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ABSTRACT
Background. Computational intelligence (CI) based prediction models increase the
efficient and effective utilization of resources for wind prediction. However, the
traditional recurrent neural networks (RNN) are difficult to train on data having long-
term temporal dependencies, thus susceptible to an inherent problem of vanishing
gradient. This work proposed a method based on an advanced version of RNN
known as long short-term memory (LSTM) architecture, which updates recurrent
weights to overcome the vanishing gradient problem. This, in turn, improves training
performance.
Methods. The RNNmodel is developed based on stack LSTM and bidirectional LSTM.
The parameters like mean absolute error (MAE), standard deviation error (SDE), and
root mean squared error (RMSE) are utilized as performance measures for comparison
with recent state-of-the-art techniques.
Results. Results showed that the proposed technique outperformed the existing
techniques in terms of RMSE andMAE against all the usedwind farmdatasets.Whereas,
a reduction in SDE is observed for larger wind farm datasets. The proposed RNN
approach performed better than the existing models despite fewer parameters. In
addition, the approach requires minimum processing power to achieve compatible
results.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Scientific Computing and
Simulation, Neural Networks
Keywords Wind power forecasting, Recurrent neural network, Long short-term memory, Deep
neural network, Stacked LSTM, Bidirectional LSTM

INTRODUCTION
There is an ongoing demand for renewable energy sources to address global warming,
fossil fuel depletion, and electricity demand. Wind power is a popular option because it
is eco-friendly, clean, viable, and cheap. Furthermore, there is a huge global potential of
600 gigawatts of wind energy (Nazir et al., 2020). Wind power prediction is paramount
in optimizing resource utilization within the energy sector. Accurate predictions play
a pivotal role in steering away from traditional energy sources and embracing a more
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sustainable future. Failing to grasp the practical ramifications of inaccurate wind power
predictions can result in inefficient energy distribution, elevated operational costs, and
adverse environmental impacts.

This underscores the necessity for sophisticatedmodels such as long short-termmemory
(LSTM) in tackling the complexities inherent in wind power forecasting. However, it’s
crucial to bridge the gap between the importance of accurate predictions and the utilization
of advanced models. In this respect, many non-machine learning (nML) as well as machine
learning (ML) techniques have been developed to predict wind power and speed using
weather data and historical records such as Jamii et al. (2022), Mujeeb et al. (2019) and
Magadum et al. (2023). ML techniques such as neural networks and LSTM can estimate
wind speed better than archaic numerical weather prediction methods (Zhang et al., 2022;
Peng et al., 2021; Peng et al., 2020; Kumar & Yadav, 2024;Wang et al., 2024).

Conventional non-machine learning autoregressive models capture temporal
dependencies in time series data, can handle sequential information, and learn patterns
from historical observations just like LSTM. However, autoregressive models assume fixed
gaps compared to LSTMwhich can capture non-linear dependencies. The LSTM can adapt
to variable gaps. LSTM can also address vanishing gradient problems and model long-term
dependencies more effectively than auto-regressormodels. Furthermore, both nMLmodels
such as moving averages and ML models i.e., LSTMs can be used to smooth out variations
in time series data as well as both can handle noise and highlighting trends. However,
moving averages may not capture non-linear trends and long-term dependencies. LSTMs
are also more adaptive as they can adjust weights dynamically and therefore are more
suitable for handling variations in wind data. Therefore, the following ML studies highlight
the wind’s speed and power prediction.

Hasheminejad & Fekri (2009) used an adaptive neural network, Han, Yang & Liu (2010)
used an improved neural network with wind direction patterns, and Su et al. (2010)
used feedforward backpropagation and Levenberg Marquardt algorithms. Mohammadi
et al. (2015) used extreme learning machines (ELM) and compared them with artificial
neural network (ANN), support vector machine (SVM), and genetic programming (GP)
models. They found that ELM was accurate and precise as compared to other algorithms.
Najeebullah et al. (2015) used a hybrid approach with SVR and PSO. Treiber, Heinermann
& Kramer (2016) used regression and K-nearest neighbor.Deepa Lakshmi & Sujatha (2016)
used ANN as a tool for continuous monitoring of wind speed.

