposed cross self-attention (CSA) module effectively combines the advantages of
both attention strategy and multi-scale frequency features. Firstly, the frequency features
from various scales are fed into a self-attention module, enabling the network to assign
weights to the salient features within each scale’s frequency information. These weighted
frequency features are then outputted, and residual connections are employed to combine
them with the initial features. Consequently, the multi-scale features are obtained through
this process. During the learning process, three times CSA module are performed to
facilitate the interaction and fusion of the multi-scale frequency features. The detailed
process of this interaction is illustrated in Fig. 2 and the detailed operation is shown in
Fig. 3. The CSA module is calculated as given in Eqs. (1)–(4).

CrossAtt ¼ softðcatðqf ; qsÞÞ � catðkf ; ksÞ (1)

Fi
0 ¼ Fi � ðFi � SelfAttðFiÞÞ i 2 ðf ; sÞ (2)

Ff
00 ¼ Ff

0 � ðFs0 � CrossAttÞ (3)

Fs
00 ¼ Fs

0 � ðFf0 � CrossAttÞ (4)

where � represents a matrix multiplication operation, and � represents an element
addition operation. CrossAtt and SelfAtt means the cross attention and self-attention
operation respectively. Equation (1) represents the calculation process of cross attention
weight. q f , qs represents the query of the features extracted by the network from the first
and second wavelet coefficients, respectively. kf and ks represent the key of first and second
level features respectively. Fi0 is the feature map calculated by self-attention. Ff 00 and Fs00

shows the feature map processed by the cross attention.

Figure 3 The structure of cross self-attention module. Full-size DOI: 10.7717/peerj-cs.1959/fig-3
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High frequency guided spatial feature extraction module
In the proposed frequency branch, high-frequency information can be represented better,
while low-frequency information is more conducive to learn in the spatial domain. To
address this, we introduce a multi-scale spatial feature extraction module aimed at
capturing spatial features associated with high-frequency information. The WPT,
employed in our approach, facilitates the extraction of spatial information across various
directional scales. However, upon observation, we note that the spatial features
corresponding to the high-frequency information present in individually inverted images
are relatively minor. Consequently, it becomes challenging to discern image details in the
resulting output, particularly after the inverse transformation of diagonal high-frequency
components. To overcome this limitation, we ensure the preservation of low-frequency
components during the WPT process. Additionally, we incorporate high-frequency
information from three directions during the inverse transform. This approach not only
retains the image’s comprehensive information but also highlights manipulated areas with
different directional scales in forged images.

To begin, we adopt a grayscale transformation for feature processing within the spatial
branch. Subsequently, a standard wavelet-packet transform is applied to decompose the
grayscale image into independent frequency coefficients. During the reconstruction phase,
we focus on the three distinct high-frequency coefficients, while the unpaired points are
filled with the zero matrix. This process can preserve semantic information while ensuring
that each channel only retains components in a specific frequency domain. The specific
steps involved in this process are visually depicted in Fig. 1C.

In Fig. 4, a visual analysis is shown to explain the reconstructed features in multi-scale
spatial scales guided by high-frequency component. The first column is the original
images. The two and four columns respectively display the high-frequency information of
the image on the horizontal, vertical, and diagonal scales. It can be seen from the figure that

Figure 4 High-frequency component guided reconstruction images.
Full-size DOI: 10.7717/peerj-cs.1959/fig-4
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high-frequency information can carry the texture and edges information, which is crucial
for distinguishing between true and fake images. This also explains our motivation for
frequency feature selection. Columns 5 to 7 accordingly display the reconstruction images
in different directions corresponding to high-frequency components. According to the
enlarged images on the right, it can be observed that the reconstruction images contain
different details in the spatial domain. After zooming in on the fifth column image,
horizontal texture details can be seen. Similarly, vertical texture details can be observed in
the enlarged image of the sixth column. In the last column of the image, diagonal textures
can be observed.

EXPERIMENTS
Datasets and implement details
Datasets
In this work, we conduct our experiments on five publicly available face forgery detection
datasets: FaceForensics++ (FF++) (Rossler et al., 2019), Celeb-DF (Li et al., 2020b),
Deepfake Detection Challenge (DFDC) (Dolhansky et al., 2020), DFDC-Preview (DFDC-
P) (Dolhansky et al., 2019) and DeepFakeDetection (DFD) (Dufour & Gully, 2021). These
datasets provide videos with one real and the other deepfake counterparts.

FaceForensics++. The FaceForensics++ dataset contains 1,000 real videos extracted from
Youtube. Fake videos are generated using both computer graphics-based and deep learning
approaches (1,000 fake videos for each approach). The manipulation methods used in this
dataset are Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT).

Celeb-DF. The Celeb-DF dataset aims to provide fake videos of better visual quality. It
contains 890 real videos extracted from YouTube, corresponding to interviews of 59
celebrities with a diverse distribution in terms of gender, age, and ethnic group. As for fake
videos, a total of 5,639 videos are created using a refined version of a public DeepFakes
generation algorithm, which increasingly improves the synthesis quality.

DFDC. The DFDC dataset was released as part of a challenge. It consists of 124,000
video clips, with the real footage filmed by a wide range of actors under different scenarios
and deepfaked with eight different techniques.

DFDC-Preview. DFDC-P dataset is a preview version of the DFDC dataset, which
contains 5,214 videos and uses two forgery methods. In order to enhance the diversity of
the dataset, careful consideration has been given to encompassing individuals of varying
genders, ages, and skin tones. Moreover, the dataset encompasses a wide range of lighting
conditions and head postures, while participants have utilized diverse backgrounds during
the recording process.

DeepFakeDetection. The DFD dataset contains over 363 original sequences from 28 paid
actors in 16 different scenes as well as over 3,000 manipulated videos using DeepFakes.

Evaluation metrics
We report the deepfake detection results with the most commonly used metrics in the
literature, including the area under the receiver operating characteristic (ROC) curve
(AUC) and accuracy (ACC). ACC can be described as the proportion of the correct
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number of samples identified by the model to the total number. ACC and AUC are
calculated as given in the Eqs. (5) and (6).

TP (true positive): Positive predictions that identified as true by the model.
FP (false positive): Negative predictions that erroneously identified as true by the

model.
TN (true negative): Negative predictions that identified as false by the model.
FN (false negative): Positive predictions that erroneously identified as false by the

model.

ACC ¼ TP þ TN
TP þ FN þ FP þ TN

(5)

AUC ¼
PP

i¼1 ranki � PðPþ1Þ
2

P � N
(6)

In the Eq. (6), ranki represents the predicted ranking of the i positive sample, P
represents the number of positive samples, and N represents the number of negative
samples.

Implement details
Regarding the experimental setup, this model was trained utilizing four NVIDIA TITANV
graphics processing units (GPUs) within a Linux-based environment. This experiment
relies on the Python 3.10.8 environment and utilizes the PyTorch framework for both
training and verification. Xception serves as the backbone network employed in this
experiment. The network is initialized using pre-training weights obtained from the
ImageNet dataset. The training batch size is set at 64. Adam optimizer is set with b1 ¼ 0:9,

b2 ¼ 0:999, and e ¼ 10�8. The learning rate is 2� 10�4.

Experiment results and analysis
Within dataset evaluation

In this section, we compare our method with current state-of-the-art deepfake detection
methods on FF++ and DFDC. We first evaluate our methods on different video
compression settings of FF++ including raw, high quality (HQ, C23), and low quality (LQ,
C40). As the results shown in Table 2, the proposed method outperforms most of the
methods in both ACC and AUC with all quality settings, especially in C23. This
demonstrates our method’ s detecting capabilities and anti-compression effect. Such an
advantage would be impossible to accomplish without the proposed multi-scale spatial-
frequency feature extraction network. By repeatedly filtering and reconstructing
information at different scales, the model proposed can effectively distinguish suspicious
information in forgery images. The incorporation of the CSA module enables the network
to focus more precisely on significant frequency zones. The Multi-scale Patch Similarity
Module proposed by local relation learning (LRL) (Chen et al., 2021) calculates the
similarity between local regions through cosine distance, clearly modeling the relationships
between different local regions. M2TR (Wang et al., 2022) utilizes the Transformer model
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to perform self attention calculations on image blocks of different scales, capturing multi-
scale artifacts. Both models have encoded masks and designed corresponding loss
functions to guide the attention module in alleviating overfitting. We believe this is why
these models can achieve better results in high-resolution data. Compared with M2TR,
GocNet (Guo et al., 2023c) adopts tensor preprocessing module and manipulation tracking
attention module, which further improves the detection performance of the backbone
network while maintaining relatively low traffic. Although these works have achieved good
detection results, their model parameters and computational costs are still relatively high.

