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ABSTRACT
Melanoma is the most aggressive and prevalent form of skin cancer globally, with a
higher incidence in men and individuals with fair skin. Early detection of melanoma
is essential for the successful treatment and prevention of metastasis. In this context,
deep learningmethods, distinguished by their ability to performautomated anddetailed
analysis, extracting melanoma-specific features, have emerged. These approaches excel
in performing large-scale analysis, optimizing time, and providing accurate diagnoses,
contributing to timely treatments compared to conventional diagnostic methods. The
present study offers a methodology to assess the effectiveness of an AlexNet-based
convolutional neural network (CNN) in identifying early-stage melanomas. The model
is trained on a balanced dataset of 10,605 dermoscopic images, and onmodified datasets
where hair, a potential obstructive factor, was detected and removed allowing for an
assessment of how hair removal affects the model’s overall performance. To perform
hair removal, we propose a morphological algorithm combined with different filtering
techniques for comparison: Fourier, Wavelet, average blur, and low-pass filters. The
model is evaluated through 10-fold cross-validation and the metrics of accuracy, recall,
precision, and the F1 score. The results demonstrate that the proposed model performs
the best for the dataset where we implemented both a Wavelet filter and hair removal
algorithm. It has an accuracy of 91.30%, a recall of 87%, a precision of 95.19%, and an
F1 score of 90.91%.

Subjects Computational Biology, Artificial Intelligence
Keywords Melanoma, Cancer, Deep-learning, Classification, Neural network, Dermoscopic,
Image, Detection, Pre-processing

INTRODUCTION
Skin cancers are the most commonly diagnosed group worldwide (Apalla et al., 2017).
They are generally classified into two major categories: melanoma and nonmelanoma
skin cancer. Malignant melanomas may rarely occur in the mouth, intestine, or eye but
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more commonly in the skin. Environmental factors as well as genetics play a role in the
development of melanoma. Exposure to ultraviolet (UV) radiation from the sun and
tanning lamps is taught to be the leading cause of melanoma (Garibyan & Fisher, 2010;
Sun et al., 2020). Although it can affect people of all skin types, melanoma is notably
more prevalent among males and individuals with fair skin complexion (Howlader et
al., 2014). The highest incidence of melanoma is found in Australia, New Zealand, and
North America, but it is also becoming increasingly prevalent in Africa, Asia, and South
America (Nikolaou & Stratigos, 2014). According to the International Agency for Research
on Cancer (IARC), melanoma is the most aggressive and prevalent type of skin cancer in
the world, with an estimated 325 000 new cases identified worldwide and 57 000 deaths in
2020. If this tendency persists, it is projected that by 2,040, new cases will increase by more
than 50% and deaths by 68% (Arnold et al., 2022).

Melanoma is considered the most dangerous type of skin cancer because it grows
quickly and can spread to any organ. If not treated early, it might result in death or other
severe, incurable conditions. Also, visible areas of the skin might be affected, resulting in
psychological distress, depression, and emotional turmoil (Dinnes et al., 2018; Vojvodic et
al., 2019). Early detection is crucial for successful melanoma treatment (Xavier et al., 2016).
Visual examination by medical professionals is typically the initial technique employed
in melanoma detection. It involves a comprehensive inspection of abnormal skin lesions,
to categorize them as either malignant (melanoma) or benign, based on the ABCDE
criteria (asymmetry, border, color, diameter, and evolving) (Johr, 2002; Aljanabi et al.,
2020). It is important to note that the evidence to support the visual inspection’s accuracy
is insufficiently reported. Various authors agree that its accuracy might be influenced
by factors such as the experience of physicians and the diverse appearance of the lesions
(Schwartz et al., 2002; See, 2012; Dinnes et al., 2018; Bansal, Garg & Soni, 2022). Moreover,
it requires significant investments of time, personal, and financial resources, making it a
labor-intensive, time-consuming, and error-prone process (Vestergaard et al., 2008; Yu et
al., 2016; Dabeer, Khan & Islam, 2019).

Deep-learning methods have emerged as a noninvasive technique for melanoma
detection offering a promising approach to overcome the limitations associated with
visual inspection. Nowadays, a great amount of work in the detection of skin cancer is
concentrated on applying machine-learning techniques to dermoscopic images to improve
diagnostic accuracy (Dildar et al., 2021). This technique allows efficient automation of
skin lesion assessment based on the creation of statistical algorithms for learning purposes
(Char, Shah & Magnus, 2018; Fu’adah et al., 2020). Deep learning can be conceptualized
as a hierarchical process for eliciting features, inspired by the workings of the human
brain (Winkler et al., 2019). These strategies analyze unstructured patterns in dermoscopic
images by extracting and organizing deep and precise features that are not easily observed
by simple visual inspection. These algorithms have the ability to evaluate large data sets
at the pixel level in order to extract melanoma-specific features (Hagerty et al., 2019).
The usefulness of the method lies in carefully examining every detail of the images and
accurately associating it with melanoma, learning to classify by patterns and distinctive
features (Winkler et al., 2019). This approach not only helps to reduce errors but also
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allows a greater amount of data to be analyzed in less time, providing a timely diagnosis
and treatment.

Skin lesion classification has recently been addressed in studies using Transfer Learning
and Vision Transformers (ViTs) (Dosovitskiy et al., 2020; Xin et al., 2022). Transformers
are a deep learning architecture based on multi-head self-attention mechanisms, originally
proposed for sequence-to-sequence tasks in natural language processing (NLP), but now
adapted for computer vision tasks such as image classification (Usman, Zia & Tariq,
2022). These transformers, known as vision transformers, have recently been applied
to classification tasks of biological and epidemiological images of skin lesions. The
performance of ViTs for multiclass classification of skin lesions has been compared
with convolutional neural networks (CNNs), showing that when trained from scratch,
they achieve lower performance (Maurício, Domingues & Bernardino, 2023). Cirrincione et
al. (2023) have also proposed integrated models that combine transformer encoders with
masked labels and visual features of CNNs for melanoma classification in ISIC datasets.
However, CNNs exhibit higher computational efficiency on standard hardware and have
been more researched in the medical imaging domain. In addition, other approaches
for feature extraction in image classification studies include local binary pattern (LBP),
Data-Efficient Image Transformers (DeiTs), and Convolutional Vision Transformers
(CvT) (Chen et al., 2021).

CNNs are widely utilized in the field of deep learning for melanoma detection. The
underlying principle behind CNNs lies in their architecture, which employs three major
types of layers to teach the network how to identify and categorize patterns in images
(Yamashita et al., 2018). Several convolutional layers are responsible for detecting features
in the input image, such as edges and textures. They are usually followed by pooling layers,
which aim to shrink large-size feature maps to create smaller feature maps to recognize
some general patterns that are only perceptible in resized images (Nasr-Esfahani et al.,
2016; Alzubaidi et al., 2021; Zhang, 2021). The third layer, named the fully connected layer,
maps the extracted features into a final output, which is the classification. In comparison
with traditional machine learning algorithms, CNNs are specifically designed to handle
recognition tasks in image spatial structure. One of the main advantages of CNNs is
their computational efficiency. Its weight-sharing feature reduces the number of trainable
network parameters simplifying the training process and avoiding overfitting.

The VGG16 architecture, created by the Visual Geometry Group at Oxford University,
marks a significant evolution in CNNs. Introduced in 2013, this model is renowned for its
depth, consisting of 16 layers that include 13 convolutional layers (Ibrahim et al., 2023). A
key innovation of VGG16 is its use of small 3×3 convolutional filters, a departure from
larger filters used in earlier models. This design choice enhances its ability to process spatial
features in images, aiding in more accurate feature extraction. VGG16’s architecture is
elegantly simple yet highly effective, making it a popular choice for various applications,
especially in image classification tasks like skin cancer detection. Its structure involves
multiple layers of convolution, each followed by non-linear activation functions, which
contribute to the model’s efficiency in learning complex patterns (Hasan et al., 2021).
For skin cancer classification, VGG16 is often adapted through transfer learning, where
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its pre-trained layers are fine-tuned to identify specific features of skin lesions. This
methodology leverages the network’s in-depth learning from vast datasets to provide
precise classifications between malignant and benign skin conditions.

The reported variations in performance and accuracy across different segmentation tasks
and datasets can be attributed to the design variations among different architectures (Perez,
Avila & Valle, 2019). Numerous studies have shown that CNNs are highly effective for
classification, localization, detection, segmentation, and registration in dermoscopic image
analysis. These investigations have led to significant advancements in the development and
refinement of CNN-based algorithms specifically designed to accurately and efficiently
detect melanoma.

Table 1 summarizes previous studies on CNN-based skin cancer classification, providing
insights into their efficiency, effectiveness, strengths, and weaknesses.

In this context, studies have evaluated strategies to measure model performance,
highlighting the accuracy (ACC) metric emerges as a global metric that provides a
comprehensive measure of classifier accuracy. Balanced accuracy (BACC) is the average
between the sensitivity and the specificity and is prioritized for unbiased evaluation
(Brodersen et al., 2010). Specificity (SP) for negative cases and sensitivity (SE) for positive
cases are analyzed. Precision (PR) excels in the accurate identification of positive cases.
These criteria are meticulously chosen to provide a comprehensive and fair assessment of
the models’ ability to classify efficiently, offering a complete picture of their performance.

Segmentation of dermoscopic images using CNNs can be significantly influenced by
various factors, such as low contrast between the lesion and healthy skin, color variations,
the presence of air bubbles, and the obstruction caused by hair covering the lesions.
Hairs and their shadows on the skin may occlude relevant information and can cause
segmentation algorithms to commit errors in estimating texture measures (Oliveira et al.,
2016). Consequently, hair removal might be considered a crucial preprocessing step in
training CNNs for accurate segmentation.

Traditional approaches have treated hair removal as a hair detection and occlusion
inpainting problem, employing filter-based methods (Nguyen, Lee & Atkins, 2010; Eltayef,
Li & Liu, 2017; Li et al., 2021). Recent advancements utilizemulti-scale curvilinearmatched
filters for hair detection, followed by region-growing algorithms and linear discriminant
analysis for precise localization. Modern data-driven approaches employ deep neural
network auto-encoders trained on finely annotated datasets (Bardou et al., 2022). However,
constructing paired hair-containing and hair-removed images for training these algorithms
remains challenging due to their high cost and limited availability.While the effect of hair in
dermoscopic images on CNN performance has been studied, it has yet not been sufficiently
reported. Some studies have highlighted the significant improvement in classification
performance achieved by removing hair from dermoscopic images (Kim & Hong, 2021;
Li et al., 2021). Various types of filters such as Gaussian, Average, Median and Wiener
have also been used to reduce noise and smooth dermoscopic images of medical images
combined with machine learning algorithms (Bektaş et al., 2018).

The main objective of this study is to assess the impact of hair removal combined
with different filtering techniques on the performance of a CNN utilizing the AlexNet
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Table 1 References of skin cancer segmentation with typical CNN frameworks in the literature.Only the metrics for the best-performing architectures or datasets are
presented in studies that involve the comparison of multiple architectures or datasets.

Ref/Year Dataset Architecture Highlights Limitations Performance

(Ameri, 2020)/2020 HAM10000 AlexNet The suggested approach elimi-
nates the need for complex pro-
cedures of lesion segmentation
and feature extraction by taking
an unprocessed image as input
and learning directly from the raw
data.

Only 3,400 images from the
dataset were used due to the need
for an equal number of benign
and malignant images for train-
ing.

ACC= 0.84,
SE= 0.81,
SP= 0.88

(Yao et al., 2022)/2022 ISIC-2017, ISIC-2018,
ISIC-2019, 7-PT

RegNetY-3.2GF The study proposes a novel Multi-
weighted New Loss method to ad-
dress the issue of class imbalance
and improve accuracy in detect-
ing key classes such as melanoma.
RegNetY performed the best on
the ISIC2018 dataset.

Almost all publicly accessible skin
disease image datasets suffer a
problem of severe data imbalance
that might affect the performance
of CNNs.

BACC= 0.858

(Perez, Avila & Valle, 2019)/2019 ISIC-2017 Inception-ResNet-v2,
MobileNetV2 , PNAS-
Net, ResNet , SENet,
Xception, VGG16,
VGG19, and DenseNet

The authors systematically as-
sessed the factors that impact the
selection of a CNN structure by
examining 13 different factors
across nine models.

The article’s dataset has limita-
tions as it is smaller in size com-
pared to other studies and its
exclusive focus on classifying
melanoma.

Top-1
ACC= 0.827

(Javid et al., 2023)/2023 A recompilation of ISIC
datasets

ResNet 50, EfficientNet
B6, Inception V3, and
Xception

The results obtained from each
individual model are inputted
into a meta-learner in order to
combine and utilize the outputs
from these models to make a final
prediction.

– ACC= 0.935,
SE= 0.9,
PR= 0.96,
F1 score= 0.92

(Alwakid et al., 2022)/2022 HAM10000 Modified version of
Resnet-50

The proposed method suggests
utilizing DL to precisely extract
a lesion zone. The approach in-
volves enhancing the image qual-
ity using ESRGAN and then using
segmentation to isolate Regions of
Interest (ROI).