In a similar context, Qureshi et al. (2017) used an ensemble of deep sparse auto-
encoders as base regressors and a deep belief network as a meta-regressor. Yue et al.
(2017) used ensemble empirical mode decomposition, sample entropy, and least-square
supporting vector machines optimized by particle swarm optimization (PSO). Yadav &
Sahu (2017) surveyed different AI-based models and activation functions for wind speed
forecasting. Zameer et al. (2017) used a combination of genetic programming and artificial
neural network (GPeANN) ensemble technique with previous power/forecast values.
Zhang et al. (2018) used Lorenz disturbance, principal component analysis, and improved
particle swarm optimization (LD-PCA-IPSO-BPNN) model. Zucatelli et al. (2019) used an

Ali Khan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1949 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1949


ANN-based model with multiple layers of the Levenberg–Marquardt backpropagation AI
technique to forecast wind speed at different time intervals.

In recent years, interest in deep artificial neural networks (D-ANN) has increased due
to improvements in the prediction of both small-range and long-range reliance in data
sequences as compared to shallow neural networks. D-ANN are better at predicting data
sequences than shallow neural networks. LSTM is a D-ANN that remembers and reuses
past weights and thus can handle the deep nonlinear behavior of wind speed. LSTM
has been used in engineering areas such as signal classification (Hamza et al., 2022) and
software radio (Su et al., 2010) etc. Literature shows that LSTM and its variants have been
used for wind power prediction. Yu et al. (2019) used LSTM with a prediction window and
sequential sequence to predict wind power for different time horizons. LSTM performed
better than other models for longer predictions. Araya, Valle & Allende (2019) used an
LSTM-based multi-scale model (LSTM-Ms) with Feed Forward networks for temporal
scale feature extraction which outperformed the persistence model and standard LSTM.
LSTM is also found to be better than SVM and RNN for wind speed forecasting (Gangwar,
Bali & Kumar, 2020; Lipton, Berkowitz & Elkan, 2015).

With the advancements of new techniques in the domain of ML & CI, researchers have
been able to find more advanced and novel techniques based on wind and weather forecast
datasets to mitigate power management issues. This is achieved either by short-term or
long-term wind power predictions. Since the ML techniques are primarily based on a
dataset, no single technique can be considered best for all wind data collected at different
wind farms located at different geographical locations. Therefore, there is a need for
constant improvement of either datasets or techniques for better and more effective
models depending on the dataset available.

A comparison of LSTMwith regression, random forest, and gradient boosting techniques
was done by Dong, Sheng & Yang (2019). They claimed to provide a novel predicting
framework with an effective forecasting map adapted to different prediction horizons.
However, short-term wind speed prediction using LSTMs’, or their variants is not
addressed in any of the above-mentioned studies. Recently Ibrahim et al. (2020) compared
ANN, CNN, LSTM, a hybrid convolutional LSTM (convLSTM), and SVM for short-term
wind speed prediction. ConvLSTM gave better results both in terms of performance and
accuracy. However, the research compared LSTM with ANN, CNN, and convLSTM which
are legacy techniques. This research aims to compare LSTM against more novel and hybrid
techniques. Moreover, Ibrahim et al. (2020) work is specifically on wind speed forecast.
The target of this research is focused on wind speed as well as wind power in the feature
set.

Qureshi et al. (2017) and Zameer et al. (2017) presented state-of-the-art techniques that
used a combination of an ensemble of neural networks with genetic programming and
transfer learning to enhance prediction accuracy. Even though these techniques provided
promising results, their implementation of feature engineering and the combination
of different techniques make these models more complex and resource intensive. Our
research is more focused on finding a solution that is simpler, more efficient, and should
have acceptable accuracy as well. To achieve this, we reduced the feature set by 70% and
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replaced complex ensembles of ANN and DNN with the simple implementation of LSTM.
For the efficiency assessment of the proposed solution, the results are compared with the
existing wind speed prediction techniques presented by Zameer et al. (2017) and Qureshi et
al. (2017). The present work uses LSTM variants, Stacked LSTM, and bidirectional LSTM
for wind power prediction because of their simplicity and their successful implementation
in other relevant problems. It is pertinent to note that some latest related work such as
(Xie et al., 2021; Liang et al., 2021; Prema et al., 2019) used the prediction error values of
wind speed and wind power for the next hour). Therefore, this research has also utilized
an algorithm for the next hour prediction of wind speed and power.

The rest of the article is organized as follows. ‘Proposed Technique for Short Term
Wind Power Prediction’ discusses a proposed methodology for short-term wind power
prediction. ‘Results and Discussion’ describes the results of the applied methodologies.
Finally, ‘Conclusions, Limitations and Future Work’ concludes the article.