Furthermore, we evaluate our method on the DFDC dataset, which is a more
challenging task. We choose several state-of-the-art methods for a fair comparison,
including F3 Net (Qian et al., 2020), M2TR (Wang et al., 2022), GocNet (Guo et al., 2023c),
LDFnet (Guo et al., 2023b). As shown in Table 3, our method outperforms other
approaches by 0.88% and 1.37% in terms of ACC and AUC. These results validate the
effectiveness of our proposed method under complicated scenarios.

Table 2 The performace of our method and other state-of-art methods on FaceForensics++ dataset.

Method Raw C23 C40

ACC AUC (%) ACC AUC (%) ACC AUC (%)

Xception (Chollet, 2017) 99.26 99.2 95.73 96.3 86.86 89.3

Face X-ray (Li et al., 2020a) – – – 87.4 – 61.6

F3Net (Qian et al., 2020) 99.95 99.8 97.52 98.1 90.43 93.3

Two-branch (Masi et al., 2020) – – 96.43 98.7 86.34 86.59

WDB (Jia et al., 2021) 99.74 99.78 96.95 99.6 88.96 92.97

FDFL (Li et al., 2021) – – 96.69 98.5 89.0 92.4

LRL (Chen et al., 2021) 99.87 99.92 97.59 99.46 91.47 95.21

M2TR (Wang et al., 2022) 99.50 99.92 97.93 99.51 92.89 95.31

RECCE (Cao et al., 2022) – – 97.06 99.32 91.03 95.02

GocNet (Guo et al., 2023c) – – 94.34 97.75 89.46 92.52

LDFnet (Guo et al., 2023b) – – 96.01 98.92 92.32 96.79

Our 99.62 99.87 97.98 99.64 92.92 94.35

Note:
Bold values refer to the best values.

Table 3 The performace of our method and other state-of-art methods on DFDC dataset.

Method ACC AUC (%)

Xception (Chollet, 2017) 89.83 94.86

F3Net (Qian et al., 2020) 79.86 87.50

M2TR (Wang et al., 2022) 91.27 97.20

GocNet (Guo et al., 2023c) 92.52 96.87

LDFnet (Guo et al., 2023b) 93.15 97.20

Our 94.03 98.57

Note:
Bold values refer to the best values.
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Cross-dataset evaluation

In this section, we evaluate the generalization ability of our method given that it is trained
on FF++(raw) with multiple manipulations and tested on Celeb-DF, DFDC, DFDCP and
DFD respectively. This settingis challenging in generalization ability evaluation since the
testing sets are collected from different sources and share much less similarity with the
training set. Table 4 analyzes the AUC of the proposed method with other current face
forgery detection methods. Our method obtains 70.48%, 73.41% and 97.2% on DFDC,
DFDCP and DFD respectively, which is outperformed other models. Especially compared
to Xception (Chollet, 2017), our method has improved the detection performance on
Celeb-DF by over 10%. Compared with F3 Net (Qian et al., 2020), which also utilizes
frequency information, our proposed method showed a higher AUC of 3.22% and 0.81% in
generalization experiments on Celeb-DF and DFDC, respectively. The favorable
generalization of this model is mainly attributed to the proposed multi-scale spatial feature
extraction module. Thanks to the grouping reconstruction operation, the network can
achieve more robust spatial feature extraction and obtain feature information from
different directions. Meanwhile, the spatial branch effectively compensates for the limited
feature learning and potential overfitting risks posed by relying just on frequency
information.

It can be observed that multi-attention (Zhao et al., 2021a) has higher AUC on Celeb-
DF dataset. It adopts a multi-level attention mechanism, relying on complex structures and
powerful feature representation capabilities to learn rich common features, thus achieving
better generalization. However, such large models often require significant computational
resources and cannot achieve a good balance between speed and accuracy. In contrast, our
proposed method can achieve comparable results in multiple cross-dataset experiments
while maintaining the computational efficiency of the model.

Ablation experiment
We first assess the efficacy of each module in our model, in which we develop the following
experiment comparison on the DFDC dataset: (a) The baseline incorporates full-frequency

Table 4 Cross-dataset evaluation on Celeb-DF, DFDC, DFDCP and DFD dataset.