To showcase the effectiveness of
the proposed technique, it is nec-
essary to conduct more experi-
ments on a sizable and intricate
dataset that encompasses poten-
tial cancer cases.

ACC= 0.86,
SE= 0.86,
PR= 0.84,
F1 score= 0.86

(continued on next page)
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Table 1 (continued)
Ref/Year Dataset Architecture Highlights Limitations Performance

(Raza et al., 2022)/2022 Clinical repositories in
Korea

InceptionV3, Xception,
InceptionResnetV2,
DenseNet121, VGG16

A novel stacked ensemble frame-
work has been introduced in the
study, specifically designed to
augment generalizability and bol-
ster robustness in the context of
acral lentiginous melanoma clas-
sification.

– ACC= 0.979,
SE= 0.978,
PR= 0.98,
F1 score= 0.98

(Gupta & Mesram, 2022)/2022 ISIC 2016–17 AlexNet, DenseNet-121 The study suggests a mixed CNN
model that involves merging a
pre-trained AlexNet CNN model
with an optimized pre-trained
DenseNet-121 CNN model.

Numerous healthcare institutions
possess substantial patient data;
however, they face challenges in
making this information acces-
sible to the public due to privacy
concerns.

ACC= 0.9065,
SE= 0.91,
PR= 0.9065,
F1 score= 0.91

(Esteva et al., 2017)/2017 Clinical repositories GoogleNet, Inception v3 The model is adapted to be used
on mobile devices. It is predicted
that by the year 2021, there will be
approximately 6.3 billion smart-
phone subscriptions globally.

Further investigations are neces-
sary to evaluate how this method
performs in a clinical setting.

ACC= 0.721

Notes.
Alwakid et al. (2022)
Ameri (2020)
Esteva et al. (2017)
Gupta & Mesram (2022)
Javid et al. (2023)
Perez, Avila & Valle (2019)
Raza et al. (2022)
Yao et al. (2022)
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architecture for early melanoma detection. We use a dataset that is the collection
of dermoscopic images from multiple freely available International Skin Imaging
Collaboration (ISIC) and HAM 10,000 datasets. Additionally, modified datasets were
obtained by detecting and subsequently removing hair by a morphological algorithm.
Different filtering techniques are used to enhance image quality and remove noise and
are applied before hair removal for further comparison. The main contributions of this
research are: (i) combining a hair removal algorithmwith four different filtering techniques
(Fourier, Wavelet, Average blur, and Low-pass) ; (ii) conducting a comparison, in terms
of accuracy, recall, precision, and F1 score, for each filter combination to determine its
effect on the CNN performance for melanoma classification ; (iii) using a balanced dataset
comprising dermoscopic images from various multi-class skin lesion datasets. However,
a notable limitation is the similarity in metric results, prompting the need for further
validation through one-factor analysis of variance.

Related work
In recent research, significant progress has been observed in the use of CNNs and other
artificial intelligence techniques for skin cancer classification. These approaches have shown
great potential to help specialists reduce the time and resources required for diagnosis,
which, in turn, allows for more appropriate treatment. A study by Leiter, Keim & Garbe
(2020) compared expert opinionwith artificial neural networks, and found that the software
established a sensitivity of 95% and specificity of 88%, results comparable to those reported
by dermatologists.

Several researchers have proposed specific approaches for skin cancer classification
using CNN and other deep-learning techniques. Among these approaches, Yanchatuña et
al. (2021) used a combination of CNNs and support vector machines (SVMs) to detect
and classify skin cancer, obtaining an average accuracy between 80.67% and 90%, with an
outstanding performance of 90.34% for the AlexNet plus SVMmodel. Popescu, El-Khatib &
Ichim (2022) developed a skin lesion classification system involving multiple CNNs trained
on the HAM10000 dataset, capable of predicting seven skin lesions, including melanoma.
Ameri (2020) presented a deep CNN using transfer learning with AlexNet, eliminating
the need for complex segmentation and feature extraction procedures by automatically
learning useful features from raw images.

Other researchers explored the use of pre-trained networks (such as AlexNet and
VGG16) in learning transfer and as feature extractors (Gulati & Bhogal, 2019). VGG16
with transfer learning was found to outperform other techniques in terms of accuracy
and efficiency. This is attributed to its deep network structure and the ability to adapt to
specific tasks through the use of pre-trained weights, resulting in better performance in
the classification of skin lesions, as has been documented in various investigations (Anand
et al., 2022). Alwakid et al. (2022) proposed an approach that incorporates ESRGAN,
segmentation techniques, and a CNN along with a modified version of Resnet-50 for
accurate classification. Similarly, hybrid models were presented that combine CNNs with
SVM classifiers (Keerthana et al., 2023) or dimension reduction techniques such as PCA
(Olayah et al., 2023). Naeem et al. (2022) developed the SCDNet model, which combines
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VGG16 with CNN and compares its accuracy with pre-trained classifiers in the medical
domain.

In addition, comparisons of various CNN architectures were performed, where
GoogleNet proved to be the most accurate (74.91% and 76.08%) in both training and
test sets (Aljohani & Turki, 2022). Acosta et al. (2021) proposed a two-stage approach
using CNN-based masks and regions and a ResNet152 structure to classify lesions as
‘‘benign’’ or ‘‘malignant’’. Nida et al. (2019) introduced an automated melanoma region
segmentationmethod based on a deep region-based convolutional neural network (RCNN)
that accurately detects multiple affected regions. Gouda & Amudha (2020) presented
LCNet, a model that requires no preprocessing or computation of specific features. Tahir et
al. (2023) compared their novel DSCC_Net model with other deep benchmark networks,
demonstrating improved accuracy.

Finally, Bansal, Garg & Soni (2022) introduced methods to remove hair in
dermatoscopic images and used integrated features extracted using manual techniques and
deep learning models to improve melanoma detection. Experimental results highlighted
improvements in accuracy compared to approaches that do not apply preprocessing or use
manual or deep learning features separately.

MATERIALS & METHODS
This study proposes a method for training and testing a CNN with AlexNet architecture
for early melanoma detection. Four filtering techniques are implemented before a
morphological hair removal algorithm for further comparison. First, dermoscopic images
of skin lesions are obtained and preprocessed from the so-called ‘‘MSCD10000 dataset’’
(Javid et al., 2023). Then, the different layers of the CNN architecture are designed and
finally, the model performance is evaluated using 10-fold cross-validation and four metrics.
The software used in the current study is Python.

