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Fusarium Head Blight (FHB) is a destructive disease that affects wheat production.
Detecting FHB accurately and rapidly is crucial for improving wheat yield. Traditional
models are difficult to apply to mobile devices due to large parameters, high computation,
and resource requirements. Therefore, this paper proposes a lightweight detection method
based on an improved YOLOv8s to facilitate the rapid deployment of the model on mobile
terminals and improve the detection efficiency of wheat FHB. The proposed method
introduced a C-FasterNet module, which replaced the C2f module in the backbone
network. It helps reduce the number of parameters and the computational volume of the
model. Additionally, the Conv in the backbone network is replaced with GhostConv, further
reducing parameters and computation without significantly affecting detection accuracy.
Thirdly, the introduction of the Focal CIoU loss function reduces the impact of sample
imbalance on the detection results and accelerates the model convergence. Lastly, the
large target detection head was removed from the model for lightweight. The
experimental results show that the size of the improved model (YOLOv8s-CGF) is only 11.7
M, which accounts for 52.0% of the original model (YOLOv8s). The number of parameters
is only 5.7×106 M, equivalent to 51.4% of the original model. The computational volume is
only 21.1 GFLOPs, representing 74.3% of the original model. Moreover, the mean average
precision (mAP@0.5) of the model is 99.492%, which is 0.003% higher than the original
model, and the mAP@0.5:0.95 is 0.269% higher than the original model. Compared to
other YOLO models, the improved lightweight model not only achieved the highest
detection precision but also significantly reduced the number of parameters and model
size. This provides a valuable reference for FHB detection in wheat ears and deployment
on mobile terminals in field environments.
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ABSTRACT11

Fusarium Head Blight (FHB) is a destructive disease that affects wheat production. Detecting FHB

accurately and rapidly is crucial for improving wheat yield. Traditional models are difficult to apply to

mobile devices due to large parameters, high computation, and resource requirements. Therefore,

this paper proposes a lightweight detection method based on an improved YOLOv8s to facilitate the

rapid deployment of the model on mobile terminals and improve the detection efficiency of wheat

FHB. The proposed method introduced a C-FasterNet module, which replaced the C2f module in the

backbone network. It helps reduce the number of parameters and the computational volume of the

model. Additionally, the Conv in the backbone network is replaced with GhostConv, further reducing

parameters and computation without significantly affecting detection accuracy. Thirdly, the introduction

of the Focal CIoU loss function reduces the impact of sample imbalance on the detection results and

accelerates the model convergence. Lastly, the large target detection head was removed from the model

for lightweight. The experimental results show that the size of the improved model (YOLOv8s-CGF) is

only 11.7 M, which accounts for 52.0% of the original model (YOLOv8s). The number of parameters

is only 5.7×106 M, equivalent to 51.4% of the original model. The computational volume is only 21.1

GFLOPs, representing 74.3% of the original model. Moreover, the mean average precision (mAP@0.5)

of the model is 99.492%, which is 0.003% higher than the original model, and the mAP@0.5:0.95 is

0.269% higher than the original model. Compared to other YOLO models, the improved lightweight model

not only achieved the highest detection precision but also significantly reduced the number of parameters

and model size. This provides a valuable reference for FHB detection in wheat ears and deployment on

mobile terminals in field environments.
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INTRODUCTION32

Wheat, as one of the three major grain crops in China, has always been a focus of attention for those33

concerned with its yield and quality (Wang et al., 2023b). Wheat FHB is a type of wheat disease that34

affects a vast global area. It not only causes a reduction in grain production but also poses a threat to35

the health of humans and animals (Ochodzki et al., 2021; Femenias et al., 2020). