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ABSTRACT
Waste segregation is an essential aspect of a smoothly functioning waste management
system. Usually, various recyclable waste types are disposed of together at the source,
and this brings in the necessity to segregate them into their categories. Dry waste
needs to be separated into its own categories to ensure that the proper procedures are
implemented to treat and process it, which leads to an overall increased recycling rate
and reduced landfill impact. Paper, plastics, metals, and glass are just a few examples of
the many dry waste materials that can be recycled or recovered to create new goods or
energy. Over the past years, much research has been conducted to devise effective and
productive ways to achieve proper segregation for the waste that is being produced at
an ever-increasing rate. This article introduces a multi-class garbage segregation system
employing the YOLOv5 object detection model. Our final prototype demonstrates the
capability of classifying dry waste categories and segregating them into their respective
bins using a 3D-printed robotic arm. Within our controlled test environment, the
system correctly segregated waste classes, mainly paper, plastic, metal, and glass, eight
out of 10 times successfully. By integrating the principles of artificial intelligence
and robotics, our approach simplifies and optimizes the traditional waste segregation
process.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Robotics
Keywords Multi-class waste segreggation, Robotic arm, Computer vision, YOLO single shot
detector

INTRODUCTION
Waste management is one of the most significant and crucial challenges that our nation
is currently facing in the modern world. This problem is rapidly escalating out of control
and posing a substantial risk to the environment as a result of the nonstop production of
waste that occurs around the clock every single day. However, it is essential to debunk the
widespread belief that recycling is a fruitless endeavor to make progress in this area. The
majority of waste types have the potential to entirely transform or break down into harmless
composites that can serve alternative purposes, and an astounding 85% of the waste that
households produce is recyclable effectively. Household waste needs to be separated
appropriately (Sruthy et al., 2021) into various categories to facilitate the streamlining of
recycling procedures, which is the key to unlocking the opportunities presented by recycling.
An intelligent waste management system, one that takes advantage of recent developments
in technology to automatically verify and categorize waste with a level of accuracy that is
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unmatched (Dong, 2021; Adedeji & Wang, 2019), has become an absolute necessity as the
volume of waste produced continues to balloon to ever-greater proportions. By adopting
the strategy of automation in the waste classification and segregation system (Nandhini et
al., 2019), it is possible to reap a variety of benefits, such as increased productivity, enhanced
accuracy, enhanced sustainability, significant cost savings, and improved health and safety
conditions. The integration of artificial intelligence (AI) and robotics has emerged as a
pioneering solution in this context, revolutionizing the field of waste management and
providing a pathway to tackle the current waste crisis effectively (Tasnim et al., 2022).

Despite the undeniable potential for waste recycling, achieving widespread waste
segregation continues to be a challenge. This is especially true in nations like India (Sudha
et al., 2016), which have a large population and are experiencing rapid economic growth.
The majority of the population is hesitant to adopt practices for waste segregation due
to factors including a lack of adequate education, a scarcity of resources, and an inherent
unwillingness on their part. As a result, creating an intelligent waste management system
that makes use of the power of cutting-edge technology has become essential to overcoming
these obstacles (Bircanoğlu et al., 2018). The separation of waste according to its inherent
properties, such as dryness, wetness, and biodegradability, is becoming increasingly
important in the effort to lessen the negative impact that is currently having on the
environment.

In spite of the fact that the separation of wet and dry waste is already an accepted
and common practice, further separating dry waste is of the utmost importance because
it enables the waste to be optimally prepared for reuse, recycling, or any other form of
recovery. Not only does an effective waste segregation process cut down on the amount
of waste that is sent to landfills, but it also minimizes the amount of waste that is exposed
to the air and water, which helps to protect the health of the environment as a whole.
The manual sorting of waste on a massive scale has been the primary method of waste
segregation for themajority of history. However, the volume of waste that is being produced
currently exceeds the capacity of manual processes, so novel approaches are required to
deal with the surplus of waste. As a result, researchers have put a lot of time and effort
into automating waste segregation (Ahmad, Khan & Al-Fuqaha, 2020), and they have put
forth a variety of strategies to increase the effectiveness of this process. In this effort to find
better solutions for waste management, artificial intelligence, and robotics have emerged
as two of the most promising areas of research. This combination of artificial intelligence
and robotics presents a significant opportunity to bring about a revolution in the existing
system of waste management by improving the precision and effectiveness of waste sorting
procedures (Usha & Mahesh, 2022).

