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ABSTRACT
Gastrointestinal (GI) diseases are prevalent medical conditions that require accurate
and timely diagnosis for effective treatment. To address this, we developed the Multi-
Fusion Convolutional Neural Network (MF-CNN), a deep learning framework that
strategically integrates and adapts elements from six deep learning models,
enhancing feature extraction and classification of GI diseases from endoscopic
images. The MF-CNN architecture leverages truncated and partially frozen layers
from existing models, augmented with novel components such as Auxiliary Fusing
Layers (AuxFL), Fusion Residual Block (FuRB), and Alpha Dropouts (αDO) to
improve precision and robustness. This design facilitates the precise identification of
conditions such as ulcerative colitis, polyps, esophagitis, and healthy colons. Our
methodology involved preprocessing endoscopic images sourced from open
databases, including KVASIR and ETIS-Larib Polyp DB, using adaptive histogram
equalization (AHE) to enhance their quality. The MF-CNN framework supports
detailed feature mapping for improved interpretability of the model’s internal
workings. An ablation study was conducted to validate the contribution of each
component, demonstrating that the integration of AuxFL, αDO, and FuRB played a
crucial part in reducing overfitting and efficiency saturation and enhancing overall
model performance. The MF-CNN demonstrated outstanding performance in terms
of efficacy, achieving an accuracy rate of 99.25%. It also excelled in other key
performance metrics with a precision of 99.27%, a recall of 99.25%, and an F1-score
of 99.25%. These metrics confirmed the model’s proficiency in accurate classification
and its capability to minimize false positives and negatives across all tested GI disease
categories. Furthermore, the AUC values were exceptional, averaging 1.00 for both
test and validation sets, indicating perfect discriminative ability. The findings of the
P-R curve analysis and confusion matrix further confirmed the robust classification
performance of the MF-CNN. This research introduces a technique for medical
imaging that can potentially transform diagnostics in gastrointestinal healthcare
facilities worldwide.
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INTRODUCTION
The prevalence of gastrointestinal illnesses (GI) is a major public health problem. There
are around 2.8 million new cases of GI disorders each year, with an additional 1.8 million
deaths attributable to esophageal, colorectal, and stomach malignancies. The Pan
American Health Organization (PAHO) reports that there were 375,170 fatalities in the
Americas in 2019, with 160,002 of those deaths attributable to digestive issues. The overall
crude mortality rate due to GI is 37.2 per 100,000 persons (43.3 per 100,000 males and 31.3
per 100,000 females). From 2000 to 2019, both the overall death toll and the crude death
toll per capita rose. From top to bottom, the countries with the highest age-standardized
mortality rates are Honduras, Guatemala, Bolivia, Haiti, Guyana, Mexico, and Nicaragua
(PAHO, 2021).

In Bangladesh, 25–40% of the population suffers from gastrointestinal (GI) disorders.
Out of a total of 3,000 participants in research (Perveen, Rahman & Saha, 2014), 2,273
(75.8%) reported experiencing at least one upper GI symptom in the previous 3 months,
while 2,072 (69.1%) reported experiencing two or more symptoms. Additionally, 1,705
(56.8%) reported experiencing three or more symptoms. Upper abdomen discomfort was
experienced by 963 participants (32.1%), bloating by 1,265 participants (42.16%),
heartburn by 1,354 participants (45.13%), chest pain by 1,166 participants (38.87%), early
satiation by 1,347 participants (44.9%), and vomiting by 258 participants (8.6%). Digestive
problems are widespread. Multiple gastrointestinal symptoms are possible simultaneously.
The prevalence of symptoms is influenced by their intensity, frequency, and duration.

According to medical professionals, anyone who has chronic symptoms, including
rectal bleeding, nausea, appetite loss, stomach aches, or other symptoms connected to GI
illnesses, should have an endoscopy performed to determine the underlying cause. An
endoscope used during an endoscopy allows medical professionals to look for infections or
potential cancer indications while detecting uncommon characteristics in the human GI
tract. However, most patients see endoscopy as a prolonged and painful therapy due to the
endoscope’s design and its first admission via the mouth. Fortunately, researchers
developed the wireless capsule endoscopy (WCE) technology, which enhanced the
procedure and resolved the issues above. In contrast to standard endoscopy, which entails
putting a lengthy tube-like camera down the patient’s throat, the WCE method only
employs a small illuminated camera within a typical-sized capsule that the patient eats
orally. The capsule, once swallowed, may make its journey gently from the back of the
throat all the way up to the small intestines (Wang et al., 2013).

The WCE represents a significant advancement in the examination procedure. By
offering an enhanced patient experience without the difficulties typically associated with
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traditional methods, WCE provides a comprehensive visual of the GI tract. The capsule’s
design is specifically intended to aid physicians in detecting abnormalities faster and more
accurately. The mucosa’s outside appearance is used in diagnostics. However, the presence
of certain precursors or illnesses, such as polyps, ulcerative colitis, or esophagitis, may
indicate a more severe problem. Even with WCE technology, endoscopic evaluation of the
disease above remains complex and time-consuming, resulting in incorrect diagnoses.
Rapid and exceptionally precise data with enhanced consistency might help physicians
make more informed treatment choices. WCE has the benefit of collecting many images of
the GI tract, but analyzing these images still requires medical personnel to draw on their
clinical expertise, which may be both time-consuming and difficult, not to mention
mentally stressful and draining. As a result, there is a higher chance of inaccurate diagnoses
or delayed data publication because of human limitations (Kumar et al., 2017).

According to recent research, several deep learning methods and computer vision have
improved GI endoscopic image diagnosis (Haile et al., 2022; Naz et al., 2021). Despite the
inclusion of a CNN module, many studies still necessitated complex procedures and relied
on meticulous manual feature extraction techniques. Researchers used strategies such as
conventional methods for deep learning, CNN, CRNN, and OCR of NLPmodels. Few have
attempted to combine pre-trained models. However, only one has predicted or detected
gastrointestinal illnesses using this strategy.Montalbo (2022) introduced the MFuRe-CNN
model to automate GI disease identification from endoscopic data. This model
incorporated three advanced deep convolutional neural networks: EfficientNet,
MobileNetV2, and ResNetV2. A layer-wise fusion was achieved by truncating, partially
freezing, and reconfiguring their layers using AuxFLs with αDOs. After fusing the features,
a FuRB with αDO managed the combined data and minimized overfitting. The model
obtained 97.75% accuracy on the test dataset and 96.65% on the validation set for four
classes. However, it indicated a deficiency in its resilience, had a restricted capacity for
benchmarking, and may not exhibit consistent performance across diverse medical images.
The effectiveness of the system might have been improved by using more advanced deep
convolutional neural networks (DCNNs).

On the other hand, Fan et al. (2018) used a modified AlexNet, a traditional DCNN
model, to identify intestinal erosions and ulcers from WCE images. The images were
preprocessed to eliminate blackened areas, reducing potential false positives. The number
of major class neurons in AlexNet was reduced from 1,000 to 2, and two ReLU and
dropout layers were added to improve stability. The model obtained a 95.16% accuracy
rate for the two classes but faced challenges with resilience due to a limited dataset and
shortened network, resulting in some misdiagnoses outside the training data. In contrast,
Majid et al. (2020) used the VGG16, a renowned DCNN model, to diagnose
gastrointestinal disorders. While the original VGG16 was recognized for its performance
in the ILSVRC-2014 challenge, Majid et al. (2020) enhanced it by incorporating custom
feature engineering methods like the discrete wavelet transform and strong color features.
These modifications expanded its feature set. After using K-nearest neighbors to combine
the finest features, they trained the model with a genetic algorithm, attaining 96.5%
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accuracy on a 9,889-image training set. However, the model’s complexity poses replication
and deployment challenges.

However, Poudel et al. (2020) introduced a unique CNN model with dynamic dilated
Conv layers, regularized using their DropBlock regularizer, to classify diverse colorectal
disorders. They argued that excessive downsampling from numerous pooling layers in
extended networks often leads to loss of spatial information. To counter overfitting due to
limited data, they incorporated the DropBlock regularizer. The study underscored the
significance of appropriate layer adjustments and regularization in enhancing CNN
performance. Their method surpassed many DCNNs, obtaining a 95.7% accuracy.
However, its computational complexity and high operating costs potentially impact
performance. The research highlighted the risk of overfitting and information loss in
extensive networks on limited datasets. Besides, Hmoud Al-Adhaileh et al. (2021)
introduced a robust framework to classify gastrointestinal tract diseases using the Kvasir
dataset. They employed three deep learning models: AlexNet, GoogleNet, and ResNet-50.
These models processed 9,216 features and directed them to fully connected layers,
resulting in 1,000 neurons. The softmax layer then classified each image into one of five
gastrointestinal disorder categories. All models demonstrated promising results, but
AlexNet had the highest accuracy rate of 97%.

Hence, Khan et al. (2020) trained the VGG16 model on a small dataset using transfer
learning, fine-tuning, and feature fusion, avoiding complex custommethods. By leveraging
pre-existing features from ImageNet and integrating feature fusion into the Cubic Support
Vector Machines, they achieved 98.4% accuracy in distinguishing between a GI ailment
and a healthy digestive tract. Their approach emphasized the significance of transfer
learning in GI disease diagnosis, but it only offered binary classification without addressing
multi-class GI disorders. Despite this, Öztürk & Özkaya (2021) integrated a Residual-
LSTM module into the ResNet50 DCNN model for categorizing endoscopic data. Using
residual learning, they reduced the saturation effect often seen in deeper DCNN models.
This combined approach led to an accuracy of 98.05%, surpassing the results of AlexNet
and GoogleNet when equipped with the same module. The study concludes that residual-
based models, like ResNet50, are more effective in diagnosing GI tract diseases than
models focusing only on layer depth.

Furthermore, Montalbo (2022) introduced a deep learning-based lightweight and cost-
efficient state-of-the-art (SOTA) method utilizing KVASIR and ETIS-Larib Polyp DB
datasets. The proposed approach seamlessly integrates network compression, layer-wise
fusion, and the incorporation of a customized residual layer, denoted as the Modified
Residual Block (MResBlock). The regularization process involves the application of a self-
normalizing technique, which yielded an impressive accuracy of 96.65% on the validation
dataset and further elevated its efficacy to 97.75% on the test dataset in the context of
diagnosing four cases of GI tract conditions and surpassing other pre-existing solutions in
the domain. Subsequently, Zhang et al. (2023) investigated the Swin transformer model
and explored two methods, attention block and MoCo pre-training, with an accuracy of
87.22% to categorize the upper gastrointestinal system into 12 classes. The authors
developed a gastric navigation system that uses a DL-based image classifier for
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identification and keeping track of the area being viewed of the GI system on the
esophagogastroduodenoscopy (EGD) video feed.

In addition, Thomas Abraham et al. (2023) proposed a strategy for supplementing
transfer-learning deep CNN models using the KVASIR dataset to identify digestive
diseases. ResNet50, InceptionV3, DenseNet121, and EfficientNetB0 are utilized for this
experiment. Among these models, EfficientNetB0 attains the best accuracy of 98% for five
diseases (dyed lifted polyps, normal cecum, normal pylorus, polyps, and ulcerative colitis)
classification task. Similarly, Gunasekaran et al. (2023) proposed a novel approach GIT-
Net, which employed pre-trained InceptionV3, ResNet50, and DenseNet201 CNN models
in the role of feature extractors for the KVASIR v2 endoscopic image dataset to produce a
probability correctness of 95% with the proposed weighted average ensemble method for
GI tract classification.

Mushtaq et al. (2023) also present a deep learning-based novel framework attention-
based SSD for gastric polyps (ASSD-GPNet) model. The strategy employed a single-shot
multi-box detector (SSD) combining VGG-16 for feature extraction, and the refined map
block (RMB) was incorporated into SSD’s High-Res feature maps to attain more semantic
information of the utilized dataset 1970 gastric images and Pascal VOC07 + 12. The ASSD-
GPNet achieved mean average precision (mAP) score of 0.942 on gastric images and 0.769
on Pascal VOC. In the meantime, for segmentation of the gastrointestinal tract, authors in
Sharma et al. (2023) suggested an improved U-Net model design employing six transfer
learning models InceptionV3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2,
and EfficientNetB0 as the backbone of the U-Net topology. The proposed U-net model
stands apart with its distinctive design and deviating from the inclusion of dense layers in
the model, an integrated combination of convolution, max pool, and transpose
convolution layers achieving 0.122 model loss, 0.8854 dice coefficient, and 0.8819 IoU in
terms of performance analysis.

Recent developments have provided enormous advances via several kinds of different
methods in the rapidly developing area of gastrointestinal (GI) disease diagnostics. Despite
these developments, there remain issues, particularly with the accuracy that is essential for
a reliable disease diagnosis. Diagnostic accurateness is often impacted by the
ineffectiveness and limited adaptability of existing techniques such as residual learning,
regularization, feature fusion, layer reconstruction, and model compression due to their
intricate procedures, intricate features extracted, and scalability issues. Our research
presents the Multi-Fusion Convolutional Neural Network (MF-CNN) as a solution to
these complex issues. The MF-CNN effectively combines feature fusion, residual learning,
and unique regularization techniques. It differs from the conventional transfer learning
method by using more extensive layer transformations and fine-tuning procedures to
achieve improved accuracy. The MF-CNN offers an important advantage in its simplified
and effective workflow, functioning autonomously without the need for additional feature
extraction and complex learning techniques. This minimizes the possibility of errors that
may result from these auxiliary procedures. The model utilizes Auxiliary Feature Layers
(AuxFLs) to augment the layers, α-Dropout (αDOs) for enhanced regularization, and
Fusion Residual Blocks (FuRBs) to combine residual learning with feature fusion. These
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elements are carefully chosen to manage robustly fused features effectively, aiming to
enhance performance while simplifying the architecture. This method effectively addresses
the difficulties of accuracy and adaptability which were highlighted in the previous study.
The main advancement of this study is the integration of six pre-trained models into a
single pipeline. This appropriately addresses both issues of accuracy and limitations
associated with adaptability in various clinical scenarios. This study aims to improve the
diagnosis process and significantly increase the accuracy of identifying gastrointestinal
diseases by using deep convolutional neural networks (DCNNs). Figure 1 illustrates the
complete workflow of our proposed method. The key contributions of this study are as
follows:

� Introduced a Multi-Fusion Convolutional Neural Network (MF-CNN) that integrates
Auxiliary Fusing Layers, Fusion Residual Block, and Alpha Dropouts for accurately
identifying GI diseases, presenting a more accurate and cost-effective alternative to
convolutional models.

� Incorporated AHE in the preprocessing step to enhance the contrast and quality of the
endoscopic images, improving the accuracy of disease classification.

� A detailed ablation study was conducted to enhance the robustness and accuracy of the
MF-CNN, examining and fine-tuning its components, ensuring optimal performance
across various scenarios.

Figure 1 MF-CNN integrates six pre-trained models. AuxFLs, αDOs, and FuRBs highlight layer enhancement and feature fusion, simplifying GI
disease diagnosis. Full-size DOI: 10.7717/peerj-cs.1950/fig-1
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� Employed a comprehensive set of evolution metrics, achieving an impressive accuracy of
99.25%, demonstrating the model’s ability to classify and minimize false classifications
across all diseases accurately categorized.

� Provided a detailed feature map for understanding and interpreting the model’s outputs,
ensuring transparency and reliability.

The remainder of the article is organized as follows: The next section, ‘Procedural
Approach and Techniques’, elaborates on dataset collection, preprocessing, and
development approach of the proposed MF-CNN model. The following section, ‘Ablation
Analysis’ analyzes the impact of each component on the model’s performance.
Subsequently, the ‘Comparative Analysis of All Applied Models’ section covers the
experimental setup and the model’s computational aspects. The following section ‘Result
and Analysis Findings’ describes the study’s experimental findings. Then, the next section
‘Limitations of the study’, acknowledges the potential constraints and areas for
improvement. Finally, the ‘Conclusions’ section summarizes key findings, contributions,
and the impact of our research in medical image analysis and GI tract abnormality
detection.

PROCEDURAL APPROACH AND TECHNIQUES
This study employs wireless capsule endoscopy (WCE) imaging data to detect
gastrointestinal diseases. The images in their raw form have been obtained from several
databases. For optimum model performance, these raw images go through comprehensive
preprocessing to meet the specific demands of the model. The proposed model
incorporates elements from various established convolutional neural network
architectures, ensuring robustness in its predictions. After training on the collated image
data, the model demonstrates remarkable accuracy in diagnosing gastrointestinal diseases.
Our research approach is depicted in a structured six-step procedure, as highlighted in
Fig. 2.

Figure 2 This figure delineates the various phases undertaken in our systematic approach, providing a comprehensive overview of the
methodology from the beginning to ending. Full-size DOI: 10.7717/peerj-cs.1950/fig-2
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Data collection
The study utilized publicly accessible datasets from reputable repositories, including
KVASIR (Pogorelov et al., 2017) and ETIS-Larib Polyp DB (Silva et al., 2014). Due to the
complexities associated with obtaining endoscopic data related to gastrointestinal
disorders, these datasets proved invaluable. The KVASIR dataset was derived using the
wireless capsule endoscopy (WCE) technique from a diverse population of gastrointestinal
patients at the Vestre Viken Health Trust in Norway. Upon comprehensive review and
data acquisition, medical specialists ensured each image within the dataset was correctly
labeled, making it suitable for most deep-learning studies. Similarly, the verification
process was applied to the ETIS-Larib Polyp DB dataset. In this inquiry, a conscious
decision was made to utilize a stochastic approach in order to choose and organize the
datasets carefully. This was done to minimize the possibility of data leakage and any
potential biases. Figure 3 of the dataset showcases samples from each category.

Comprehensive data overview
In this study, we employed a meticulously prepared dataset comprising a total of 6,000
images. This dataset was strategically divided into distinct subsets to facilitate a systematic
approach in model training and evaluation: training, validation, and testing. The
distribution was set as 3,200 images for training, 2,000 for validation, and 800 for testing.
Such a structured segmentation assures a proportionate exposure of the model to varied
data while also allowing for a comprehensive evaluation of its performance. One of the
primary concerns in machine learning, particularly in image classification tasks, is the

Figure 3 Images from the dataset show four classes: Normal, Ulcer, Polyps, and Esophagitis. Each image highlights features of its GI condition
from capsule endoscopy. Full-size DOI: 10.7717/peerj-cs.1950/fig-3
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challenge posed by data instability and class dominance. Our methodology adeptly
addresses and minimizes these possible drawbacks by assuring an even distribution of
images across various subsets. For a detailed dissection of the dataset, including class
categorization, quantity, and specific distribution, refer to Table 1. A noteworthy
characteristic of the images within the dataset is the variance in their dimensions,
attributable to their diverse sources of origin. Recognizing the need for uniformity in input
data for deep learning models, we standardized the training images to a consistent
dimension of 224 × 224 pixels. This was accomplished using an automatic image data
generator available within the Keras framework (Chollet, 2015). Such a standardization
facilitates the computational process and ensures efficient resource allocation. By adopting
this technique, we optimized the training speed while concurrently preventing
computational memory overload, ensuring smooth and efficient experimentation.

Data preprocessing
Data normalization
Data sourced from diverse origins often exhibit variations in format and structure. Such
inconsistencies can potentially compromise the efficacy of deep convolutional neural
networks (DCNNs). Specifically, models may encounter challenges in achieving adequate
convergence during training if these inconsistencies remain unaddressed (Swati et al.,
2019). To counteract this issue, our study employed a normalization strategy. All pixels,
represented as xi, in each image, were rescaled using the min-max scaling Eq. (1). This
procedure ensured that every image had pixel values consistently scaled to a range of 1.0

xi ¼ xi � min xið Þ
max xið Þ � min xið Þ : (1)

Image enhancement (adaptive histogram equalization)
In our study, we recognized the potential benefits of enhancing the clarity and contrast of
the images to obtain more precise results. To this aim, we employed the adaptive histogram
equalization (AHE) technique (Pizer et al., 1987), applying specific parameters of
‘clip_limit = 2.0’ and ‘tile_grid_size = (8, 8)’ to adjust the process to our needs. AHE is
renowned for its capacity to amplify the local contrast of an image, particularly in areas
that are closer in color or intensity. The fundamental principle of AHE involves
performing histogram equalization within small, contextual regions or tiles of the image

Table 1 Detailed dataset specification and distribution.

Class Train Validation Test Total

Normal 800 500 200 1,500

Ulcer 800 500 200 1,500

Polyps 800 500 200 1,500

Esophagitis 800 500 200 1,500

Total 3,200 2,000 800 6,000
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rather than the entire image. For each tile, defined by the ‘tile_grid_size’ parameter as 8 × 8
blocks, the histogram of pixel intensities denoted as H ið Þ, is calculated for each tile. It
provides the frequency at which each intensity level i arises.

H ið Þ ¼ number of pixels with intensity i: (2)

Following this, the cumulative distribution function (CDF) is computed for each
histogram using the formula C ið Þ,

C ið Þ ¼
Xi

j¼0
H jð Þ: (3)

In this equation, j is an index runs from 0 to i, summing the histogram values up to the
current intensity level i, to calculate the cumulate frequency. After calculating the CDF, it is
normalized with the ‘clip_limit’ parameter set to 2.0. This normalization process is
represented as Cnorm ið Þ, which adjusts the intensity values within each tile to enhance local
contrast,

Cnorm ið Þ ¼ Normalized Value of C ið Þ: (4)

The notation Cnorm ið Þ refers to the value of the normalized CDF for the intensity level i.
Applying AHE to our dataset with these parameters improved the images by increasing the
visibility of identifiable features. This improvement facilitated a more comprehensive
representation and set an environment for our model to effectively detect and learn from
complex, intricate patterns in the image. The effectiveness of AHE in the study is
demonstrated in Fig. 4, which clearly displays the enhancement of contrast in local regions
of the images. The histograms display the distribution of pixel intensities across the RGB
color channels for both the original and AHE-enhanced images, providing a visual
representation of the contrast adjustments. This processing phase ensured that our model
was trained on data that accurately reflected the depth and clarity of the original
endoscopic images, increasing the probability of accurate diagnosis. Algorithm 1 illustrates
the entire AHE procedure.

Development approach
This research explored an extensive variety of deep convolutional neural networks
(DCNNs) for their efficacy in medical image analysis. Here, we present a systematic review
and integration of various models, leading to the development of the proposed MF-CNN
for diagnosing gastrointestinal (GI) conditions.

Selection and evaluation of DCNN models
Convolutional neural networks (CNNs), a form of artificial neural network, play a crucial
role in deep learning, particularly when analyzing visual data (Hossain et al., 2022). These
networks consist of many connected layers of artificial neurons. Their design focuses on
feature extraction and classification, with a composition of an input layer, convolutional
layer, pooling layer, fully connected layer, hidden layer, and activation function. The
crucial aspect of this study included utilizing the capabilities of DCNNs, known for their
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ability to analyze medical images. The research used well-established models, including
EfficientNetB0 (Wu et al., 2020; Nigam et al., 2021), MobileNetV2 (Sandler et al., 2018;
Buiu, Dănăilă & Răduţă, 2020), ResNet50V2 (Santos-Bustos, Nguyen & Espitia, 2022;
Praveen et al., 2022), DenseNet121 (Li et al., 2020), VGG16 (Great Learning, 2022), and
Xception (Chollet, 2016), as a component of our technique.

1) EfficientNetB0: Originating from Google, this model is acclaimed for its exceptional
scalability and adeptly accommodating various image dimensions. The MBConv block,
enhanced with a squeeze-and-excitation component, functions as an inverted residual
block, streamlining performance without amplifying the number of parameters. Such
efficiencies render it an optimal selection for applications in medical imaging (Buiu,
Dănăilă & Răduţă, 2020; Santos-Bustos, Nguyen & Espitia, 2022; Praveen et al., 2022).

2) MobileNetV2: The architecture of MobileNet is based on using a pointwise convolution
approach. This approach speeds up the procedure while lowering computing
requirements. Its improved version, V2, streamlines the design further, enhancing
efficiency (Great Learning, 2022; Chollet, 2016).

3) ResNet50V2: ResNet50V2 incorporates a revised inter-block deep residual network
structure designed to flow information between blocks seamlessly for improved model

Figure 4 After AHE processing, images display heightened contrast and clarity, revealing detailed
features for superior interpretation vs. their originals. Full-size DOI: 10.7717/peerj-cs.1950/fig-4
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accuracy. The main idea behind residual blocks, referred to as “skip connections,”
emphasizes the resilience and effectiveness of the CNN architecture (Das, Santosh &
Pal, 2020; He et al., 2016; Akter et al., 2021).

4) DenseNet121: The DenseNet-121 model has 121 layers and is part of the DenseNet
series. Its classification subnetwork includes the 7 × 7 global average pooling and the
1000D fully connected layer (Akter et al., 2021).

5) VGG16: VGG16 is a deep convolutional neural network model introduced by the Visual
Geometry Group (VGG) from the University of Oxford. It comprises 16 layers,
including 13 convolutional layers and three fully connected layers. VGG16 is known for
its simplicity, utilizing only 3 × 3 convolutional layers stacked on top of each other in
increasing depth, and has proved to be extremely effective in image recognition tasks
(Minaee et al., 2020).

Algorithm 1 Adaptive histogram equalization (AHE) for image enhancement

1: procedure AdaptiveHistEqualize (Image I, ClipLimit C, TileGridSize T)

2: IYCbCr ) Convert I from RGB to YCbCr color space

3: Extract Y channel as IY

4: Divide IY into non-overlapping tiles of size T

5: for each tile in IY do

6: Initialize histogram array H 0 . . .max intensity½ � to zeros

7: Initialize CDF array CDF 0 . . .max intensity½ � to zeros

8: for each pixel p in the tile do

9: H intensity of p½ � ) H intensity of p½ � + 1

10: end for

11: CDF 0½ � ) H 0½ �
12: for 1 to max intensity do

13: CDF i½ � ) CDF i� 1½ � + H i½ �
14: end for

15: Normalize CDF using C

16: for each pixel p in the tile do

17: pnew intensity ) normalized CDF intensity of p½ �
18: end for

19: end for

20: Apply bilinear interpolation between adjacent tiles in IY

21: Replace Y channel in IYCbCr with the equalized IY

22: Convert IYCbCr back to RGB color space

23: return Enhanced color image I

24: end procedure
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6) Xception: Xception was designed to outperform other architectures by exploiting
depthwise separable convolutions, which replace standard convolutions. The primary
insight behind Xception is that the cross-channel and spatial correlations in the feature
maps of convolutional neural networks can be mapped separately, leading to improved
performance and efficiency. It has been notably successful in various image
classification tasks (Chollet, 2016).

The selection of EfficientNetB0, MobileNetV2, ResNet50V2, DenseNet121, VGG16,
and Xception for the proposed Multi-Fusion Convolutional Neural Network (MF-CNN)
model was based on a systematic strategy that highlighted the architectural variety and
showed effectiveness in image processing tasks. The selection of each model and the
components (AuxFL, αDO, and FuRB) was based on its distinct advantages:

� EfficientNetB0 was selected due to its optimal balance of accuracy and efficiency.
Moreover, its scalable architecture enables flexible model sizing, rendering it a highly
suitable candidate for the wide variety of image resolutions that are commonly
encountered in endoscopy data.

� MobileNetV2 was selected based on its lightweight architecture and exceptional
efficiency, which are essential for real-time analytic applications. The depthwise
separable convolutions provide an ideal balance between computational workload and
prediction accuracy.

� ResNet50V2 addresses the issue of vanishing gradient, enabling the training of far
deeper neural networks. The MF-CNN incorporates it to guarantee strong feature
extraction skills, which are crucial for capturing the intricate patterns that are
characteristic of GI diseases.

� DenseNet121 was chosen based on its densely linked convolutional networks, which
enable efficient feature reuse across the network. This architecture is particularly
effective for learning complex attributes from endoscopic images. Its inclusion enhances
the model’s sensitivity to subtle features indicative of GI diseases.

� VGG16 offers very reliable feature extraction capabilities. The consecutive convolutional
layers of the model effectively capture a diverse range of image features, including basic
textures and complex patterns. This contributes to the MF-CNN’s capacity to do
thorough and comprehensive analysis.

� Xception model incorporates depthwise separable convolutions, which enhance
computing efficiency without compromising accuracy. The layout of the system is
especially advantageous for handling the diverse and sophisticated images seen in GI
diagnostic procedures, providing an optimal combination of performance and resource
efficiency.

� Auxiliary Fusing Layers (AuxFL), Fusion Residual Block (FuRB), and Alpha Dropouts
(αDO) are specifically developed to improve the integration process, enhance
regularization, and facilitate effective feature fusion. They handle prevalent issues such
as overfitting and the optimal combination of features from multiple sources, which are
essential for attaining high diagnostic accuracy.
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The diversified combination ensures an extensive selection of learning features, which
include efficient computation for precise recognition of patterns. A balanced combination
of efficiency, accuracy, and complexity led to choosing these methods to ensure that the
fusion is robust and effective across various applications. This strategic selection is in
contrast to selecting alternative deep learning models, which might not provide the same
range of complimentary features and demonstrated performance in various scenarios, a
critical consideration in aiming for a model that is both high-performing and broadly
applicable in real-world scenarios.

Strategy for fusion model and tuning
The models outlined previously in the paper have individually exhibited daunting
performance metrics in the domain of medical image diagnosis. In our study, we delved
into the model fusion domain to extract even more complex and subtle characteristics
from the data, capitalizing on the distinct efficiency of each model.

The underlying principle of the proposed MF-CNN is simple yet powerful, as it exploits
the individual strengths of each model, creating a more all-inclusive and resilient
diagnostic tool. Integrating multiple CNN models is an approach to incorporate
knowledge obtained from diverse domains. The implied collaborative approach has the
potential to unveil a wider array of features from medical imaging, potentially increasing
prediction accuracy. The integration of each chosen model contributes systematically to
the extensive framework of the MF-CNN, specifically designed for GI diagnosis. It is
important to emphasize that our proposed model excels in mere integration; it involves
careful consideration and circumspect modifications, such as the inclusion of previously
recognized FuRB, Partial Layer Freezing and AuxFL. These incorporations are consciously
executed to ensure that the final MF-CNN achieves optimal performance. However, the
process of combining several models with varied architectures and approaches is not
devoid of difficulties. A significant concern emerges when a model becomes overly familiar
with the training data too well, including its noise and outliers, making it perform less
efficiently on unseen data. The vulnerability becomes more prominent when combining
models, especially on limited datasets. In their endeavor to capture every minute detail, the
models might just “ memorize” the training data, undermining their generalizability to
new, unseen data (Olson, Wyner & Berk, 2018).

Recognizing this potential drawback, our study incorporated a strategic countermeasure.
We integrated the residual learning strategy, a signature methodology from the ResNet
model, into our fusion approach. This gave origin to the FuRB. Residual learning primarily
involves using “shortcut” or “skip” connections that bypass one or more layers. This
approach helps mitigate the vanishing gradient issue, ensuring that the model can still learn
well even when more layers are added, particularly in the context of our fusion. Figure 5
depicts the complicated fusing process in a visual manner. It shows how each selected
model contributes to the overall framework of the MF-CNN built particularly for
gastrointestinal (GI) diagnosis step by step. The illustration highlights the integration of
several models and the meticulous planning and thoughtful modifications, such as the
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addition of FuRB, that ensure the final MF-CNN achieves optimal performance while
avoiding risks such as overfitting.

The initial phase used transfer learning to empower models with ImageNet’s pre-
trained features, increasing diagnostic precision (Orsic et al., 2019). Following that, model
layer truncation was performed to reduce the number of trainable parameters. The layers
are put into a ‘freezing’ process during training to confirm the integrity of these enhanced
pre-trained weights. The transformation of these fine-tuned models to AuxFLs assured
consistent output dimension. Furthermore, these improved models were aggregated with
the FuRB, resulting in an undeviating feature fusion suitable for diagnostic applications.
Our research, which combines these insights and models, is a testimony to medical
imaging improvements, placing the MF-CNN as a potentially transformational tool in GI
diagnosis.

Truncation of freezing layers
A systematic refinement of each designated model was undertaken in the construction of
the MF-CNN. Initially, each model’s upper section (often referred to as the ‘head’) was
detached. A strategic pruning of certain layers followed this, while a substantial number of
the remaining layers were suspended during the training process. The reason for these
measures was to mitigate the risk of potential parameter inflation that might occur post-
fusion. An excessively complex model, particularly when trained on limited datasets, is
susceptible to overfitting, compromising its predictive ability (Das, Santosh & Pal, 2020;He
et al., 2016).

Table 2 provides a detailed analysis of each model’s parameters—both in their original
and truncated states—along with the preserved features, training status, and the specific

Figure 5 MF-CNN’s fusion schematic combines model strength for GI diagnosis. The Fusion Residual Block (FuRB) ensures enhanced feature
extraction and reduces overfitting risk. Full-size DOI: 10.7717/peerj-cs.1950/fig-5
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layer at which truncation occurred. It’s worth noting that the original architectures of these
models were designed with the intent to classify up to 1,000 distinct objects. However, the
scope of this analysis was narrowed down to identifying four specific categories of GI
abnormalities. This disparity in classification objectives made truncation an essential step.
It became more streamlined and efficient by paring down the model’s architecture. An
empirical approach was adopted to determine the optimal cut points, ensuring that an
extensive set of features was retained despite the pruning.

Harmonizing fusion with auxiliary fusing layers
The truncation technique introduced a challenge of mismatched cut-point dimensions
among the selected models. As a result, direct integration of these models became
problematic. To overcome this challenge and attain effective fusion, AuxFLs were
accumulated to ensure dimensional compatibility, providing a controlled number of
trainable parameters for the fused model.

Figure 6 depicts the overall construction of the AuxFLs, which are distinguished by their
simplified yet strong layout. Each AuxFL is made up of three layers that are arranged
sequentially: a convolutional layer (Conv), an average pooling layer (AP), and a dropout
layer (αDO). Each layer has a distinct purpose. The Conv layer, which employs a h × w
convolutional filter, may extract and highlight additional information. This replaces any
parameters that may have been lost during truncation and guarantees that the parameter
count does not increase excessively. The AP layer then enters the image and begins pooling
the retrieved features to restructure and standardize their proportions, making them
suitable for fusion. The decision to use average pooling rather than maximum pooling was
intended since it affirms that the resulting feature maps are more representative of the
underlying data, allowing for a more unified fusion. Finally, the αDO layer is incorporated
for an improved regularization.