PROPOSED TECHNIQUE FOR SHORT TERM WIND POWER
PREDICTION
In this study, LSTM variants, Stacked LSTM, and bidirectional LSTM are used as the
proposed methodology. In the following section, we will discuss the dataset used in this
study, LSTM and its variants, and their implementation as the proposed methodology.

Data collection
The actual data on wind farms is taken from the Kaggle Competition site (Hongtao, 2012).
The dataset includes power, speed, and directional values for wind besides zonal (u), and
meridional (v) components. The dataset is compiled at the wind farm level. The total
number of instances available in each wind farm dataset are Wind Farm 1: 16,589, Wind
Farm 2: 16,586, Wind Farm 3: 17,010, Wind Farm 4: 15,385, and Wind Farm 5: 16,531,
respectively. A mapping of data over hours and wind power is shown in supplementary
graphs (Figs. S1–S5). It is noteworthy to mention here that the actual dataset contains
data from seven farms while only data from five wind farms is being considered. This
is done to ensure a fair comparison between the proposed work and the base literature
GPeANN (Zameer et al., 2017) and DNN-MRT (Qureshi et al., 2017). Each instance of the
dataset contains a deterministic forecast, gathered twice a day, and each measured instance
has a time-based resolution of 1 h and 2 days ahead. To calculate power, four power
values provided by weather predictors, in the last 48 h having a time difference of 12 h are
utilized. The dataset also contained temperature information which is not utilized to make
a fair comparison with the base articles. The base articles did not utilize temperature for
prediction.

Data pre-processing
The dataset contains weather forecasts for five distinct wind farms along with hourly
wind power measurements. During the pre-processing stage, the date and time formats
are standardized for observed weather forecasts and power measurements. Metrological
forecasts like zonal (u), meridional (v), wind speed (WS), and wind direction (wd) are
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used as features to get power measurements. The dataset hour offset format is changed to
calculate the exact hour of measuring power output. A simple arithmetic mean is applied to
get a single candidate feature set for more than one metrological forecast against a specific
power measurement,

Besides weather observations like wind speed and wind direction at specific time
intervals, wind power also has a huge dependency on historical weather values. Significant
improvement inwind power predictionwas observed byZameer et al. (2017) andQureshi et
al. (2017)when previous power values were also included in the feature set. To include some
specific number of past observations in the feature set, a variable n is defined. This variable
n is passed to a function to get a new feature vector that concatenates past n observations.
The process is applied to the whole data set. The normalization procedure is considered
good practice for inputting data before presenting data to the network (Hochreiter &
Schmidhuber, 1997). To enhance the accuracy and to make scale-free comparisons, data is
scaled down in the range of (0,1). With all the above tuning, the following feature set S(t)
as shown in Fig. S6 is finalized.

In the figure, nwill be the number of past values that will be included in set S(t). Its range
will be from 1 to 24 h in the past. The value of n will be finalized during the training phase
based on the performance of the model. Input to the LSTM network is a three-dimensional
(3-D) array, these dimensions are the number of training samples to be fed, the number
of time steps to be included in a single training example, and the number of features. Data
were processed using the Python library e.g., Numerical Python (NumPy), and reshaped
as a 3-D array. In our case, each sequence is dealt with independently and the number of
the time step is 1. Several features will be as per feature set S(t).

Long short-term memory networks
LSTM is a specific RNN that is specially designed to deal with data having long-term
temporal dependencies. LSTM is an evolved model of classical ANN. Figure S7 shows the
architecture as well as the feature set of RNN. As shown in the figure, the output of the
previous state is also fed as an input to the subsequent state along with the current input
Xt. Input to an RNN is the feature vector X and Y will be the output vector containing all
the hidden states Rt-1,. . . , Rt+1.

The recursive nature of RNNs makes them ideal when dealing with sequences. However,
Hochreiter & Schmidhuber (1997) discovered that the learning process of RNNs becomes
drastically slow due to the vanishing gradient problem. This led to the development of
LSTM (Althelaya & Mohammed, 2018), a special RNN that uses memory units to store
contextual information and gated units to supervise the flow of information. In LSTM
repeating hidden unit of RNN is replaced with an LSTM cell. A brief overview of LSTM
can be viewed in Hochreiter & Schmidhuber (1997).

The thing that differentiates LSTM from standard RNN is its memory cell shown as Ct

as highlighted in Yu et al. (2019). The following steps elaborate on the working of LSTM.