In light of these recent developments, this article presents a thorough analysis of the
current state of the field by investigating a diverse range of research and initiatives that have
been carried out in this area and proposes a multi-class garbage segregation system using
computer vision and a robotic arm. The concepts of artificial intelligence and robotics have
been utilized to make this process easier and more efficient. Further, the article highlights
potential avenues for future enhancements while presenting the results that were achieved
through the use of these innovative approaches.
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The article is arranged as follows in the mentioned order: Literature Review, Proposed
Methodology, System Implementation, Experimental Setup, Results and lastly followed by
a Conclusion.

RELATED WORK
Narayanswamy, Rajak & Hasan (2022) compared YOLO, CNN, and RCNN and concluded
that YOLO is better at classifying multiple wastes in the same frame, which can be used
when the budget is low and high accuracy is needed. The faster RCNN is the best classifier,
which has the highest accuracy of 91% and a loss of 16% so far, and the algorithm requires
high power and a lot of data.

Zhou et al. (2021) designed a self-made dataset of 4 categories, namely plastic bottles,
glass bottles, metal cans, and cartoons. The trash detection network is built upon YOLOV4
withGhostNet as the backbone in an attempt to construct an improvedYOLOV4. Improved
YOLOV4 implied that training and inference timeswere fasterwhile accuracy also increased.
A dual-arm robot with mobility is integrated with the trained detection network for the
convenience of trash identification and pickup.

Padalkar, Pathak & Stynes (2021) presented an object detection and scaling model for
plastic waste sorting and detection of four types of plastic using the WaDaBa database. In
data modeling and training, the Scaled-Yolov and EfficientDet were pre-trained with the
COCO dataset, and the weights were fine-tuned on a plastic dataset. The final bounding
box is exported as a JSON file and uploaded to Roboflow. Scaled-Yolov4-CSP has the
highest accuracy of 97% compared to the other models.

Sai Sushanth, Jenila Livingston & Agnel Livingston (2021) presented manual segregation
of waste by automating it using CNN. Image scraping is used in the project, which involves
collecting images from the web and making a dataset out of them. The misclassified
images are removed, and new images are added. Finally, accuracy, precision, and recall are
calculated using true positives, true negatives, false positives, and false negatives. The most
misclassified among the classes is glass, so more glass images can be added to enhance the
model.

Sheth et al. (2010) aim to automate tasks that previously would have required
manual intervention, such as sorting items using machine vision. A proximity sensor,
a microcontroller, and a USB webcam are the electronic parts, with a robot arm and
a conveyor belt being the mechanical parts. The robotic arm will pick and place the
component according to color if it fits the requirement and this process will then be
repeated as many times as required. The advantages of this system are its fast speed,
reduced labor cost, and good repeatability.

Thanawala, Sarin & Verma (2020) proposed a voice-controlled robotic arm with 5
degrees of freedom for the automatic segregation of medical waste. It involves three
modules speech-to-text module that uses Google Cloud’s speech API for conversion of
speech to text, A waste detection and classification module in which camera images are
fed into the Yolov3 algorithm, and a pickup and place module that mainly uses two ROS
packages, ROS TF, and ROS MoveIt.
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Chinnathurai et al. (2016) aimed to build a robot (Recylebot) that segregates recyclable
and non-recyclable wastes automatically. The system has four modules (i.e., drivetrain,
image acquisition system, image processing server, and human-machine interface). The
drivetrain module is a motor control that uses UART from Raspberry Pi, and it also uses
ultrasonic sensors to detect nearby objects. The image acquisition system is at the top of
the robot, near the camera. The Image processing server is a remote module that uses
MATLAB for image processing. The human-machine interface is a GUI for the human
user.

Proposed methodology for YOLO single shot detector interfaced with
5DOF robotic arm system
By fusing software and hardware elements, the methodology suggested in this article
introduces a novel approach to waste segregation, leveraging the capabilities of the YOLOv5
classifier in conjunction with a 5DOF robotic arm.

A webcam serves as the primary sensor, capturing live video feeds of the waste materials
presented to the system. The video stream is processed in real time, where it is split
into individual frames. These frames provide the raw data necessary for object detection
and classification. To train the object classification model, a robust dataset is essential.
This dataset consists of numerous images of various annotated waste items. The quality
and diversity of the dataset directly correlate with the subsequent accuracy of the object
classificationmodel. Themodel learns to identify and categorize waste items by recognizing
patterns and features within the annotated images. It undergoes a rigorous training regime
where its parameters are iteratively adjusted to minimize errors in object localization and
classification. Upon completion of the training phase, the YOLOv5 model is deployed
on a system-on-chip (SoC) platform, enabling the real-time processing of video frames.
As each frame is analyzed, the model localizes and classifies objects within the frame,
tagging them with the appropriate waste category. The classification result generated by
the SoC is transmitted via serial communication to an Arduino microcontroller. This
microcontroller interprets the data and converts it into actionable commands for the
robotic arm’s DC motors. The robotic arm, equipped with a five-degree-of-freedom
manipulator and a pick-and-place module, executes these commands. The robotic arm,
guided by the classification input, physically segregates the waste by picking up items
and placing them into designated bins corresponding to their categories. This segregation
process is targeted and precise, ensuring that each item is deposited in the correct bin.

You Only Look Once
The You Only Look Once (YOLO) family is renowned for its single-shot detection
capabilities. It is called a single-shot detector because it processes an entire image in
one forward pass, unifying object localization and classification. This approach makes it
significantly faster than multi-step methods, allowing for real-time object detection with
decent accuracy. The underlying architecture in YOLO divides the image into a grid, and
each grid cell is in charge of identifying objects in its assigned region. This significantly
improves computational efficiency by processing the entire image in a single pass.
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Our methodology utilizes YOLOv5 because it can achieve greater accuracy and shows
improved generalization across a wider range of waste categories due to its efficient
architecture. YOLOv5 was chosen over its successors (like YOLOv8) because of its
lesser memory utilization and its compatibility with devices like the Pi3B+ (Kumar et
al., 2021). This framework enables the identification of different types of waste and their
locations, along with the detection of their boundaries. YOLOv5’s architecture is built on
a streamlined and modern design, utilizing a deep neural network architecture based on
the backbone of CSPDarknet53 or CSPDarknetLite (Jocher, 0000). It is trained end-to-end
using a combination of the cross-entropy loss for class predictions and the generalized
intersection over union (GioU) loss for bounding box predictions. The GIoU loss improves
the bounding box localization accuracy and encourages better box shapes, leading to more
accurate object detection results. Anchor boxes are boxes featuring a fixed aspect ratio in
YOLO that are used to predict the class and positional offset of the bounding box. Anchor
box coordinates consist of widths and heights that are frequently computed on the training
dataset employing k-means clustering to accurately represent the dataset’s most prevalent
shapes. Choosing appropriate anchor boxes can significantly improve object detection
speed and accuracy. The actual bounding box is calculated utilizing these predictions in
the following manner:

Center coordinates:

bx = σ (tx)+ cx and by = σ (ty)+ cy .

Here, bx and by are the absolute values that represent the centroid locations and tx and
ty are the centroid location relative to the grid cell in x and y coordinates respectively. The
σ is the sigmoid function and (cx ,cy) is the top-left coordinates of the grid cell.

Dimensions:

bw = pwe tw and bh= phe th .

Here, bw and bh represent the image’s absolute width and height, respectively. Whereas,
the pw and ph isthe anchor box obtained prior to clustering.

YOLOv5 yields three outputs: the classes of the detected objects, their bounding boxes,
and objectness scores. The class loss and objectness loss are computed using binary
cross entropy (BCE). Whereas, the complete intersection over union (CIoU) loss is used to
determine the location loss. The final loss formula is represented by the following equation.

Loss= λ1Lcls+λ2Lobj+λ3Lloc .

Hardware
The hardware component of our system, on the other hand, consists of a robotic arm for
waste handling, a Raspberry Pi for loading the deep learning model (Behera et al., 2020),
and anArduino formanaging the robotic arm’smovements. The suggested approachmakes
use of the advantages of both software and hardware by utilizing robotic armmanipulation
and AI-based image recognition. The primary processing unit used for image recognition
tasks is an energy-efficient and portable device such as an Nvidia Jetson Nano or Raspberry

Lahoti et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1957 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1957


Pi. They make use of a computing architecture that is (GPU) accelerated, enabling quick
and concurrent computations for real-time object detection. The CUDA GPU present in
the Jetson Nano makes it perfect for deploying sophisticated machine-learning models in
environments with limited resources. RPi is also a good option for integrating the system’s
hardware and software due to its small form factor, low power usage, and General Purpose
Input/Output (GPIO) pins. Thus, the system was initially developed using the Pi3 and later
deployed on the Jetson Nano because of its higher computational performance. Finally,
instructions are communicated to the Arduino, which is apt for controlling low-level
robotic actions due to its adaptability and simplicity.