MSCD10000 dataset
MSCD10000 dataset stands for Melanoma Skin Cancer Dataset of 10,000 Images and
consists of 10,605 dermoscopic images scaled to 300x300 pixels (Javid et al., 2023). These
images were collected and resized from various publicly available ISIC (ISIC 2019, ISIC
2018) and HAM 10,000 datasets to create a balanced dataset with both benign and
malignant classes. The dataset was downloaded from Kaggle at the following link: https:
//www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images.
It is organized into two main categories, train and test. Within each category, the dataset
is further divided into benign and malignant classes. Table 2 provides details on the
distribution of dermoscopic images across these categories.

Hair removal and filtering
Before the hair removal process on dermoscopic images, we used four different filtering
techniques to reduce noise and improve image quality: Fourier, Wavelet, Average blur, and
Low-pass. Each filter was integrated using Python 3.x, cv2 libraries, and OpenCV, with our
codebase adeptly adjusted to accommodate the unique requirements of each filter type. To

Quishpe-Usca et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1953 8/24

https://peerj.com
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
http://dx.doi.org/10.7717/peerj-cs.1953


Table 2 Dataset distribution.

Train Test Total (%)

Number Percentage (%) Number Percentage (%)

Malignant 4,605 43.42 500 4.71 5,105 (48.14%)
Benign 5,000 47.14 500 4.71 5,500 (51.86%)
Total 9,605 90.57 1 000 9.43

illustrate, when implementing the low-pass filter, we applied a Gaussian blur with a 3×3
kernel size. PyWavelets for the implementation of Wavelet filters was used. The choice of
these libraries allowed for efficient and reproducible processing of the images.

The process of filter implementation and hair removal is illustrated in Fig. 1. First, the
images were converted to grayscale. They were then processed with a black top-hat filter
and thresholding, followed by an inpainting method based on cv2.INPAINT_TELEA to
restore the image (Telea, 2004). This process was performed using a 17x17 size core for
the MORPH BLACKHAT operation, highlighting dark spots, which correspond mainly to
hair, in the dermoscopic images (Ashraf et al., 2022).

After applying the filtering techniques, the grayscale images were subjected to a
morphological operation for hair detection. We use a threshold value of 10 for binarization
of the images, classifying them into pixels that represent hair (greater than 10) and
background pixels (less than or equal to 10). The images were stored in separate folders
labeled ‘‘with hair’’ and ‘‘without hair.’’

The computational complexity of the hair removal process was considerable. On
average, processing each image folder took between 2:30 and 3 h, with a memory
requirement of approximately 6 GB. This time includes the application of the filters,
the grayscale conversion, the morphological operation, the thresholding, and the filling
method (inpainting). These factors were essential to ensure the viability of the method in
both research and clinical practice.

Image pre-processing
The recommended optimal size for input images to ensure compatibility with the CNN
architecture’s input layer is 224× 224× 3 (Krizhevsky, Sutskever & Hinton, 2012). The
resized images are converted into a PyTorch tensor and then, the tensor values for each
image are normalized sequentially with the mean and standard deviation values for each
color channel. That is, scaling the values so that they have a mean of 0 and a standard
deviation of 1 (LeCun et al., 1998; Glorot & Bengio, 2010; Ioffe & Szegedy, 2015).

Furthermore, data augmentation is used to address overfitting issues and improve the
model’s capacity to generalize to new data by increasing the number of training samples for
each class through random transformations not only for imbalanced datasets but also for
datasets of any size (Perez et al., 2018;Ali et al., 2022).We applied different transformations,
which included random horizontal flipping with a 50% probability, random rotations of
up to 10 degrees, random adjustments in brightness, contrast, saturation, and hue within a
maximum range of 0.2, as well as color channel normalization and conversion to the torch.
Tensor format to effectively utilize the images as inputs.
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Figure 1 Filtering and hair removal algorithm. Images are first turned grayscale, then processed with a
black top-hat filter and thresholding, and lastly, an inpainting method restores the image.

Full-size DOI: 10.7717/peerjcs.1953/fig-1

AlexNet architecture
A visual representation of the AlexNet architecture used in this study is provided in Fig. 2. It
was trained with hyperparameters carefully chosen to balance effective model convergence
and computational efficiency. The learning rate was set to 0.001 to control parameter
updates, while amomentumof 0.9 accelerated convergence by incorporating past gradients.
A weight decay of 0.001 added regularization to prevent overfitting. The Cross-Entropy
Loss function, suitable for multi-class or binary classification, was employed to measure
prediction accuracy. A batch size of 64 determined the number of samples processed in
each iteration, balancing memory constraints and training speed. The model underwent
30 epochs.

The initial layout encompasses five convolutional layers, each using specialized filters to
identify specific features, such as contours and textures, present in the original image. These
convolutional layers alternate with maximum aggregation layers, designed to condense the
feature maps and simplify the recognition of more holistic patterns, particularly those that
might remain unnoticed in larger images. The first, second, third, and fifth convolutional
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Figure 2 AlexNet architecture of the proposed CNN. A new adaptive layer is added between the convo-
lutional and fully connected layers to modulate the binary output size.

Full-size DOI: 10.7717/peerjcs.1953/fig-2

layers are seconded by maximum aggregation layers. An additional classifier module,
consisting of three fully connected layers, is introduced to map the extracted features and
thus generate the final binary classification.

In a variation on the original AlexNet structure, a new adaptive layer is incorporated
between the convolutional and fully connected layers. This dynamically adjustable layer
modulates the size of the output tensor to fit a standardized 6x6 dimension. This adjustment
leads to an optimization of the model’s performance, allowing it to efficiently adapt to the
diversity of features present in the medical images under analysis.

Performance evaluation
We employed the K-fold cross-validation technique for evaluating the average performance
of themodel in terms of the average training and test loss. The train directory of each dataset,
original and modified, is divided into 10 folds of equal size. The choice of the value for k
was determined based on the dataset’s size. The model undergoes 10 training iterations,
each consisting of 30 epochs, with one fold serving as the validation set in each iteration
and the remaining 9 folds used for training.

In addition, a quantitative evaluation of the CNN performance was carried out using
four common metrics: accuracy, sensitivity, precision, and F1 score. True negatives (TN)
and true positives (TP) refer to the accurate classification of negative and positive instances,
respectively. On the other hand, false negatives (FN) and false positives (FP) refer to the
incorrect classification of positive and negative instances, respectively.
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Accuracy =
True detected melanoma cases (TP+TN )

All cases

Recall =
True detected melanoma cases (TP)
All melanoma cases (TP+FN )

Precision=
True detected melanoma cases (TP)

True and false detected melanoma cases (TP+FP)

F1 score=
Precision ∗ Recall
Precision+Recall

.