Table 3 itemizes the specific configurations and specifications of each AuxFL tailored to
the requirements of the truncated variants. This detail ensures that every model’s unique
features are preserved and harmonized before the fusion process.

Optimized feature fusion and FuRB implementation
AuxFLs integration ensured that all models achieved suitable cut-points, paving the road
for effective feature fusion (Salau & Jain, 2019; Dhiman et al., 2023; Liu et al., 2023;

Table 2 Truncation settings and parameter details.

Model Initial Truncated Features Status Cut-Point layer

EfficientNetB0 2,949,427 2,912,371 192 Frozen ‘block6d_add’

MobileNetV2 1,738,496 558,656 96 Frozen ‘block12_add’

ResNet50V2 4,710,592 1,171,456 512 Frozen ‘conv3_block3_out’

DenseNet121 6,885,504 6,700,992 128 Frozen ‘conv5_block14’

VGG16 11,174,400 7,635,264 512 Frozen ‘block4_conv3’

Xception 18,148,288 9,202,432 728 Frozen ‘block9_sepconv3’
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Montalbo, 2023). On the other hand, the inherent complexity produced by this fusion
triggered worries about excessive adherence to training data. This study employed a
recognized integrated FuRB solution to address this concern. This FuRB, inspired by the
ResNetV2 block’s “full pre-activation” approach, was upgraded with a dropout layer
(αDO), assuring optimized performance without increasing computing costs. Significantly,

Figure 6 The structure of the auxiliary fusing layer. Full-size DOI: 10.7717/peerj-cs.1950/fig-6

Table 3 Specifications of the auxiliary layers for each truncated model.

Model Shape Conv AP αDO

EfficientNetB0 72 × 192 f = 192; K = 1; S = 1;
Padding = Valid;
activation = SeLU;
initializer = LeCun Norm

Pool Size = 1;
S = 1;
Padding = Valid

Rate = 0.2

MobileNetV2 142 × 96 f = 192; K = 8; S = 1;
Padding = Valid;
activation = SeLU;
initializer = LeCun Norm

Pool Size = 1;
S = 1;
Padding = Valid

Rate = 0.2

ResNet50V2 282 × 512 f = 192; K = 6; S = 1;
Padding = Valid;
activation = SeLU;
initializer = LeCun Norm

Pool Size = 3;
S = 3;
Padding = Valid

Rate = 0.2

DenseNet121 72 × 128 f = 192; K = 1; S = 1;
Padding = Valid;
activation = SeLU;
initializer = LeCun Norm

Pool Size = 1;
S = 1;
Padding = Valid

Rate = 0.2

VGG16 282 × 512 f = 192; K = 6; S = 1;
Padding = Valid;
activation = SeLU;
initializer = LeCun Norm

Pool Size = 3;
S = 3;
Padding = Valid

Rate = 0.2

Xception 142 × 728 f = 192; K = 8; S = 1;
Padding = Valid;
activation = SeLU;
initializer = LeCun Norm

Pool Size = 1;
S = 1;
Padding = Valid

Rate = 0.2
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adding the FuRB allowed the model to avoid performance saturation, improving overall
efficacy. Figure 7 depicts the FuRB as well as the extensive MF-CNN framework in detail.

MF-CNN hyperparameter optimization
The MF-CNN’s hyperparameters and loss function were specified before beginning the
training process. Table 4 shows the hyperparameters that were employed during training.
While pre-trained networks, which are frequently trained on large datasets, excel at
extracting hierarchical features, they are especially useful for smaller datasets. The majority
of the models mentioned before are included in Keras. Keras-tune was first used for model
fine-tuning and hyperparameter optimization, employing grid search-a prominent
parameter-tuning approach. The following were the preliminary choices:

� Size of batch: 16, 24, 32, 64, 100

� Count of epochs: 30, 50, 100, 150, 250, 300

� Rate of learning: 0.0000001 to 0.1

� Optimizers: ‘SGD’, ‘RMSprop’, ‘Adadelta’, ‘Nadam’, ‘Adam’, ‘Adamax’

Figure 7 Architecture of the integrated multi-fusion convolutional neural network. Full-size DOI: 10.7717/peerj-cs.1950/fig-7

Table 4 A comprehensive overview of selected hyperparameters and corresponding values for MF-
CNN training.

Hyper-Parameter Value

Batch size 32

Epochs 100

Optimizer Adam

LR 0.0001
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The grid search approach was used to determine optimal parameter values for deep
learning models. All the previously mentioned optimizers were tried for the unique MF-
CNN technique. To avoid memory difficulties, the batch size for this study was fixed at 32,
which was changed based on dataset size and system parameters. For its efficiency, the
Adam optimizer (Akter et al., 2021) with a learning rate (LR) of 0.0001 was used. The
model utilized Adam’s adaptive capabilities to attain optimal performance in just 100
epochs, even with a low learning rate.

MF-CNN hyperparameter and learning rate optimization
This study employed the ReduceLROnPlateau callback to ensure optimal performance
without surpassing optimum accuracy levels. This is particularly beneficial if a model’s LR
becomes too aggressive during training. If there is no improvement in accuracy over two
consecutive epochs, the ReduceLROnPlateau function automatically reduces the LR by 0.5
(50%), updating it with the new LR as per Eq. (5).

LRnew ¼ LR � 0:5: (5)

A deep learning (DL) model’s performance is measured not only by its accuracy but also
by its error rates. The Categorical Crossentropy Loss function, as shown in Eq. (6), was
used in this study. This function minimizes differences between expected and actual
classes, providing a loss measure. It is especially useful in circumstances with several classes
since, unlike its binary version, it delivers a probability for simply the relevant classes
(GitHub, 2020).

CCEloss ¼ �
Xm

c¼1

Yo;c log Po;c
� �

: (6)

Ablation analysis
A commonly employed technique for fine-tuning parameters is the implementation of the
grid search method. The aforementioned approach is utilized to determine parameters
including the optimizer, learning rate, loss function, batch size, and dropout. Furthermore,
an ablation study was performed to validate the robustness of the proposed MFCNN
model. The ablation study has impacted the following elements: model combination,
layers, optimizer, learning rate, and adaptive histogram equalization (AHE).

Case 1: altering model combination
Several model combinations have been examined to determine the optimal performance of
the fusion model. EfficientNetB0, MobileNetV2, ResNet50V2, DenseNet121, VGG16, and
Xception are the pre-trained models that are incorporated into the proposed model. As six
additional fusion model combinations were produced to execute the shifting strategy, the
proposed model was combined with EfficientNetB1, MobileNet, ResNet50V2,
NASNetMobile, InceptionV3, and EfficientNetB5. From Table 5, the proposed model
exhibited superior performance among the seven combinations considered, achieving a
validation accuracy of 98.60% and a test accuracy of 99.25%. Additionally, it experienced
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the least validation loss at 13.60% and test loss at 6.74%. A slight reduction in accuracy
(98.29%) and loss (11.82%) in both validation and test when compared to the proposed
model was observed in an alternative model combination consisting of the initial three
MFCNN models in addition to NasNetMobile, InceptionV3, and EfficientNetB1. An
additional model combination, which included the initial three MFCNN models in
addition to NasNetMobile, InceptionV3, and EfficientNetB1, exhibited a marginal decline

Table 5 Analyzing ablation by the alteration of multi-fusion model combinations.

Model combination Validation accuracy Validation loss Test accuracy Test loss Performance

EfficientNetB0
MobileNetV2
ResNet50V2
DenseNet121
VGG16
Xception

98.60% 13.60% 99.25% 6.74% Identical

EfficientNetB0
MobileNetV2
ResNet50V2
NASNetMobile
InceptionV3
Xception

97.35% 20.52% 98.37% 12.04% Accuracy reduced

EfficientNetB0
MobileNetV2
ResNet50V2
NASNetMobile
InceptionV3
EfficientNetB1

98.29% 17.82% 98.75% 8.11% Accuracy reduced

EfficientNetB0
MobileNetV2
ResNet50
DenseNet121
VGG16
Xception

95.20% 49.63% 97% 30.41% Accuracy reduced

EfficientNetB0
MobileNetV2
ResNet50
DenseNet121
InceptionV3
Xception

98.25% 11.04% 98.62% 10.34% Accuracy reduced

EfficientNetB1
MobileNetV2
ResNet50
NASNetMobile
InceptionV3
Xception

95.45% 46.39% 97% 26.90% Accuracy reduced

EfficientNetB1
MobileNet
ResNet50
NASNetMobile
VGG16
EfficientNetB5

87.55% 59.66% 88.62% 55.80% Accuracy reduced
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in accuracy for both the validation and test tasks (98.29% and 98.75%), respectively, in
comparison to the proposed model. Furthermore, it faced an increased loss of 17.82% and
8.11% for validation and testing, respectively.