The structural components of the robotic arm were meticulously designed and then
produced using 3Dprinting technology. Thismethod allowed for the creation of lightweight
yet robust parts that could be easily customized to fit the specific requirements of the arm’s
design, such as mount points for the motors and channels for wiring. After the 3D printing
process, the assembly of the robotic arm involved careful integration of the motors with
the printed parts. The MG996R and SG90 motors were affixed at strategic points using a
combination of screws and brackets, ensuring a secure and functional fit. The assembly
process also included the installation of necessary wiring and control systems, which were
routed through the arm to connect each motor to the central control unit. This setup
allowed for coordinated movement of the arm’s different segments, controlled either by a
computer system or a manual interface as shown in Fig. 1.

Dataset
The primary dataset, ‘Garbage Object-Detection’ (Material identification, 2022) is extracted
from Roboflow, which is a software platform that allows image preprocessing, annotation,
and augmentation, especially for computer vision research. The dataset comprises a total
of 10,464 images from six different classes, namely Biodegradable, Cardboard, Glass,
Metal, Paper, and Plastic. The data is split in the ratio of 7:2:1 for training, validation,
and testing. The total size of the dataset is approximately 250 MB. Each image has its
own associated annotated label in a text file, which contains information about the class
label and the four edge coordinates of the bounding box of the waste items present in the
images. The data.yaml file contains the path to the training and validation images and
labels. This file will also include the class names from the dataset. To enhance the balance
of our dataset classes, we incorporated an additional dataset, Alphatrash (Tiyajamorn et
al., 2019), featuring 100 selected metal and plastic images each into our metal and plastic
class categories, respectively. To train this dataset on object detection models, bounding
box annotations were created around each metal and plastic object in all of the images.
The dataset was uploaded to the Labelbox web app, which allowed for the generation of
custom object detection datasets to generate bounding box annotations.

Figure 2 shows the high-level flow of the proposed YOLO single-shot detector interfaced
with the robotic arm system. The proposed system makes use of the PyTorch Deep
Learning Framework to train the custom model. A wide range of tools and features are
available in PyTorch for building and using neural networks. It is a well-liked option for
machine learning research and development due to its user-friendly interface, thorough
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Figure 1 An example of each class present in the utilized dataset, namely biodegradable, glass, metal,
paper, plastic, and cardboard waste types.

Full-size DOI: 10.7717/peerjcs.1957/fig-1

documentation, and active community support. Also, the system can make use of cloud
computing tools like Google Colab while it is training. This cloud-based approach promotes
collaboration and scalability while doing away with the need for substantial local computing
resources.

Overall, this suggested methodology provides a thorough and reliable solution for waste
segregation, integrating cutting-edge technologies to produce the best outcomes. Modern
tools like YOLOv5, Computer Vision, Nvidia Jetson Nano, Arduino, PyTorch, and Google
Colab are utilized to achieve the desired result. This approach promises to significantly
improve waste management systems by automating waste segregation procedures, which
will increase sustainability and environmental conservation.

System implementation
The system architecture of the proposed model is shown in Fig. 3. The system architecture
mainly consists of four different modules based on their functionality:
i. Video processing module
ii. Waste localization and classification module
iii. Serial communication module
iv. Robotic arm control
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Figure 2 High-level design of the proposed waste segregation prototype. The design is broken down
into modules in the flowchart, depending on the functionality.

Full-size DOI: 10.7717/peerjcs.1957/fig-2

Video processing module
The video processing module facilitates obtaining the ground truth (GT) of the waste
present in the experiment’s ecosystem. An external camera sensor is used to stream live
video of the intended waste items present in the ecosystem (Zubair et al., 2022). Following
this, the video will need to be processed so that the deep learning model can carry out its
detections as effectively as possible.

Image frames are extracted from the live video input of the external camera. The image
frame is created as a snapshot of the video input every 5 s with the aid of the OpenCV
library in Python; further, the image frames are resized to a width of 300 pixels. Each
frame is analyzed, and the frame rate per second is monitored and recorded. The frame
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Figure 3 Comprehensive Architecture of the Proposed Robotic Arm System. The detailed design and
flow of our waste segregation prototype.