RESULTS AND DISCUSSION
In this section, we describe the effectiveness of the proposed CNN for detecting melanoma.
We first evaluate the impact of hair removal on its performance through a comparison of
the results for the model trained in the original and the modified datasets, where filtering
techniques and hair removal were applied. Subsequently, we compare the outcomes of
the four metrics obtained from the model trained on the best-performing dataset to those
achieved by existing studies in the field.

Hair removal results
To ensure optimal model selection, we performed model evaluation every 30 epochs for
each fold. Figure 3 shows the training and testing (validation) loss vs. epochs for the
different datasets (original and modified) presenting a detailed analysis of the evolution
of the loss throughout the training. The model curves are not smooth, instead, a lot of
fluctuations are observed. These fluctuations could be attributed to several factors, with
batch size being one of them. Notably, prior research suggests that a batch size of 32
often leads to optimal results in neural network training and as batch size increases, the
convergence can be negatively impacted (Keskar et al., 2017). However, it is observed that
the training loss is reduced to 0.1 for all of the model loss curves, which can be considered
a good sign for correct segmentation results as other studies conclude (Ishida et al., 2021;
Guefrechi et al., 2021).

The loss curve for the original images shows an increase in both training and testing
loss at 30 epochs, which is not observed in the rest of the curves. Furthermore, even when
data augmentation was used, some overfitting was observed when using the Fourier filter
before hair removal, which can cause a decrease in generalization ability.

The overall CNN performance is determined by comparing the results of the four
metrics between the original dataset and the modified datasets. The results in Table 3 reveal
that the model performs the best among three of the four metrics with images where we
have applied the Wavelet filter for noise reduction combined with hair removal. Here, the
model achieves an accuracy of 91.30%, and a recall of 87%, while the low-pass filter yields
a slightly higher recall of 89.80%. Additionally, when utilizing the Wavelet filter, the model
has a precision of 95.19% and an F1 score of 90.91%.

Quishpe-Usca et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1953 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1953


Figure 3 Model loss for (A) original dermoscopic images vs.modified images that combine (B) Fourier
filter, (C)Wavelet filter, (D) average blur, and (E) low-pass filter with hair removal.

Full-size DOI: 10.7717/peerjcs.1953/fig-3

The results indicate that hair removal improves the model’s accuracy and precision
when it is combined with the Wavelet filter allowing the model to not only make correct
predictions overall but also minimize false positives. Wavelet transform has already been
used to equalize the noise created by fine hairs in dermoscopic images as well as to increase
the algorithm’s detection speed in hybrid models combining deep learning and machine
learning (Suiçmez et al., 2023). Some of the highest accuracy and sensitivity scores in the
literature have been obtained when using Wavelet filters (Narasimhan & Elamaran, 2016).
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Table 3 Trainedmodel results on the original images from the dataset and the images where different
filtering techniques were applied and hair was removed.

Metrics Filtering technique combined with hair removal

None Fourier Wavelet Average blur Low-pass

Accuracy (AC) 91.10% 90.90% 91.30% 90.80% 90.00%
Recall (SE) 87.60% 88.20% 87.00% 87.40% 89.80%
Precision (PR) 94.19% 93.23% 95.19% 93.78% 90.16%
F1 score (F1 sc) 90.78% 90.65% 90.91% 90.48% 89.98%

On the other hand, the model trained on the original images exhibits the second-highest
accuracy and precision of 91.10% and 94.19%, respectively. However, the second highest
sensibility is reached when using the Fourier filter combined with hair removal.

These results are supported by the graphical representation of a box plot (Fig. 4), which
visually points out the significant difference between the filters as a function of their
performance. In Fig. 4, it is important to note that the Y -axis of the plot does not represent
a specific metric, but rather the combination of four different metrics, thus providing a
comprehensive view of each filter’s performance. The length of the boxes in the figure
indicates the variability in the performance of each filter: those with longer boxes exhibit
higher variability, while those with shorter boxes exhibit lower variability. This observation
is supported by examining the confidence intervals, which are considerably wider for
the Wavelet filter compared to the other filters. However, it is pertinent to note that,
despite this superiority, the confidence intervals for the Wavelet filter are also the widest,
indicating considerable variability in its performance. This observation raises the possibility
that, although the Wavelet filter excels in general terms, its performance may fluctuate
significantly in different scenarios, which is why we consider that further investigation into
the robustness and generalizability of the filter’s performance in diverse settings is needed.

Furthermore, it is important to note that the significance of this improvement in relation
to variations in the initialization of network parameters or other potential factors is not
extensively discussed since hyper-tuning techniques were not applied to the network used
in this study. It could be suggested to continually evaluate and potentially fine-tune these
hyperparameters and initialization methods based on the characteristics of the melanoma
dataset to ensure robust training and accurate classification results.

Overall, these outcomes strongly suggest the model’s competence in effectively
distinguishing between benign and malignant skin lesions, as evidenced by its robust
performance metrics. CNNs offer significant advantages for physicians in clinical settings
since they can process large volumes of data quickly and consistently, continuously learn
new information, and offer objective assessments (Krishnan et al., 2023). For instance, the
study by Haenssle et al. (2018) compared a CNN’s diagnostic performance with that of a
large international group of 58 dermatologists, revealing the CNN’s superior performance.
The CNN exhibited a higher specificity (82.5%) compared to dermatologists at both
level-I (71.3%, P < 0.01) and level-II (75.7%, P < 0.01) sensitivities of 86.6% and 88.9%,
respectively. Nonetheless, experts maintain an edge in handling complex or ambiguous
skin lesion cases.
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Figure 4 Box plot representing the distribution of performance among different filters. A significant
difference between the filters is observed, highlighting the superior performance of the Wavelet filter com-
pared to the others.

Full-size DOI: 10.7717/peerjcs.1953/fig-4

Table 4 Quantitative comparison of the results for the different metrics. All values were rounded to 3
decimal places.