• At some time, t, inputs to an LSTM cell are cell state at timestamp t-1 (Ct−1), the output
of the previous hidden state Rt−1, and the input feature vector Xt.
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• First, inputs Xt and Rt−1 are passed to the forget gate (F) along with associated weights
that in turn apply the sigmoid activation function on it. Based on the output of the
sigmoid function, F decides what information to retain or forget. As sigmoid output
values range is between 0 and 1. Values that are closer to 0 will be forgotten and values
closer to 1 will remain unchanged. The equation for F will be

F = ∂(W f Xt +W f Rt−i). (1)

Next, a two-step process is performed before updating the cell state. First inputs Xt,

Rt−1, and associated weights Wi are passed to input gate I which uses the sigmoid
function to decide which values to update to the cell state. Values nearest to 1 are likely
to be updated. In the second step, utilizing the same input, a candidate vector G is
created using tanh that holds the new values to be added to the cell state. Tanh function
returns a value between −1 and 1. This will help regularize the network and deal better
with the vanishing gradient problem. Now we get the new candidate values through
pointwise multiplication of I and G. The following equations describe how I and G will
be calculated.

I = ∂(W iXt +W iRt−i) (2)

G= tanh(W gXt +W gRt−i). (3)

• To update the cell state, the previous cell state Ct−1 is multiplied by the output of
F which is a forget vector. This results in the dropping of cell state values where relevant
forget vector values are near 0. Next pointwise addition is applied to the output of the
previous step which is (I�G), this results in the new cell state Ct. Mathematically it can be
written as

Ct = F�Ct−1+ I�G. (4)

• Now lastly output will be decided using the output gate (O). To calculate the output,
feature vector Xt, hidden state of previous cell Rt−1, and relevant weights Wo are used.
Based on these inputs O decides the next hidden state Rt. Hidden state Rt is the prediction
based on previous inputs. First Xt and Rt−1 are passed to the sigmoid function of O. Then
the output of O will be pointwise multiplied with the resultant vector of tanh(Ct) where
Ct is the new cell state. This multiplication will help decide the relevant information that
hidden state Rt should carry. Finally, the hidden state Rt and new cell state Ct will be passed
to the next LSTM cell.

O= ∂(W oXt +W oRt−i) (5)

Rt =O� tanh(Ct ). (6)

The final output of an LSTM layer is a vector Y containing all the outputs (Rt−1, . . .Rt+1)

and can be represented as Y = [Rt−1, . . .Rt+1].
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Stacked LSTM
Stacked LSTM is the simplest form that enhances the capability of a single LSTM layer
network by stacking one or more LSTM layers above it. Figure S8 shows the flow of a
stacked LSTM network with a sequence length of 3. In the figure, three recurrent LSTM
layers are interconnected where the output of the layer (L-1) i.e., RtL−1 is treated as input
Xt to the subsequent layer (L). Now Xt in the mathematical representation of simple LSTM
is replaced with to get the equation for Layer (L) in case of stacked LSTM.

Bidirectional LSTM
Bidirectional LSTM is another variant of RNN that is found in the literature (Gao, Xu &
Yin, 2024). It extends the standard unidirectional LSTM to bidirectional thus enabling it
to process input sequences in both time directions simultaneously i.e., backward (future
to past) or forward (past to future). Here for each time direction, two separate networks
are used to train the model. Bidirectional LSTM is applicable where all time steps of the
input sequence are known. Results from both layers are then merged to help prediction.
Work done by Althelaya & Mohammed (2018) on stock market prediction shows that
bidirectional LSTM produced better results compared with stacked LSTM.

In bidirectional LSTM the working of the forward layer is the same as in the standard
LSTM that traverses from time t = 1 to T. However, in the case of the backward layer, the
input sequence is fed from t = T to 1. Therefore, a mathematical representation of the
LSTM cell in the forward layer will remain the same whereas mathematical expressions of
the LSTM cell in the backward layer denoted by the leftward arrow (←) at time t can be
written as:

EF = ∂
(
W
←
f Xt +W

←
f Rt+i

)
(7)

EI = ∂(W
←
i Xt +W

←
i Rt+i) (8)

EO= ∂W
←
o Xt +W

←
o Rt+i (9)

EG= tanh(W
←
g Xt +W

←
g Rt+i) (10)

ECt = EF� ECt−1+EI� EG (11)

ERt = EO� tanh( ECt ). (12)

At each time step of bidirectional LSTM, twooutputswill be generated, one by forwarding
the LSTM layer (Rt) and one by the backward LSTM layer ( ERt ). These two outputs will be
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merged to get the output yt. Final output Y will be expressed as the combination of the
outputs generated by individual LSTM layers.