Full-size DOI: 10.7717/peerjcs.1957/fig-3

rate can be minimized depending on the CPU constraints, as it will allow the program to
be more efficient and reduce the CPU load. A rescaling method is used on each frame,
which treats each frame as a smaller image while processing for better efficiency. At this
stage, the frame is encoded in BGR format, but for the convenience of waste classification,
it will be transformed into RGB format and then PIL Image format using a numpy array.
The PIL format is used because of its wide range of image modification functionality and
metadata extraction from the image. The video that is collected from the camera sensor
is continually analyzed on a frame-by-frame basis and then forwarded to the subsequent
object localization and classification module.

Waste localization and classification module
Object detection and classification are the primary responsibilities of the waste localization
and classification module. This module uses the Yolov5 and OpenCV libraries. OpenCV
provides a comprehensive set of image processing and computer vision capabilities, whereas
YOLO focuses on the deep learning aspect of object detection. The Yolov5 model is trained
using a publicly available data set containing six classes: biodegradable, cardboard, glass,
metal, paper, and plastic. The images are annotated with bounding boxes that define the
coordinates and dimensions of the visible objects. Each bounding box has a class label
that specifies the category of the object. This dataset is processed, grouped in batches for
faster training, and then trained over the Yolov5 architecture by introducing additional
hidden neural layers to produce a customized SSD waste classification model. We train our
model using three sets of data, i.e., train, valid, and test. The open-source dataset is trained
for around 120 epochs, which overall consumes approximately 15 compute hours. The
trained model comprises approximately 113 neural layers and approximately 7.3 million
parameters. To validate the robustness of the trained model, the 20% split from the (7:2:1 -
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Figure 4 Object localization and classification of different waste classes captured in a real-time envi-
ronment by the custom-trained YOLOmodel classifier. Each detection is mapped to a boundary box, la-
beled, and displayed with its prediction confidence score (in %).

Full-size DOI: 10.7717/peerjcs.1957/fig-4

Train: valid: test) dataset is utilized. The validation is performed after each epoch, and the
weights are optimized based on the performance of the model. This continuous evaluation
of the model assists in better precision in fewer epochs. A constant frame size of 416x416
is used to train the model. The weights after each iteration of training are saved along with
their parameters, and the best weights of the model are saved for further use in the serial
communication module as shown in Fig. 4.

Serial communication module
Serial communication is a widely employed method for device-to-device data exchange,
and it is commonly used to transmit data between a Raspberry Pi and an Arduino. Utilizing
the Universal Asynchronous Receiver-Transmitter (UART) protocol, the Raspberry Pi and
Arduino can establish a serial connection.

The UART protocol enables serial interface data transmission and reception. It consists
primarily of a transmitter (Tx) and a receiver (Rx). The transmitter converts parallel data
to a serial bit stream, whereas the receiver converts serial data to a parallel format. To
establish serial communication between a Raspberry Pi and an Arduino, the Tx and Rx
pins of both devices must be connected. The data transmitted over the dedicated pins
can also be transmitted via the USB’s data pins. This simplifies the process of setting
up the environment, reduces the risk of data loss, and enables the use of libraries for
multiple programming languages. Python’s serial library allows us to utilize this feature.
Consequently, a USB A-to-USB B high-speed data transmission cable is used to connect
the RPi and Arduino.

The Raspberry Pi’s built-in serial interface, typically referred to as ‘‘/dev/ttyAMA0’’ or
‘‘/dev/serial0’’, is used for serial communication. Python (3.6+) is used to communicate
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with the serial port on both the Raspberry Pi and Arduino via the aforementioned USB
connection (Rx/Tx cables would perform similarly). Libraries such as pySerial and Serial are
used on the Raspberry Pi to send and receive data over the serial connection. These libraries
offer a straightforward and convenient method for establishing serial communication as
well as functions for reading and writing data without a hitch.

On the Arduino side, the serial library included with the Arduino IDE can be utilized.
Using familiar functions such as Serial.begin(), Serial.print(), and Serial.read(), this library
enables sending and receiving data over the serial port. To exchange data between the
Raspberry Pi and Arduino, a communication protocol can be defined that specifies the
format and structure of the messages being sent. For example, it is possible to delimit
each message with a start marker, data payload, and end marker. To ensure proper data
transmission and interpretation, the Raspberry Pi and Arduino must both adhere to the
specified protocol.