Reference Model AC SE PR F sc

(Ameri, 2020) AlexNet 0.840 0.810 – –
(Javid et al., 2023) Some 0.935 0.900 0.960 0.920
(Alwakid et al., 2022) Modified Resnet-50 0.860 0.860 0.840 0.860
(Raza et al., 2022) Some 0.979 0.978 0.980 0.980
(Gupta & Mesram, 2022) Alexnet, DenseNet-121 0.907 0.910 0.906 0.910
Proposed 1 Modified AlexNet 0.913 0.870 0.952 0.909
Proposed 2 Modified AlexNet 0.910 0.876 0.942 0.908

Notes.
Alwakid et al. (2022)
Ameri (2020)
Gupta & Mesram (2022)
Javid et al. (2023)
Raza et al. (2022)

Comparison with related work
We validated our model’s performance against two setups: Wavelet filter with hair removal
(Proposed 1) and original images without hair removal (Proposed 2). These results are
contrasted with some well-established recent studies in the field shown in Table 1. As can
be seen in Table 4, the proposed model was optimal in terms of the four metrics: accuracy
(AC), recall (SE), precision (PR), and F1 score (Fsc). It has one of the highest accuracy and
precision values.

Single-factor analysis of variance (ANOVA) was applied to investigate the existence of
statistically significant differences in performance among various neural network models.
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Table 5 Results of the single-factor analysis of variance (ANOVA) based on the data presented in Ta-
ble 4.

DF* SS** MS*** F**** P*****

Models 6 0.91 0.15 4.55 0.0042
Error 21 0.70 0.03 – –
Total 27 1.61 – – –

Notes.
*DF (Degrees of Freedom).
**SS (Sum of Squares).
***MS (Mean Square).
****F (F-statistic).
*****P ( p-value).

This method will provide a comprehensive perspective on whether at least one model
is statistically different from the others with respect to the performance metrics under
evaluation. The results, obtained through Statistix 10 software and presented in the table
below, reveal an F-statistic of 4.55 with an associated p-value of 0.0042 as shown in Table 5.

The associated p-value being below the critical threshold of 0.05, leads to the rejection
of the null hypothesis. Consequently, the existence of at least one significant difference in
performance between the various neural network models is established.

Overall, the proposed model exhibits competitive performance when compared to
the referenced studies. It achieves similar levels of accuracy, recall, precision, and F1
scores, emphasizing its efficacy in detecting melanoma in dermoscopic images. However,
it is important to acknowledge that there is still room for improvement to develop and
compare new filters for noise removal that might enhance hair removal outcomes in the
field of melanoma detection.

CONCLUSIONS
This study focused on improving the performance of a CNN with AlexNet architecture for
early melanoma detection by integrating hair removal and various filtering techniques. The
model showed improvements in accuracy and precision when Wavelet filtering combined
with hair removal was applied. Thus, filtering and hair removal improve image quality and
enhance the model’s ability to correctly classify images as melanoma. Finally, the proposed
model on images from the original and modified dataset was evaluated and compared with
other models in the field, demonstrating high levels of accuracy, precision, recall, and F1
score. In percentage terms, when evaluating the proposed model on the original dataset it
achieved an accuracy of 91.10% and 91.30% on the modified images.

Overall, this study contributes to the development of a reliable and accurate system
for melanoma detection using CNN. Future research directions could involve enhancing
filtering techniques, exploring combinations of different filters, and developing adaptive
filters to evaluate their impact on CNN performance concerning image quality and noise
reduction. Additionally, the focus will shift towards implementing these systems in medical
environments using convolutional networks, with the potential to significantly reduce
mortality rates, enhance diagnostic precision, and streamline healthcare processes. The
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innovative applications of this technology extend to vital domains such as radiology, digital
pathology, and telemedicine, promising notable advancements in medical diagnostics.
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Bektaş B, Emre ÍE, Kartal E, Gulsecen S. 2018. Classification of mammography
images by machine learning techniques. In: 2018 3rd International conference
on computer science and engineering (UBMK). Piscataway: IEEE, 580–585
DOI 10.1109/UBMK.2018.8566380.

Brodersen KH, Ong CS, Stephan KE, Buhmann JM. 2010. The balanced accuracy and its
posterior distribution. In: In 2010 20th international conference on pattern recognition.
Piscataway: IEEE, 3121–3124 DOI 10.1109/ICPR.2010.764.

Char DS, Shah NH,Magnus D. 2018. Implementing machine learning in health care —
addressing ethical challenges. New England Journal of Medicine 378(11):981–983
DOI 10.1056/nejmp1714229.

Chen L, Li S, Bai Q, Yang J, Jiang S, Miao Y. 2021. Review of image classification
algorithms based on convolutional neural networks. Remote Sensing 13(22):4712
DOI 10.3390/rs13224712.

Cirrincione G, Cannata S, Cicceri G, Prinzi F, Currieri T, LovinoM,Militello C, Pasero
E, Vitabile S. 2023. Transformer-based approach to melanoma detection. Sensors
23(12):5677 DOI 10.3390/s23125677.

Dabeer S, KhanMM, Islam S. 2019. Cancer diagnosis in histopathological im-
age: CNN based approach. Informatics in Medicine Unlocked 16:100231
DOI 10.1016/j.imu.2019.100231.

Dildar M, Akram S, IrfanM, Khan HU, RamzanM,Mahmood AR, Alsaiari SA, Saeed
AHM, Alraddadi MO,Mahnashi MH. 2021. Skin cancer detection: a review using

Quishpe-Usca et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1953 19/24

https://peerj.com
http://dx.doi.org/10.31661/jbpe.v0i0.2004-1107
http://dx.doi.org/10.3390/diagnostics12071628
http://dx.doi.org/10.5826/dpc.0702a01
http://dx.doi.org/10.1001/jamadermatol.2022.0160
http://dx.doi.org/10.1038/s41598-022-07885-y
http://dx.doi.org/10.1016/j.cie.2022.108060
http://dx.doi.org/10.1111/srt.13145
http://dx.doi.org/10.1109/UBMK.2018.8566380
http://dx.doi.org/10.1109/ICPR.2010.764
http://dx.doi.org/10.1056/nejmp1714229
http://dx.doi.org/10.3390/rs13224712
http://dx.doi.org/10.3390/s23125677
http://dx.doi.org/10.1016/j.imu.2019.100231
http://dx.doi.org/10.7717/peerj-cs.1953


deep learning techniques. International Journal of Environmental Research and Public
Health 18:5479 DOI 10.3390/ijerph18105479.

Dinnes J, Deeks JJ, Grainge MJ, Chuchu N, di Ruffano LF, Matin RN, Thomson
DR,Wong KY, Aldridge RB, Abbott R, FawzyM, Bayliss SE, Takwoingi Y,
Davenport C, Godfrey K,Walter FM,Williams HC. 2018. Visual inspection for
diagnosing cutaneous melanoma in adults. Cochrane Database of Systematic Reviews
2018(12):CD013194 DOI 10.1002/14651858.CD013194.

Dosovitskiy A, Beyer L, Kolesnikov A,Weissenborn D, Zhai X, Unterthiner T,
Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. 2020. An
image is worth 16x16 words: transformers for image recognition at scale. ArXiv
arXiv:2010.11929.