Yt =Rt + ERt (13)

Y = yt−1+yt+yt+1 (14)

Figure S9 shows the working of three-time step bidirectional LSTM. Both forward
and backward layers work independently in opposite directions to preserve contextual
information. The output will then be processed, based on both past and future values.

Construction of stacked LSTM model
The Stacked LSTM has four layers: an input layer, a first LSTM layer, a second LSTM layer,
and an output layer with 32, 16, 16, and 1 neuron respectively. The input vector to the
model is X that consists of features (ut..ut−1, vt..vt−1, wst..wst−1, wdt..wdt−1, pt−n..pt−1)
of feature set S(t) with past n observations whereas feature(pt), the wind power, is our
output vector Y. The first LSTM layer uses the Rectified Linear Unit (Relu) as an activation
function and returns the processed sequence to the second LSTM layer. Finally, the
predicted sequence is passed to the densely connected output layer. The weight initializer
parameter of the model is set as ‘RandomUniform’ which initiates the network weights
with random and uniformly distributed values in the range of 0 to 0.9. Root mean square
propagation (RMSprop) is used as a model optimizer with a learning rate of 0.001. The
model is trained with epochs= 5 and a batch size of 32. Figure 1 describes the architecture
and flow of the stacked LSTM model.

Construction of bidirectional LSTM model
The bidirectional Stacked LSTM used in this study has four layers: the input layer, the
first bidirectional LSTM layer, the second bidirectional LSTM layer, and an output layer
with 64, 32, and 1 neuron respectively. The remaining tuning parameters like weight
initializer, activation function, optimizer algorithm, learning rate, batch size, and the
number of epochs are the same as the stacked LSTM model. The architecture of the
proposed bidirectional LSTM can be seen in Fig. 2. In this model, simple LSTM layers are
replaced with bidirectional LSTM layers.

Forecast accuracy
To perform more realistic forecasts, a step time-series cross-validation technique as
indicated in the research (Zhang et al., 2022) is used. Preserving the time dependency
aspect of the time series data, on each iteration, this method uses the previously observed
values as a training set and the next unseen observation as a test set. To frame data for
one-step cross-validation, a window of previous n observations was included as a feature
at the data preprocessing stage. So besides splitting the dataset into training and test data,
a one-step time-series cross-validation is also performed to enhance the forecast accuracy.

Ali Khan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1949 8/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1949#supp-9
http://dx.doi.org/10.7717/peerj-cs.1949


Figure 1 Architecture of stacked LSTM.
Full-size DOI: 10.7717/peerjcs.1949/fig-1

Performance parameters
Metrics used to evaluate the performance of the developed LSTMmodels are mean absolute
error (MAE), root mean square error (RMSE), and standard deviation error (SDE) defined
as

MAE =
∣∣∣∣∑(Xactual.i−Xmodel.i)

n

∣∣∣∣ (15)

RMSE =

√∑
(Xactual.i−Xmodel.i)2

n
(16)

(
SDE =

√
1
M

M∑
i=1

(Error−MeanError)2
)

(17)
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Figure 2 Architecture of bidirectional LSTM.
Full-size DOI: 10.7717/peerjcs.1949/fig-2

where Xactual is a vector consisting of actual values of wind power and Xmodel, i is the model
predicted value at time/place i. The objective of the developed model is to minimize the
values of these parameters to attain higher performance. Whereas Wpactual is the desired
value of power while Wppredicted is the predicted power value provided by the proposed
technique. Error =Wpactual −Wppredicted, while the average value of error is called mean
error.

RESULTS AND DISCUSSION
To quantitate performance evaluation of the developed LSTM model, three different
metrics such as MAE, RMSE, and SDE have been utilized. Five wind farm data is used
as a dataset to compare the results with the existing techniques of Zameer et al. (2017)
and Qureshi et al. (2017).

Stacked LSTM model
The model was implemented using 80% of the data as training and the remaining 20%
for testing purposes. Table 1 shows the parameter settings applied to train the model.
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Table 1 Stacked LSTM hyper parameter settings.