Here, once the GT input frame from the camera is processed by the YOLOv5 model
to detect waste, the output from the model is used for communicating the directives
to the robot. Based on the detected ‘‘class’’ or ‘‘id’’ by the model, the developed model
instructs the Robotic arm to sort the waste must be sorted. The Python code that reads the
previously mentioned class that the model identified contains a switch/if case. Based on
the class it falls under, a command is sent to the Arduino to move the robot accordingly.
On receiving the ‘‘start’’ signal for picking up the object from the serial communication,
the robotic arm extends over its multi-axis arm and picks up the detected waste. The
waste detected is assumed to be at the center of the screen, and based on the predefined
mathematical calculations, the robot moves the arm to pick up the waste from the center
of the screen. Once the waste is picked, based on the directives that were received from
the waste classification model, it is dropped at its respective sorting zone. After dropping
the waste in its designated zone, the completion flag is relayed back from the Arduino to
the Raspberry Pi. This completes a circular sync of the program, and the iterations are
recorded. The robotic arm returns to its original position to continue the same process
until the program is interrupted.

Robotic arm control
The robotic arm is a critical aspect of the waste segregation environment. Once the model
receives information from the serial communication port on the Arduino module, the
pre-written code in the microcontroller can control the robot on its five different axes.
This controllable axis consists of multiple interconnected segments or links, allowing it
to move in numerous directions. Each joint of the robotic arm is equipped with a servo
motor. Servo motors are commonly used in robotic systems due to their precise control
over position and angle. The servo motors can rotate the arm segments to different degrees,
enabling the arm to reach various positions and orientations.

The robotic arm requires both data and power connections to operate effectively. The
data connection, likely through cables or wireless communication, allows the arm to
receive instructions and commands from a control system or a computer program. The
power supply provides the necessary electrical power to drive the servo motors and other
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components of the arm. In the previous segment, the article discussed how the Python
code instructs the Arduino via serial communication to sort the waste based on detection.
Once the Arduino receives which segregation ‘‘bin’’ the waste must be put into, each of
the 5 motors within the robotic arm is moved sequentially to perform the task. This is
accurately possible without the need for any external monitoring sensors for the robotic
hand to know its position using servo motors. These servo motors are programmed to
know their current degree, which lets us know exactly where the robot is and also enables
the program to command the robot to go to a particular spot easily.

A one-axis gripper is equipped with the robot to pick up the waste. The Arduino is
in charge of controlling this gripper to pick and place objects as needed. The gripper is
padded with velcro or rubber to enhance its grip, ensure the secure handling of the waste
items, and prevent dropping when slippery. The body or structure of the Robotic arm is
created using 3D printing technology. 3D printing allows for the precise manufacturing of
complex geometries and customized designs. The 3D-printed body provides the necessary
strength, rigidity, and lightweight construction for the Robotic arm.

Experimental setup
The experimental setup made to check the workings of the proposed multi-class waste
segregation using computer vision and a robotic arm consists mainly of a robotic arm,
a Burette stand, waste bins, an Arduino, a Raspberry Pi, and jumper wires. The Burette
stand is used to place the camera in a still position and is capable of capturing a top view
of the ecosystem. The servo motors present in the robotic arm are connected to Arduino
pins and external 5V and ground. In this way, Arduino can command the individual servo
motors to perform the required rotation needed for the overall correct movement of the
robotic arm (Material identification, 2022). The Raspberry Pi is connected to the Arduino
through USB for serial communication between the devices.

An open-source dataset containing images of different waste classes is imported and
processed for inference and training. This collected dataset consists of six different waste
classes: biodegradable, cardboard, glass,metal, paper, and plastic. The dataset was annotated
using online tools, and each image has a text file associated with it that includes the label
and box coordinates of the waste item present in the image. This is then worked upon to
create a machine-learning model capable of distinguishing and locating any waste classes in
the input image frame received from the still camera. By extensively training the YOLOv5
model using the training dataset, model weights are precisely fine-tuned to be capable of
accurate waste classification for real-world waste images. The result from the model is then
used to instruct the hardware segment of the proposed system to perform actions based on
the class of waste that is present. The required parts for the robotic arm are 3D printed and
assembled with the required motors. This movable arm with a fixed base will be controlled
using Arduino to grab, hold, move, and drop the waste item.