Case 2: altering global average pooling 2D layer
A Global Average Pooling2D (GAP2D) layer has been added to traditional convolutional
neural networks (CNNs) to find a link between feature maps and their corresponding
categories. Specifically, Global Average Pooling 2D is characterized by its ability to reduce
network size and prevent overfitting. The layer undergoes a systematic replacement
process to evaluate the effects of AveragePooling2D, GlobalMaxPooling2D, and
MaxPooling2D on the network’s performance. The accuracy of GlobalMaxPooling2D is
nearly identical to that of GlobalAveragePooling2D, as illustrated in Table 6.

Case 3: altering optimizers and learning rates
To determine the optimal optimizer and learning rate combination, learning rates of
0.0001, 0.001, and 0.01 were applied with each optimizer, including Adam, Nadam, SGD,
RMSprop, and Adagrad. This method required testing each optimizer at these three
separate learning rates in a sequential way. The objective was to identify which pair of
optimizers and learning rate achieved the best performance. Based on the findings
presented in Table 7, Adam resulted as the most robust combination, attaining a validation
accuracy of 98.6% and a test accuracy of 99.25%, with a learning rate of 0.0001.
Furthermore, this combination produced the least amount of test loss, which was
documented at 6.74%. This finding highlights Adam’s efficacy within the specified context
and learning rate.

Case 4: impact of adaptive histogram equalization in MF-CNN
Table 8 is a vital aspect in illustrating the actual impact of adaptive histogram equalization
(AHE) on the performance of our model. By comparing the model’s metrics in the
presence and absence of AHE, this comparison provides clear verification for the
contribution of AHE.

The model that incorporates AHE processing achieves superior accuracy in validation
and testing (98.60% and 99.25%, respectively) in comparison to the model that does not
utilize AHE (97.00% and 97.50%). This significant enhancement highlights the
contribution of AHE in improving the model’s ability to generalize and its precision in
handling unseen data. The efficacy of AHE is demonstrated by metrics including precision,

Table 6 Ablation study examination by changing the GlobalAveragePooling2D (GAP2D) layer.

Applied layers Validation accuracy Validation loss Test
accuracy

Test
loss

performance

GlobalAveragePooling2D 98.60% 13.60% 99.25% 6.74% Identical

AveragePooling2D 95.80% 42.52% 97.37% 29.08% Accuracy reduced

GlobalMaxPooling2D 97.37% 16.71% 97.29% 10.48% Accuracy reduced

MaxPooling2D 97.20% 18.19% 97.62% 14.79% Accuracy reduced
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recall, and F1-score, which go beyond accuracy. The model that utilized AHE obtained
higher precision, recall, and F1-score values (99.27%, 99.25%, and 99.25%, respectively)
than the model that did not incorporate AHE (97.75% precision, 97.50% recall, and 97.60%
F1-score). These enhancements emphasize the effectiveness of AHE in optimizing the
model’s capacity to correctly classify data points and maintaining a balance between
precision and recall.

COMPARATIVE ANALYSIS OF ALL APPLIED MODELS
Experimental setup
To develop and test our MF-CNN, we used a computing system with an AMD Ryzen 7
3800X CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. The hardware
arrangement was selected for its superior computing power and efficiency in handling
extensive datasets and performing complex deep-learning computations. The use of the
NVIDIA GeForce RTX 2080 Ti GPU, loaded with its superior CUDA cores and huge
memory bandwidth, facilitated the efficient training of our model, resulting in a reduction
in the time needed for both model training and assessment. This configuration represents a

Table 8 Comparing impact on proposed model performance using AHE.

Processing method Validation accuracy Test
accuracy

Precision Recall F1-Score

With AHE 98.60% 99.25% 99.27% 99.25% 99.25%

Without AHE 97.00% 97.50% 97.75% 97.50% 97.60%

Table 7 Altering optimizer and learning rate (LR) to examine ablation study.

Optimizers Learning rate Validation accuracy Validation
loss

Test
accuracy

Test
loss

Performance

Adam 0.0001 98.6% 13.6% 99.25% 6.74% Identical

0.001 92.44% 65.18% 92% 54.41% Accuracy reduced

0.01 85.75% 61.79% 87.25% 43.83% Accuracy reduced

Nadam 0.0001 97.25% 12.55% 98.19% 7.65% Accuracy reduced

0.001 97.39% 20.33% 97.62% 16.52% Accuracy reduced

0.01 94.4% 50.65% 96.24% 30.54% Accuracy reduced

SGD 0.0001 93.3% 18.59% 93.5% 15.42% Accuracy reduced

0.001 96.35% 15.14% 97.75% 11.82% Accuracy reduced

0.01 97.64% 11.66% 99% 6.42% Accuracy reduced

RMSprop 0.0001 96.45% 38.1% 97.75% 24.89% Accuracy reduced

0.001 95.74% 41.88% 95.74% 40.06% Accuracy reduced

0.01 82.84% 50.02% 83.24% 17.45% Accuracy reduced

Adagrad 0.0001 96.05% 14.45% 96.62% 12.32% Accuracy reduced

0.001 97.94% 8.63% 98.5% 5.51% Accuracy reduced

0.01 95.39% 38.88% 96.74% 24.57% Accuracy reduced
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widely accessible yet effective computing environment that achieves a balance between
accessibility and performance, thereby assuring the replication and applicability of our
research across diverse contexts.

Cost and complexity analysis
Table 9 thoroughly analyzes various deep learning models compared to the proposed
optimized MF-CNN, highlighting significant factors, including inference efficiency,
computational demands, and model complexity.

The MF-CNN, with 150 × 106 parameters and 20 × 109 floating point operations
(FLOPs), stands out as one of the most complex and computationally intensive models in
the comparison. The network’s extensive parameter count signifies its fundamental and
intricate nature, enabling it to capture a wide array of critical features for achieving optimal
performance in complex tasks. The MFCNN needs a significant number of computations
for each inference, a requirement that not only ensures thorough data processing but also
requires considerable computational resources. This value is much higher than that of
models such as MobileNetV2 and EfficientNetB0, renowned for their minimal
computational demands and high efficiency. The MFCNN’s complexity is described as an
“optimized fusion of models with reduced layers and efficient architectures,” indicating
that a conscious decision was made during design to maintain a balance between the
practical efficiency of the fusion model and its inherent complexity. The optimization
above plays a critical role in effectively handling the computational cost and model’s size
(580 MB), rendering it a robust yet resource-intensive solution.

The MFCNN has a greater size and more FLOPs than other models, such as
DenseNet121, VGG16, and Xception, indicating a higher resource consumption. Still, part
of what makes it function so well is precisely this intricacy. While this may be more than
for more lightweight models, the MF-CNN’s projected inference time of 20–80 ms per
image shows its broad processing capabilities, which are essential for attaining cutting-
edge outcomes in demanding applications. Although the proposed MFCNN model
demands the most resources among the models, its improved performance capabilities
justify its demands. This solution maintains a balance between intensive computational

Table 9 The cost and complexity analysis of applied deep learning models.

Model Parameters Operations
(FLOPs)

Complexity description Inference time
(ms/image)

Size in MB

EfficientNetB0 5.3 � 106 3.9 � 108 Efficiency focused with compound Scaling <10 21.2

MobileNetV2 3.5 � 106 3.0 � 108 Lightweight with depthwise separable convolutions <10 14

ResNet50V2 25.6 � 106 4.0 � 109 Deep with residual connections 10–30 102.4

DenseNet121 8 � 106 2.88 � 109 Densely connected layers for feature propagation 10–30 32

VGG16 138 � 106 15.5 � 109 Deep with many fully connected layers 20–50 552

Xception 22.9 � 106 8.4 � 109 Depthwise separable convolutions for efficiency 10–30 91.6

Proposed Model
(MF-CNN)

150 � 106 20 � 109 Optimized with fusion of models with reduced layers and
efficient architectures

20–80 580
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requirements and sophisticated features, rendering it well-suited for situations in which
optimal performance is essential and adequate computational resources are accessible.

RESULT AND ANALYSIS FINDINGS
The present section provides an in-depth evaluation of the proposed Multi-Fusion
Convolutional Neural Network (MF-CNN) using established deep learning (DL)
benchmarks. To assess the MF-CNN’s efficacy, its results are compared with top-tier DL
models. For this analysis, we utilize an image dataset segmented into three categories:
training, validation, and test sets. Diagnostic performance is determined through a
comprehensive array of methods, including a confusion matrix, precision-recall (P-R)
curve, and the receiver operating characteristic (ROC) curve, with particular emphasis on
the area under the curve (AUC) metric. Furthermore, the chapter highlights the MF-
CNN’s distinctiveness by comparing its performance to other significant studies in the
field.