S No. Parameter Setting

1 Number of Epochs 5
2 Batch Size 32
3 n (No of past values to be included) 5
4 Loss function Logcosh
5 Optimizer Rmsprop
6 Learning rate 0.001

Notes.
Hyperparameters for both stacked and bidirectional LSTM are the same.

Table 2 Results of stacked LSTM on training (TR) and testing (TS) data.

Dataset RMSE (TR) RMSE (TS) MAE (TR) MAE (TS) SDE (TR) SDE (TS)

Wind Farm 1 0.0935 0.0856 0.0614 0.0530 0.2444 0.1553
Wind Farm 2 0.1042 0.0717 0.0614 0.0464 0.2709 0.1797
Wind Farm 3 0.1197 0.0578 0. 0640 0.0403 0.2965 0.1050
Wind Farm 4 0.1095 0.1063 0.0787 0.0712 0.0288 0.1475
Wind Farm 5 0.1193 0.1022 0.0732 0.0589 0.2995 0.1998

From the performance perspective, it has been observed that the proposed techniques
achieved optimum results with only five epochs, whereas existing techniques used 150 to
500 epochs. Training and testing results obtained from the model are shown in Table 2.
During the training phase, optimum results were observed when the past five observations
were included in the feature set. So, the value of n i.e., no of past values to be included in
the feature set is tuned as five.

Figures 3 through 7 shows the results of actual vs predicted hourly wind power for all the
wind farms. The results show that there is a close match between the actual and predicted
wind power. Both actual and predicted wind power curves almost follow the same pattern.
It has been observed through results that LSTM is a robust technique for time sequence
problems. Results also support the fact that deep neural networks work best when the
dataset is large as in our case dataset for Wind Farm 3 is comparatively large, therefore,
significant improvement in terms of error reduction is observed.

Bidirectonal LSTM model
As for Stacked LSTM, the dataset for the bidirectional LSTM model is also divided into
a proportion of 80% and 20% for training and testing respectively. The same parameter
settings of stacked LSTM are used for bidirectional LSTM. Table 3 shows both training and
testing results when bidirectional LSTM is applied to the dataset.

Figures 8 through 12 show the results of actual vs predicted wind power on each wind
farm dataset when bidirectional LSTM is used. Results demonstrate that bidirectional
LSTM performs slightly better than stacked LSTM, especially in the case of Wind Farm
3, the performance difference increases concerning the proportion of data available for
training. So, results can be improved when applied to large datasets.
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Figure 3 Plot of stacked LSTM forWind Farm 1.
Full-size DOI: 10.7717/peerjcs.1949/fig-3

Figure 4 Plot of stacked LSTM forWind Farm 2.
Full-size DOI: 10.7717/peerjcs.1949/fig-4
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Figure 5 Plot of stacked LSTM forWind Farm 3.
Full-size DOI: 10.7717/peerjcs.1949/fig-5

Figure 6 Plot of stacked LSTM forWind Farm 4.
Full-size DOI: 10.7717/peerjcs.1949/fig-6
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Figure 7 Plot of stacked LSTM forWind Farm 5.
Full-size DOI: 10.7717/peerjcs.1949/fig-7

Table 3 Results of bidirectional LSTM on training (TR) and testing (TS) data.

Dataset RMSE (TR) RMSE (TS) MAE (TR) MAE (TS) SDE (TR) SDE (TS)

Wind Farm 1 0.0933 0.0836 0.0606 0.0505 0.2406 0.1550
Wind Farm 2 0.1029 0.0747 0.0632 0.0473 0.2787 0.1869
Wind Farm 3 0.1196 0.0539 0.0790 0.0385 0.2854 0.0962
Wind Farm 4 0.1120 0.1016 0.0774 0.0643 0.2685 0.1403
Wind Farm 5 0.1179 0.0999 0.0730 0.0587 0.2951 0.1996

Results comparison with existing techniques
In this section, the results of the proposedmodels are comparedwith the existing techniques
of GPeANN (Zameer et al., 2017) and DNN-MRT (Qureshi et al., 2017). Table 4 shows the
results in terms of RMSE, MAE, and SDE of existing and proposed models on training and
test datasets. Figures 13 to 15 shows a comparison of the results of different error metrics
measured against each wind farm. The comparison clearly shows that the Stacked LSTM
and bidirectional LSTM outperformed the other two methods in terms of RMSE and
MAE. However, in the case of SDE, the proposed models only outperformed Windfarm 3.
The reason could be that in Wind Farm 3, the variation of wind power is generally lower
than in other datasets. Furthermore, the author calculates SDE as the standard deviation
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Figure 8 Plot of bidirectional LSTM forWind Farm 1.
Full-size DOI: 10.7717/peerjcs.1949/fig-8