In the experiment setup shown in Fig. 5, we conduct a randomized real-life test case
scenario to assess the precision of the model and the overall system in relation to the
environment and the objects. In our robotic arm system, we concentrate on the physical
separation of four primary categories of dry waste: paper, glass, metal, and plastic, even
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Figure 5 Experimental setup –frames from the webcam (right) are processed by the trained model in
the Raspberry Pi, and the waste type is classified. The data is passed onto the robotic arm (left) and seg-
regated into the correct bin.

Full-size DOI: 10.7717/peerjcs.1957/fig-5

though the model is trained on six different classes In order to conduct an experiment,
we obtained various categories of waste commonly found in the garbage of an average
household on a regular basis. This encompasses a variety of colors, and forms and also
contains transparent, translucent plastic and glass. The various specimens of waste are
placed together in a single container and mixed randomly without being seen. Input
waste material was placed in the test environment and was chosen by picking a random
waste material from this collection box for many iterations. We were able to achieve an
average success rate of eight out of 10 classifications. The primary instances in which the
classifications predominantly faltered occurred when the model experienced difficulty
distinguishing between plastic and glass.

RESULTS AND DISCUSSION
The YOLOv5 model is evaluated primarily on the following evaluation metrics: precision,
recall, and the three losses: box loss, classification loss, and objectness loss. The trained
YOLOv5 model has been validated using measures such as precision and recall to access
the model’s proportion of true positives and actual positives that are correctly identified.
The three losses, on the other hand, aid in determining the YOLOv5 model’s accuracy of
the location and classification of the object.

The system’s speed and compactness are unique aspects of our system. The fundamental
component of the system is a bespoke YOLOv5 model, renowned for its rapidity and
effectiveness in identifying objects. This model is designed specifically for precise garbage
sorting and is connected to an adaptable 5DOF (Degrees of Freedom) robotic arm. The
3D-printed robotic arm with precise servo motors serves as an example of the article’s
hardware and software incorporation. The notable aspect of this study is its pragmatic
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implementation in a real-life setting, showcasing an average efficacy of the overall system
of 80% for garbage categorization. Previous studies in this domain explore mainly earlier
versions of YOLO, and this study of automated waste management utilizes the advanced
YOLOv5 model, which can operate on SoC IoT devices like Raspberry Pi, in conjunction
with a well-crafted robotic arm for waste segregation. In addition, we not only used a
single system-on-chip (SoC) device for image classification, but we also separated the
major functionalities by employing serial communication. This approach delegates the
task of handling robotic arm movements to an Arduino. This division is more effective
and simpler because the Arduino is well-suited for controlling hardware movements, while
the SoC can focus on computationally intensive image classification. This system not only
represents environmental sustainability but also showcases the capacity of AI and robotics
to address practical, real-world problems.

PRECISION AND RECALL
Both the accuracy terminologies, precision, and recall can be seen consistently improving
over the epochs for the training and validation datasets. The model was able to achieve a
maximum of 0.65 precision and 0.5 recall, and this can be further improved if trained for
more epochs in a better GPU environment with limited constraints as shown in Fig. 6.

Box, classification, and objectness losses
Three types of losses have been measured while training the model, as represented in Fig.
7. The box loss represents how well a machine learning technique can locate the centre of
an object, in addition to how effectively the predicted bounding box covers a given object.
Classification loss indicates how accurately the YOLOv5 model can predict the proper class
of a given object. Objectness loss resulting from an incorrect box-object intersection over
union (IoU) prediction instructs the network to accurately predict the IoU. The graph of
all three losses is consistently decreasing for both training and validation data, indicating a
decent AI model with good learning and results. Overall, a waste segregation system that
combined both hardware and software technologies was successfully built and tested.

Confusion matrix
The confusion matrix is an effective metric in the context of object identification since it
gives a thorough and complete evaluation of an object detection model’s performance. It
is very useful for testing a model’s predictions on a dataset with the objective of identifying
and locating objects within images. The confusion matrix is a table that summarises the
success or failure of a classification system by categorizing and organizing its predictions.