Evaluation of diagnostic performance metrics
The conventional methods depend primarily on the anticipated elements of the confusion
matrix, i.e., true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN), derived from the validation and test datasets. These components are used to evaluate
the overall diagnostic accuracy of vision-based models in the field of medical imaging. The
suggested model’s overall accuracy, precision, recall, and F1-score are evaluated using the
following Eqs. (7) to (10) based on the values of the elements of the confusion matrix
(Minaee et al., 2020).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(7)

Precision ¼ TP
TP þ FP

(8)

Recall=Sesitivity ¼ TP
TP þ FN

(9)

f1� score ¼ 2 � Precision � Recall
Precision þ Recall

: (10)

Diagnostic performance analysis
The dataset in this study was divided into training, validation, and test sets, allowing for a
more detailed performance comparison with other cutting-edge approaches. The
confusion matrices for both the validation and test datasets are shown in Figs. 8 and 9,
demonstrating the predictive accuracy of the proposed MF-CNN model. As shown in
Fig. 8, the model made just 28 mistakes out of 2,000 samples in the validation set, attaining
a remarkable accuracy rate of 98.6% and an error rate of 1.4%. Similarly, in Fig. 9, the
model misclassified only six of the 800 samples in the test set, resulting in an accuracy of
99.25% and an error rate of 0.75%.

The findings in Table 10 indicate the performance measures of the MF-CNN model,
such as accuracy, precision, recall, and F1-score, as determined from the three-way split
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approach. These values were obtained by analyzing the data in the associated confusion
matrix. The MF-CNN model attained an impressive accuracy of 98.60% on the validation
set and 99.25% on the test set. Furthermore, the model displayed exceptional consistency
across additional criteria. Precision, recall, and F1-score for the validation set were 98.65%,
98.6%, and 98.6%, respectively. In comparison, the test set reported precision, recall, and
F1-score values of 99.27%, 99.25%, and 99.25%, respectively.

Tables 11 and 12 provide an in-depth evaluation of the model’s diagnostic accuracy for
each distinct instance. The MF-CNN’s proficiency was slightly lower when diagnosing
ulcer and polyp diseases compared to the normal and esophagitis situations. As shown in
Table 11, among the validation data, polyp diagnosis had the lowest accuracy at 94.60%,
whereas ulcer diagnoses had a higher rate of 99.80%. When the model’s accuracy for the
polyps diagnosis was evaluated using the test data from Table 12, it was recorded at
97.00%. Such findings imply that the MF-CNN’s capacity to distinguish polyp cases is
considerably limited when compared to other situations. Despite this minor variance, the
MF-CNN provided an excellent overall diagnostic performance.

ROC curve analysis
The receiver operating characteristics (ROC) curve was used by the MF-CNN model to
explore its diagnostic capabilities more deeply, analyzing sensitivity and specificity across
multiple thresholds (Nour & Polat, 2020). As Eq. (11) specified, the model’s sensitivity
examined its accuracy in identifying instances with mucosal abnormalities. Similarly, as

Figure 8 Confusion matrices for MF-CNN on validation datasets. Its showcase the model’s accu-
racy by detailing correct and incorrect predictions in each set.

Full-size DOI: 10.7717/peerj-cs.1950/fig-8
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defined in Eq. (12), specificity assessed the model’s accuracy in identifying situations where
the mucosa showed no abnormalities.

Sensitivity ¼ Instances of correctly diagnosed samples with abnormalities
Total number of samples with abnormalities

(11)

Figure 9 Confusion matrices for MF-CNN on test datasets. Its showcase the model’s accuracy by
detailing correct and incorrect predictions in each set. Full-size DOI: 10.7717/peerj-cs.1950/fig-9

Table 10 The diagnostic performance of the proposed MF-CNN model.

Dataset Accuracy Precision Recall F1-Score Samples

Validation 98.60% 98.65% 98.60% 98.60% 2,000

Test 99.25% 99.27% 99.25% 99.25% 800

Table 11 Diagnostic accuracy of MF-CNN for specific cases using the validation dataset.

Case Accuracy Precision Recall F1-Score

Normal 100% 1.00 1.00 1.00

Ulcer 99.80% 0.95 0.99 0.97

Polyps 94.60% 0.99 0.94 0.97

Esophagitis 100% 0.99 1.00 0.99

Hossain et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1950 26/38

http://dx.doi.org/10.7717/peerj-cs.1950/fig-9
http://dx.doi.org/10.7717/peerj-cs.1950
https://peerj.com/computer-science/


Specificity ¼ Instances of correctly diagnosed samples without abnormalities
Total number of samples without abnormalities

: (12)

Figures 10 and 11 demonstrate the ROC curve for the MF-CNN model, derived from
the sensitivity and specificity metrics of the validation and test datasets. The AUC values
averaged 1.00 for both the validation set represented in Fig. 10 and the test set in Fig. 11.
This highlights the model’s consistent diagnostic precision across disparate thresholds.
The findings confirm the model’s outstanding performance on both datasets (Jeni, Cohn &
De La Torre, 2013).

Table 12 Detailed analysis of MF-CNN diagnostic accuracy for specific cases using the test dataset.

Case Accuracy Precision Recall F1-Score

Normal 100% 1.00 1.00 1.00

Ulcer 100% 0.97 1.00 0.98

Polyps 97.00% 1.00 0.97 0.98

Esophagitis 100% 1.00 1.00 1.00

Figure 10 ROC curve of the MF-CNN model derived from the validation datasets, illustrating
consistent diagnostic accuracy with an average AUC of 1.00.

Full-size DOI: 10.7717/peerj-cs.1950/fig-10
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PR curve analysis
Similar to the ROC curve, the Precision-Recall (P-R) curve is formulated based on the
recall or sensitivity metric. This curve precisely balances precision, frequently referred to as
the positive predictive value, and recall. Its ability to adjust for varying thresholds grants
the P-R curve a unique edge in providing a holistic assessment of the model’s efficacy with
the dataset (Pizer et al., 1987). Figures 12 and 13 vividly portray the P-R curve of the
advanced MF-CNN model, distilled from insights collected from both validation and test
datasets. Observations from the validation set, represented in Fig. 12, revealed a micro-
average P-R curve value of 0.996. In comparison, the test set, illustrated in Fig. 13, reported
a marginally superior value of 0.998. Such findings accentuate the model’s prowess in
rapidly diagnosing an array of GI diseases. An essential conclusion from this analysis is the
model's unwavering performance consistency. This is evident from the nearly uniform P-R
curve across both datasets, suggesting minimal anomalies. Such consistent outcomes
reinforce the model’s reliability, simultaneously mitigating any identified weaknesses.

Comparative analysis
Figures 14 and 15 provide a detailed visualization of the accuracy and loss metrics
associated with the proposed MF-CNNmodel. This model’s robust performance is evident
from its consistently increasing accuracy and decreasing loss as training progresses

Figure 11 The ROC curve of the MF-CNN model derived from the test datasets, illustrating
consistent diagnostic accuracy with an average AUC of 1.00.

Full-size DOI: 10.7717/peerj-cs.1950/fig-11
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through successive epochs. Figure 14, in particular, highlights the training and validation
accuracy statistics. The model’s progression indicates a consistent improvement in
accuracy, reflecting its effective learning capability. On the other hand, the primary
objective during the model’s training phase is to minimize the loss. This scalar measure
quantifies the difference between the model’s predictions and the actual labels. A lower loss
score implies more accurate predictions. This relationship is depicted in Fig. 15, which
compares training loss against validation loss. Both accuracy and loss metrics are displayed
against the epoch count. At the onset, during the initial epochs, the model presents its most
fundamental performance, characterized by the lowest accuracy and the steepest loss.
However, as training persists, both metrics exhibit significant improvement. By the 90th
epoch, a significant milestone is achieved: validation accuracy maximizes, and the
validation loss is at its lowest concurrently. This convergence signifies that the model’s
pinnacle of performance is attained at the 90th epoch, marked by peak accuracy and
minimized loss.

To assess the MF-CNN’s ability to diagnose certain gastrointestinal disorders, it is
essential to compare its performance to various top DCNNmodels. This section compares
the MF-CNN to well-known DCNN models using the same dataset. Montalbo (2022)
compared their MFuRe-CNN against 11 of the best Keras pre-trained models. This work is
consistent with Montalbo’s comparison, as it draws on his performance assessments of

Figure 12 The Precision-Recall (P–R) curve of validation dataset with a P–R value of 0.996 for the
MF-CNN model. Full-size DOI: 10.7717/peerj-cs.1950/fig-12
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these DCNNs given the common dataset. Table 13 shows that the MF-CNN scored highest
with a validation accuracy of 98.60%. In comparison, the highest-ranking DCNN,
MobileNetV2, attained an accuracy of 90.90%. The MF-CNN achieves a considerable

Figure 13 The Precision-Recall (P–R) curve of test dataset with a P–R value of 0.998 for theMF-CNN
model. Full-size DOI: 10.7717/peerj-cs.1950/fig-13

Figure 14 Performance metrics of the MF-CNN model. Evolution of training and validation accuracy,
demonstrating consistent improvement with peak accuracy attained near the conclusion of training.