Eltayef K, Li Y, Liu X. 2017. Detection of melanoma skin cancer in dermoscopy images.
Journal of Physics: Conference Series 787:12034 DOI 10.1088/1742-6596/787/1/012034.

Esteva A, Kuprel B, Novoa R, Ko J, Swetter SM, Blau HM, Thrun S. 2017. Dermatologist-
level classification of skin cancer with deep neural networks. Nature 542(7639):115–118
DOI 10.1038/nature21056.

Fu’adah YN, Pratiwi NC, Pramudito MA, IbrahimN. 2020. Convolutional neural net-
work (CNN) for automatic skin cancer classification system. In: IOP conference series:
materials science and engineering. IOP Publishing Ltd
DOI 10.1088/1757-899X/982/1/012005.

Garibyan L, Fisher DE. 2010.How sunlight causes melanoma. Current Oncology Reports
12:319–326 DOI 10.1007/s11912-010-0119-y.

Glorot X, Bengio Y. 2010. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. 249–256.

Gouda N, Amudha J. 2020. Skin cancer classification using ResNet. In: 2020 IEEE 5th
International conference on computing communication and automation (ICCCA).
Piscataway: IEEE, 536–541 DOI 10.1109/ICCCA49541.2020.9250855.

Guefrechi S, Jabra M, Ammar A, Koubaa A, HamamH. 2021. Deep learning based
detection of COVID-19 from chest X-ray images.Multimedia Tools and Applications
80:31803–31820 DOI 10.1007/s11042-021-11192-5.

Gulati S, Bhogal RK. 2019. Detection of Malignant Melanoma using deep learning. In:
Singh M, Gupta P, Tyagi V, Flusser J, Ören T, Kashyap R, eds. Advances in computing
and data sciences. ICACDS 2019. Communications in computer and information
science, Cham: Springer DOI 10.1007/978-981-13-9939-8_28.

Gupta P, Mesram S. 2022. AlexNet and DenseNet-121-based hybrid CNN archi-
tecture for skin cancer prediction from dermoscopic images. International
Journal for Research in Applied Science and Engineering Technology 10:540–548
DOI 10.22214/ijraset.2022.45325.

Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Kalloo A, Hassen ABH,
Thomas L, Enk A, Uhlmann L, Reader study level-I and level II Groups, Alt C,
ArenbergerovaM, Bakos R, Baltzer A, Bertlich I, Blum A, Bokor-Billmann T,
Bowling J, Braghiroli N, Braun R, Buder-Bakhaya K, Buhl T, Cabo H, Cabrijan L,

Quishpe-Usca et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1953 20/24

https://peerj.com
http://dx.doi.org/10.3390/ijerph18105479
http://dx.doi.org/10.1002/14651858.CD013194
http://arXiv.org/abs/2010.11929
http://dx.doi.org/10.1088/1742-6596/787/1/012034
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1088/1757-899X/982/1/012005
http://dx.doi.org/10.1007/s11912-010-0119-y
http://dx.doi.org/10.1109/ICCCA49541.2020.9250855
http://dx.doi.org/10.1007/s11042-021-11192-5
http://dx.doi.org/10.1007/978-981-13-9939-8_28
http://dx.doi.org/10.22214/ijraset.2022.45325
http://dx.doi.org/10.7717/peerj-cs.1953


Cevic N, Classen A, Deltgen D, Fink C, Georgieva I, Hakim-Meibodi L-E, Hanner
S, Hartmann F, Hartmann J, Haus G, Hoxha E, Karls R, Koga H, Kreusch J, Lallas
A, Majenka P, Marghoob A, Massone C, Mekokishvili L, Mestel D, Meyer V,
Neuberger A, Nielsen K, OlivieroM, Pampena R, Paoli J, Pawlik E, Rao B, Rendon
A, Russo T, Sadek A, Samhaber K, Schneiderbauer R, Schweizer A, Toberer F,
Trennheuser L, Vlahova L,Walkd A,Winkler J, Wölbing P, Zalaudek I. 2018.
Man against machine: diagnostic performance of a deep learning convolutional
neural network for dermoscopic melanoma recognition in comparison to 58
dermatologists. Annals of Oncology 29(8):1836–1842 DOI 10.1093/annonc/mdy166.

Hagerty JR, Stanley RJ, Almubarak HA, Lama N, Kasmi R, Guo P, Drugge RJ,
Rabinovitz HS, OlivieroM, StoeckerWV. 2019. Deep learning and hand-
crafted method fusion: higher diagnostic accuracy for melanoma dermoscopy
images. IEEE Journal of Biomedical and Health Informatics 23(4):1385–1391
DOI 10.1109/JBHI.2019.2891049.

HasanMR, FatemiMI, KhanMM, KaurM, Zaguia A. 2021. Comparative analysis of
skin cancer (Benign vs.Malignant) detection using convolutional neural networks.
Journal of Healthcare Engineering 2021:5895156 DOI 10.1155/2021/5895156.

Howlader N, Noone AM, KrapchoM, Garshell J, Miller D, Altekruse SF, Kosary CL,
YuM, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA.
2014. SEER Cancer Statistics Review. Bethesda: National Cancer Institute Available
at https://seer.cancer.gov/archive/csr/1975_2011/index.html .

Ibrahim A, Elbasheir M, Badawi S, Mohammed A, Alalmin A. 2023. Skin cancer
classification using transfer learning by VGG16 architecture (case study on Kag-
gle dataset). Journal of Intelligent Learning Systems and Applications 15:67–75
DOI 10.4236/jilsa.2023.153005.

Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML’15: Proceedings of the 32nd International
conference on machine learning - Volume 37. 448–456.

Ishida T, Yamane I, Sakai T, Niu G, SugiyamaM. 2021. Do we need zero training loss
after achieving zero training error? In: ICML’20 Proceedings of the 37th international
conference on machine learning. Volume 428. 4604–4614.

Javid MH, JadoonW, Ali H, Ali MD. 2023. Design and analysis of an improved deep
ensemble learning model for melanoma skin cancer classification. In: 2023 4th Inter-
national conference on advancements in computational sciences (ICACS). Piscataway:
IEEE, 1–6 DOI 10.1109/ICACS55311.2023.10089716.

Johr RH. 2002. Dermoscopy: alternative melanocytic algorithms—the ABCD rule of der-
matoscopy, menzies scoring method, and 7-point checklist. Clinics in Dermatology
20:240–247 DOI 10.1016/s0738-081x(02)00236-5.