The confusion matrix for object detection is more nuanced than for image classification.
The overlapping region of each forecast, as well as the confidence score, are taken into
consideration. Figure 8 displays the confusion matrix of our trained model. The results
of the true positives and true negatives are promising for the five classes: biodegradable,
glass, metal, plastic, and cardboard which is evident in the confusion matrix. However, the
results for the paper class are significantly lower since the model misclassifies the paper as
background (no object detected in the image). This is mainly due to the paper’s thin and
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Figure 6 Graphs of trained YOLO classifier metrics (i) precision (ii) recall where the x-axis is epoch
number and the y-axis is the metric value. An increasing graph depicts that the model is learning the fea-
tures successfully and is improving its prediction capabilities.

Full-size DOI: 10.7717/peerjcs.1957/fig-6

flat nature, which makes it harder for the model to differentiate it from the background.
The limited range in the training dataset, such as the lack of variations in color, texture, and
background, also contributes to the paper’s frequent incorrect classification. Despite the
model’s lower accuracy in identifying paper in validation and test sets, this did not have any
significant impact on our overall robotic arm segregation system’s effectiveness in real-time
experiments. Our prototype in the test environment used a dark contrast background for
the placement of waste items. In consideration of the arm’s gripper and grasping capability,
crumpled papers were used as the test subjects rather than flat papers. This setup allowed
for the accurate classification of papers, overcoming the challenges observed in the model.
To enhance paper detection accuracy, this study suggests expanding the training dataset
with diverse paper forms, lighting, and backgrounds and implementing data augmentation
for robustness against variable conditions.

CONCLUSIONS
The findings of this study highlight the potential advantages of implementing waste
management systems driven by artificial intelligence. The final prototype of the robotic arm-
basedwaste segregation system could classify anddrop testwaste items 80% successfully into
their respective containers. Using a custom fine-tuned YOLOv5, a robust object detection
framework, in conjunction with hardware components such as the Arduino and Raspberry
Pi, enabled accurate waste classification, precise robotic arm control, and seamless data
communication. The three losses calculated for the trained model on the garbage dataset
were box loss, class loss, and object loss at 0.047, 0.078, and 0.0392 respectively, at around
100 epochs. The significant misclassification of paper as background resulted in the overall
precision of the trained model being 0.65. While the paper class caused issues, the other
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Figure 7 Three box losses of the custom-trained YOLOmodel, namely (i) box loss, (ii) class loss,
and (iii) object loss. They are analyzed to understand the training progress of the YOLO model. The loss
graphs of the validation set are represented, where the x-axis is the epoch number and the y-axis is the
respective loss value. All three losses have a decreasing curve, signifying consistently improved learning of
the model. (i) Box loss−0.047 at∼100 epochs. (ii) Class loss−0.0078 at∼100 epochs. (iii) Object loss
−0.0392 at∼90 epochs.

Full-size DOI: 10.7717/peerjcs.1957/fig-7

categories performed exceptionally, with the glass class showcasing the best performance.
It achieved a precision rate of 0.92, indicating high accuracy in correctly identifying glass
items. Additionally, it exhibited a recall of 0.72, reflecting a substantial proportion of actual
glass instances being correctly detected by the model. In future work, the focus will be on
enhancing paper classification accuracy by training the model on a much bigger diverse
dataset. Additionally, the model’s training was constrained by GPU limitations, resulting
in fewer epochs. Increasing the number of training epochs to optimal value is anticipated
to improve the model’s overall confidence and accuracy, particularly in classifying complex
and mixed waste items. This extended training period is expected to refine the model’s
learning process, leading to enhanced performance in waste segregation tasks.

This study has examined the importance of waste management and the significance
of waste segregation in achieving sustainable and effective waste disposal practices. By
leveraging technologies such as computer vision, machine learning, and hardware-based
robotic arms, waste segregation processes can be automated, resulting in enhanced
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Figure 8 Confusionmatrix showing the actual prediction on the X -axis and the model’s prediction on
the Y-axis. The matrix has seven rows and columns each, which includes the biodegradable, glass, metal,
paper, plastic, and cardboard waste types and the background.

Full-size DOI: 10.7717/peerjcs.1957/fig-8

precision, efficiency, and overall efficacy. Education and community involvement are
essential for fostering a culture of waste segregation and recycling, as they encourage
individuals, households, businesses, and governments to participate actively. This article
concludes by emphasizing the critical need for continued research, collaborative efforts,
and practical implementations of AI-driven waste management systems for a better future
for the environment.
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