Figure 9 Plot of bidirectional LSTM forWind Farm 2.
Full-size DOI: 10.7717/peerjcs.1949/fig-9
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Figure 10 Plot of bidirectional LSTM forWind Farm 3.
Full-size DOI: 10.7717/peerjcs.1949/fig-10

Figure 11 Plot of bidirectional LSTM forWind Farm 4.
Full-size DOI: 10.7717/peerjcs.1949/fig-11
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Figure 12 Plot of bidirectional LSTM forWind Farm 5.
Full-size DOI: 10.7717/peerjcs.1949/fig-12

Table 4 Comparison of results with existing techniques.

Error
measures

Training data Test data

GPeANN DNN-MRT Stacked
LSTM

Bidirectional
LSTM

GPeANN DNN-MRT Stacked
LSTM

Bidirectional
LSTM

RMSE 0.0869 0.0721 0.0935 0.0933 0.0966 0.0939 0.0856 0.0836
MAE 0.0575 0.0508 0.0614 0.0606 0.0643 0.0658 0.0530 0.0505Wind Farm 1
SDE 0.0868 0.0719 0.2444 0.2406 0.095 0.0929 0.1553 0.1550
RMSE 0.0975 0.0809 0.1042 0.1029 0.1157 0.1032 0.0717 0.0747
MAE 0.0623 0.0564 0.0640 0.0632 0.0739 0.0713 0.0464 0.0473Wind Farm 2
SDE 0.0957 0.0782 0.2709 0.2787 0.1152 0.1025 0.1797 0.1869
RMSE 0.1071 0.0903 0.1197 0.1196 0.135 0.1207 0.0578 0.0539
MAE 0.0694 0.0607 0.0787 0.0790 0.0874 0.0825 0.0403 0.0385Wind Farm 3
SDE 0.1071 0.0897 0.2965 0.2854 0.1329 0.1203 0.1050 0.0962
RMSE 0.1061 0.0838 0.1095 0.1120 0.1118 0.1036 0.1063 0.1016
MAE 0.0681 0.0603 0.0732 0.0774 0.078 0.0748 0.0712 0.0643Wind Farm 4
SDE 0.1061 0.0827 0.0288 0.2685 0.1118 0.1036 0.1475 0.1403
RMSE 0.1135 0.1008 0.1193 0.1179 0.1203 0.1156 0.1022 0.0999
MAE 0.0715 0.0705 0.0731 0.0730 0.077 0.0804 0.0589 0.0587Wind Farm 5
SDE 0.1135 0.0952 0.2995 0.2951 0.119 0.1137 0.1998 0.1996
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Figure 13 Root mean squared error of all models.
Full-size DOI: 10.7717/peerjcs.1949/fig-13

of predicted wind power values, which is highly influenced by the variation of true wind
power.

It is also noteworthy that the proposed model effectively generalizes patterns from
the training set to the test set. This indicates that the model has successfully learned
the underlying patterns and can apply them to new, unseen data. The utilization of
regularization techniques during training of the proposed models prevents overfitting,
thereby enhancing the model’s ability to generalize to unseen data. Furthermore, the
LSTM’s inherent architecture and ability to capture long-term dependencies contribute to
better performance on the test set. The model has learned intricate temporal relationships
within the data that aid in making more accurate predictions. Moreover, the test set may
have characteristics or patterns that closely align with the training set, allowing the proposed
LSTMmodel to perform well on unseen data that share similarities with the training data.

CONCLUSIONS, LIMITATIONS AND FUTURE WORK
The present work proposed the use of the LSTM technique to predict wind power. Data
preprocessing was performed using statistical methods like simple arithmetic means
and normalization. To enhance the performance of the model, the previous five power
values were also utilized as well. The simple and bidirectional stacked LSTM models were
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Figure 14 Mean absolute error of all models.
Full-size DOI: 10.7717/peerjcs.1949/fig-14

Figure 15 Standard deviation of error of all models.
Full-size DOI: 10.7717/peerjcs.1949/fig-15
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implemented and tested on five wind farms data obtained from the Kaggle website. The
proposed technique used the DNN-based features of LSTM to exploit the wind power
and related metrological multivariate time series data. The results were compared with
the existing state-of-the-art techniques, where metrics e.g., RMSE, MAE, and SDE showed
that the proposed models give a comparatively good performance. In the best case, it
reduces the RMSE and MAE values to almost fifty percent. Results show that the accuracy
of the proposed models increases significantly when applied to larger datasets. Existing
approaches used complex architectures with a greater number of neurons, and neural
network layers, and required more processing power to achieve the results, whereas the
proposed LSTM model performs better with just two LSTM layers and requires minimum
processing power to achieve comparable results. From the results, it can be concluded that
the proposed models outperformed the existing models both in terms of performance and
accuracy.