Keerthana D, Venugopal V, NathMK,Mishra M. 2023.Hybrid convolutional neural
networks with SVM classifier for classification of skin cancer. Biomedical Engineering
Advances 5:100069 DOI 10.1016/j.bea.2022.100069.

Quishpe-Usca et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1953 21/24

https://peerj.com
http://dx.doi.org/10.1093/annonc/mdy166
http://dx.doi.org/10.1109/JBHI.2019.2891049
http://dx.doi.org/10.1155/2021/5895156
https://seer.cancer.gov/archive/csr/1975_2011/index.html
http://dx.doi.org/10.4236/jilsa.2023.153005
http://dx.doi.org/10.1109/ICACS55311.2023.10089716
http://dx.doi.org/10.1016/s0738-081x(02)00236-5
http://dx.doi.org/10.1016/j.bea.2022.100069
http://dx.doi.org/10.7717/peerj-cs.1953


Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP. 2017. On large-
batch training for deep learning: generalization gap and sharp minima. ArXiv
arXiv:1609.04836.

KimD, Hong B-W. 2021. Unsupervised feature elimination via generative adversarial
networks: application to hair removal in melanoma classification. IEEE Access
9:42610–42620 DOI 10.1109/ACCESS.2021.3065701.

Krishnan G, Singh S, Pathania M, Gosavi S, Abhishek S, Parchani A, Dhar M. 2023.
Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare
paradigm. Frontiers in Artificial Intelligence 6:1227091.

Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep
convolutional neural networks. Commnications of the ACM 60(6):84–90
DOI 10.1145/3065386.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86:2278–2324 DOI 10.1109/5.726791.

Leiter U, Keim U, Garbe C. 2020. Epidemiology of skin cancer: update 2019. In:
Richrath J, ed. Sunlight, Vitamin D and skin cancer. Cham: Springer, 123–139
DOI 10.1007/978-3-030-46227-7_6.

LiW, Joseph Raj AN, Tjahjadi T, Zhuang Z. 2021. Digital hair removal by deep learning
for skin lesion segmentation. Pattern Recognition 117:107994
DOI 10.1016/j.patcog.2021.107994.

Maurício J, Domingues I, Bernardino J. 2023. Comparing vision transformers and
convolutional neural networks for image classification: a literature review. Applied
Sciences 13(9):5521 DOI 10.3390/app13095521.

Naeem A, Anees T, Fiza M, Naqvi RA, Lee SW. 2022. SCDNet: a deep learning-based
framework for the multiclassification of skin cancer using dermoscopy images.
Sensors 22(15):5652 DOI 10.3390/s22155652.

Narasimhan K, Elamaran V. 2016.Wavelet-based energy features for diagnosis of
melanoma from dermoscopic images. International Journal of Biomedical Engineering
and Technology 20:243–252 DOI 10.1504/IJBET.2016.075427.

Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SMR, Jafari MH,Ward K, Najarian
K. 2016.Melanoma detection by analysis of clinical images using convolutional
neural network. In: 2016 38th Annual international conference of the IEEE engi-
neering in medicine and biology society (EMBC). Piscataway: IEEE, 1373–1376
DOI 10.1109/embc.2016.7590963.

Nguyen NH, Lee TK, Atkins MS. 2010. Segmentation of light and dark hair in dermo-
scopic images: a hybrid approach using a universal kernel. In: Proceedings of the
society of photo-optical instrumentation engineers (SPIE) medical imaging 2010: image
processing. DOI 10.1117/12.844572.

Nida N, Irtaza A, Javed A, Yousaf MH,MahmoodMT. 2019.Melanoma lesion detection
and segmentation using deep region based convolutional neural network and
fuzzy C-means clustering. International Journal of Medical Informatics 124:37–48
DOI 10.1016/j.ijmedinf.2019.01.005.

Quishpe-Usca et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1953 22/24

https://peerj.com
http://arXiv.org/abs/1609.04836
http://dx.doi.org/10.1109/ACCESS.2021.3065701
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/978-3-030-46227-7_6
http://dx.doi.org/10.1016/j.patcog.2021.107994
http://dx.doi.org/10.3390/app13095521
http://dx.doi.org/10.3390/s22155652
http://dx.doi.org/10.1504/IJBET.2016.075427
http://dx.doi.org/10.1109/embc.2016.7590963
http://dx.doi.org/10.1117/12.844572
http://dx.doi.org/10.1016/j.ijmedinf.2019.01.005
http://dx.doi.org/10.7717/peerj-cs.1953


Nikolaou V, Stratigos AJ. 2014. Emerging trends in the epidemiology of melanoma.
British Journal of Dermatology 170:11–19 DOI 10.1111/bjd.12492.

Olayah F, Senan EM, Ahmed IA, Awaji B. 2023. AI techniques of dermoscopy image
analysis for the early detection of skin lesions based on combined CNN features.
Diagnostics 13(7):1314 DOI 10.3390/diagnostics13071314.

Oliveira RB, Mercedes Filho E, Ma Z, Papa JP, Pereira AS, Tavares JMRS. 2016.
Computational methods for the image segmentation of pigmented skin le-
sions: a review. Computer Methods and Programs in Biomedicine 131:127–141
DOI 10.1016/j.cmpb.2016.03.032.

Perez F, Avila S, Valle E. 2019. Solo or Ensemble? Choosing a CNN architecture
for melanoma classification. In: 2019 IEEE/CVF Conference on computer vision
and pattern recognition workshops (CVPRW). Piscataway: IEEE, 2775–2783
DOI 10.1109/CVPRW.2019.00336.

Perez F, Vasconcelos C, Avila S, Valle E. 2018. Data augmentation for skin lesion
analysis. In: OR 2.0 Context-aware operating theaters, computer assisted robotic
endoscopy, clinical image-based procedures, and skin image analysis. Lecture notes in
computer science. Cham: Springer DOI 10.1007/978-3-030-01201-4_33.

Popescu D, El-Khatib M, Ichim L. 2022. Skin lesion classification using collective intelli-
gence of multiple neural networks. Sensors 22(12):4399 DOI 10.3390/s22124399.

Raza R, Zulfiqar F, Tariq S, Anwar GB, Sargano AB, Habib Z. 2022.Melanoma classifi-
cation from dermoscopy images using ensemble of convolutional neural networks.
Mathematics 10(1):26 DOI 10.3390/math10010026.

Schwartz JL, Wang TS, Hamilton TA, Lowe L, Sondak VK, Johnson TM. 2002. Thin
primary cutaneous melanomas: associated detection patterns, lesion characteristics,
and patient characteristics. Cancer 95:1562–1568 DOI 10.1002/cncr.10880.
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