Full-size DOI: 10.7717/peerj-cs.1950/fig-14
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performance improvement of 7.7%. While the MF-CNN outperforms traditionally trained
DCNNs, MobileNetV2 has advantages from the proposed fusion strategy. Furthermore,
our MF-CNN model outperformed Montalbo’s MFuRe-CNN by 1.95%, with a validation
accuracy of 96.65%. Similarly, Table 13 also shows, MF-CNN outperformed MobileNetV2
with a 99.25% accuracy rating from the test dataset, where MobileNetV2 had 92.25%. An
improvement of 7% showcases the supremacy of MF-CNN on this dataset. Even if we look
at the customized MFuRe-CNN model, it had an accuracy of 97.75%. Compared to
Montalbo’s model, MF-CNN had an accuracy rate of 1.5% higher. This further illustrates

Figure 15 Performance metrics of the MF-CNN Model. Corresponding trends in training and vali-
dation loss, indicating the most refined model performance with minimized loss also towards the con-
clusion of training. Full-size DOI: 10.7717/peerj-cs.1950/fig-15

Table 13 Validation performance comparison of the proposed MF-CNN model with leading DCNN models.

Model Validation Test

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

MF-CNN 98.60% 98.65% 98.60% 98.60% 99.25% 99.27% 99.25% 99.25%

MFuRe-CNN 96.65% 96.67% 96.65% 96.65% 97.75% 97.75% 97.75% 97.75%

MobileNetV2 90.90% 91.31% 90.90% 90.93% 92.25% 92.75% 92.25% 92.28%

EfficientNetB0 86.85% 87.81% 86.85% 86.97% 88.25% 89.03% 88.25% 88.38%

InceptionV3 83.35% 85.26% 83.35% 83.44% 85.37% 86.73% 85.38% 85.45%

DenseNet121 82.25% 86.64% 82.25% 81.90% 84.50% 87.81% 84.50% 84.35%

Xception 82.75% 85.91% 82.75% 82.78% 84.50% 86.46% 84.50% 84.58%

ResNet50V2 83.70% 86.72% 83.70% 83.81% 84.25% 87.20% 84.25% 84.42%

InceptionResNetV2 77.15% 81.76% 77.15% 76.21% 80.13% 84.14% 80.13% 79.44%

NASNetLarge 77.25% 81.75% 77.25% 77.54% 77.62% 82.12% 77.62% 78.07%

VGG16 73.40% 74.33% 73.40% 72.94% 75.13% 75.53% 75.12% 74.69%

NASNetMobile 69.35% 75.15% 69.35% 66.61% 72.12% 77.81% 72.13% 69.60%

VGG19 65.35% 71.62% 65.35% 63.51% 68.00% 74.15% 68.00% 65.68%
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the significant improvement in gastrointestinal tract diagnosis achieved through the
implementation of the suggested MF-CNN.

Feature map analysis of MF-CNN
Feature map analysis involves interpreting and understanding the outputs (feature maps)
produced by the convolutional layers in a CNN. These feature maps depict the activations
of the neurons in the layer, signifying the features in the input data (such as an image) that
the neurons have detected. Figure 16 presents a visual representation of the feature maps
generated by the layers of the MF-CNN. Due to the model’s extensive depth, the figure
selectively showcases only certain layers and blocks. In the earliest layers of the MF-CNN,
as demonstrated in the feature maps, there is a distinct focus on the basic, low-level
features of the input. These foundational elements can be compared to the basic building
blocks of the image. For instance, the feature maps capture and exhibit aspects such as
boundaries, textures, and distinct color regions. These foundational elements give us an
overview of what the neural network first identifies and discerns in its initial layers. The
early phases of interpretation are fundamental and relatively straightforward,
concentrating on the primary structures and patterns in the data. A significant prominence
can be seen in the upper left quadrant of Fig. 16. This particular section provides a
visualization of the feature maps from the initial layers of the MF-CNN. The patterns

Figure 16 Visualization of feature maps from proposed MF-CNN layers. Full-size DOI: 10.7717/peerj-cs.1950/fig-16
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emerging here graphically highlight the network’s ability to detect fundamental visual
elements. We can observe distinct indications of contours and individual color regions,
signifying the network’s focus on these rudimentary components.

Comprehensive assessment of state-of-the-art methods
In the following section, we systematically compare the efficacy of various CNN models in
diagnosing gastrointestinal (GI) diseases, including our proposed MF-CNN. These models
are compared comprehensively in Table 14, with an emphasis on their diagnostic accuracy.
Upon analysis of the data, it becomes evident that the proposed method consistently
outperforms other models in its domain. The outstanding performance metrics observed
in this framework can be attributed to its advanced design and cutting-edge development
methodologies. The table serves as a visible depiction of the advances made in the current
study and supports the claim that our proposed method has established a new standard.
We have demonstrated our model’s exceptional accuracy through testing and evaluation,
making it a leading tool for detecting GI diseases.

LIMITATIONS OF THE STUDY
The research on the MF-CNN for identifying gastrointestinal disorders is comprehensive,
although it has limitations that do not significantly affect its overall findings and
contributions. The dataset we used came from KVASIR and ETIS-Larib Polyp DB. These
databases do not cover all gastrointestinal disorders in the world, but they give us a good
starting point for building and testing our model. The integration of six sophisticated
DCNNs challenges the MF-CNN computational efficiency, but this does not affect the
model’s demonstrated accuracy. While the current scope of the MF-CNN is limited to four
major gastrointestinal tract abnormalities, this focus does not undermine its potential
applicability to a boarder range of conditions in future developments. Furthermore,

Table 14 Comparative analysis of the proposed model’s diagnostic accuracy with models from
previous studies in the detection of GI diseases.

Authors Methods Accuracy

Montalbo (2022) Fusion CNN 97.75%

Fan et al. (2018) AlexNet 95.16%

Majid et al. (2020) VGG16, KNN 96.5%

Poudel et al. (2020) CNN, Dynamic Dilated Conv 95.7%

Hmoud Al-Adhaileh et al. (2021) AlexNet, GoogleNet, ResNet-50 97%

Khan et al. (2020) VGG16, Transfer learning, Feature fusion 98.4%

Öztürk & Özkaya (2021) ResNet50, LSTM 98.05%

Olson, Wyner & Berk (2018) Compressed and Modified Fusion CNN 97.75%

Orsic et al. (2019) Swin-transformer 87.22%

Salau & Jain (2019) EfficientNetB0 98%

Dhiman et al. (2023) InceptionV3, ResNet50 and DenseNet201 95%

Hossain et al. (2022) Proposed model 99.25%

Hossain et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1950 33/38

http://dx.doi.org/10.7717/peerj-cs.1950
https://peerj.com/computer-science/


positive findings have already been seen in the experimental settings, however, real-world
clinical validation is still required. Ultimately, the possibility of making more algorithmic
advancements indicates continuous opportunities for strengthening the model rather than
being a drawback of the present research. These constraints are relatively minor and
provide opportunities for further investigation rather than having a large influence on the
existing accomplishments of the study.

CONCLUSION AND RECOMMENDATION
In this study, the developed MF-CNN marks a significant advancement in the field of GI
tract abnormality detection, outperforming traditional state-of-the-art DCNNs. By
integrating the strengths of six DCNNmodels (EfficientNetB0, MobilenetV2, ResNet50V2,
DenseNet121, VGG16, and Xception) into a unified pipeline and refining them with
streamlined layers, selective freezing, AuxFLs, and αDOs, the MF-CNN achieves
exceptional diagnostic accuracy scores of 98.60% and 99.25% on validation and test
datasets, respectively. This approach not only surpasses the constraints of existing
methodologies in terms of accuracy and adaptability but also establishes a new standard in
the analysis of GI medical images. To further improve the performance of the MF-CNN,
future directions involve enhancing its robustness across diverse datasets, optimizing
computational efficiency, and exploring algorithmic or structural enhancements. During
our study, we experienced several challenges, particularly in addressing the diversity of
medical imaging and the technical requirements of handling extensive datasets. The
presence of variations in image quality and the need for significant data preparation
emphasize the importance of developing more flexible and efficient data handling systems.
Moving forward, we recommend focusing on improving the MF-CNN’s resilience over a
wider range of datasets. This may include making more algorithmic improvements or
using cutting-edge data augmentation methods. Furthermore, it is still important to
maximize the computing efficiency of the model, either by exploring compact model
structures or more sophisticated optimization techniques. These endeavors will enhance
the MF-CNN’s practical applicability and expand its effectiveness to include a wider array
of medical imaging tasks.
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