Method Training Test (AUC %)

Celeb-DF DFDC DFDCP DFD

Xception (Chollet, 2017) FF++ 65.36 67.9 72.2 70.5

Two-branch (Masi et al., 2020) 73.41 – – –

Face X-ray (Li et al., 2020a) 74.2 70.0 70.0 85.6

F3Net (Qian et al., 2020) 72.51 69.67 – 86.1

Multi-attention (Zhao et al., 2021a) 76.54 67.36 66.28 75.53

RECCE (Cao et al., 2022) 76.71 69.06 – –

GocNet (Guo et al., 2023c) 67.4 – – –

LDFnet (Guo et al., 2023b) 65.7 – – –

Our 75.73 70.48 73.41 89.26

Note:
Bold values refer to the best values.
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range information as input; (b) The baseline utilizes first level wavelet-packet transform to
select high-frequency information as input; (c) The network incorporates a multi-scale
frequency decomposition module to filter high-frequency information as input; (d) The
model further employs a three-level wavelet-packet transform on top of the multi-scale
frequency decomposition module; (e) The model incorporates both the multi-scale
frequency decomposition module and the CSA module simultaneously; (f) The model
combines the multi-scale frequency decomposition module, CSA module, and high-
frequency guided spatial feature extraction module simultaneously. The quantitative
results are listed in Tables 5–7.

By comparing a and b in Table 5, it can be concluded that retaining low-frequency
information is not conducive to the effective learning of important features. This further
demonstrates the necessity of feature selection for different frequencies.

Comparing variants b and c in Table 6, it can be concluded that the multi-scale
frequency feature decomposition module can effectively obtain high-frequency
information at different scales, helping the network improve detection accuracy. Method d
illustrate that further use of the three-level wavelet-packet transform can result in more

Table 5 Ablation evaluation about effects of high-frequency filtering on DFDC dataset.

Method DFDC

WPT1-A WPT1 ACC AUC

a ✓ 83.39 91.71

b ✓ 84.03 92.54

Note:
Bold values refer to the best values.

Table 6 Ablation evaluation regarding wavelet-packet transformon on DFDC dataset.

Method DFDC

WPT1 WPT2 WPT3 ACC AUC

b ✓ 84.03 92.54

c ✓ ✓ 87.29 94.6

d ✓ ✓ ✓ 83.88 91.86

Note:
Bold values refer to the best values.

Table 7 Ablation evaluation about the effect of CSA module and multi-scale spatial feature
extraction module on DFDC dataset.

Method DFDC

WPT1 WPT2 CSA IWPT ACC AUC

c ✓ ✓ 87.29 94.6

e ✓ ✓ ✓ 87.89 95.27

f ✓ ✓ ✓ ✓ 88.58 96.27

Note:
Bold values refer to the best values.
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pronounced noise in the image, with too little effective information, making it difficult to
extract effective high-frequency information.

From variants e in Table 7, we observe an improvement on both ACC and AUCmetrics
when adding the CSA module which effectively achieve the interaction and fusion of high-
frequency information at different levels, making the network more focused on the forged
traces present in the frequency. By adding multi-scale spatial feature extraction module on
top of e, more subtle artifacts in spatial information from different directions can learned
by the model, which supplementing the network with necessary semantic and contextual
information.The best performance is achieved when combining all the proposed
components with ACC and AUC of 88.58% and 96.27% respectively.

CONCLUSION
In this article, we propose a novel approach for face forgery detection by introducing a
spatial and frequency dual stream network. The proposed model incorporates several
modules that contribute to the effectiveness of the detection process. Specifically, the
multi-scale frequency decomposition module effectively filters and extracts high-frequency
features across multiple levels, enhancing the discriminative power of the network.
Furthermore, the cross self-attention module facilitates the interaction and fusion of multi-
scale frequency features, promoting a comprehensive analysis of the input data.
Additionally, the high-frequency guided spatial feature extraction module employs
grouping reconstruction techniques to enhance the model’s robustness in extracting
informative spatial features. The proposed method is extensively evaluated on widely-used
benchmark datasets, which demonstrating its robustness and generalizability. Future work
will focus on exploring the interactions between frequency and spatial domain information
to address the challenges posed by complex real-world scenarios. This will allow for the
development of more effective and reliable face forgery detection algorithms.
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