Accurately predicting wind speed and power generation for the next hour offers
numerous benefits for the wind industry, impacting various aspects including such
as: improving grid integration and stability, in optimized energy trading and market
participation, in operational and maintenance optimization, in overall cost reduction and
various other environmental benefits. For a detailed description, please see related works
such as Yang et al. (2023), Rama, Hur & Yang (2024), Saini et al. (2023) and, Ying et al.
(2023).

The dataset used in the implementation of models is specific to different wind farms in
Europe. However, proposed LSTM models can be generalized to be used for other wind
farm data. This study did not conduct a robust statistical analysis to validate the superiority
of the suggested methodology over current approaches. Therefore, future work can plan
to conduct a thorough statistical examination to ensure the reliability and significance of
the performance differences. Additionally, the application of the approach to novel wind
farm datasets and consideration of potential obstacles in diverse settings is an important
endeavor lacking in this research. Future research could explicitly address these concerns
by conducting comprehensive experiments on various wind farm datasets and identifying
and mitigating challenges that may arise in different settings.

Besides, there are multiple limitations in the use of the matrices such as MAE, SDE, and
RMSE.MAE treats all errors equally without considering their direction. It does not penalize
large errors more than small ones, whichmay not be appropriate in situations where certain
errors have more significant consequences. Furthermore, MAE is sensitive to outliers. A
single large error can disproportionately influence the overall performance metric. Being
an absolute measure, MAE does not provide information about the direction of the errors
(overestimation or underestimation). The metric SDE is sensitive to the scale of the data.
It may not be directly comparable across datasets with different units or ranges. Like
MAE, SDE does not distinguish between overestimation and underestimation, providing
a measure of overall error variability but lacking directional information. Finally, RMSE
gives higher weight to large errors due to the square term. This makes it more sensitive
to outliers compared to MAE. Like MAE, RMSE does not provide information about the
direction of errors, making it challenging to interpret the nature of the model’s mistakes.
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Another possibility of future work is the integration of attention mechanisms within
our LSTM models. Attention mechanisms allow the model to assign different weights to
different parts of the input sequence, providing a more transparent view of which elements
contribute more significantly to the final prediction. By visualizing these attention weights,
insights into the aspects of the input data that influence the model’s decisions can be
viewed. Additionally, exploring techniques that ascertain the value of features during the
model’s decision-making could be taken into consideration. This involves conducting
feature importance analysis to identify which input features have the most impact on the
model’s predictions. This could make an LSTMmodel more interpretable and informative.

Besides prediction for the following hour, the work can be further extended to facilitate
medium to long-range wind power forecasting with adjustments to the model parameters.
To further improve the accuracy, larger datasets are required. In the future, this work
can be further extended to facilitate medium to long-range wind power forecasting with
adjustments to the model parameters and devising hybrid approaches by combining
different LSTM variants with other state-of-the-art techniques.

This study explored four different methods for wind power forecasting, comparing their
results against each other and the baseline article. While evaluating the MAE, the wind
power data was normalized between 0 and 1 for consistency. However, this normalization
means the reported MAE values, ranging from 4% to 8%, might not directly translate to
percentage changes in actual power values. Therefore, a key question arises: is this error
range adequate for hourly wind power forecasting? Answering this definitively necessitates
further research that compares our findings with other studies using similar data and
normalization techniques. Such a comparison would offer a clearer understanding of our
model’s performance in real-world applications.

Another future work possibility could be a comparison to encompass not only current
cutting-edgemethods but also alternative neural network architectures likeGatedRecurrent
Units (GRUs). Integrating a comparative analysis between LSTM and GRUs would enrich
forthcoming research, offering deeper insights into the distinct advantages attributed to
LSTM and its comparative edge over alternative architectures. This expanded analysis will
be a valuable direction for future investigations in the realm of wind power prediction,
fostering a more comprehensive understanding of neural network performance in this
domain.
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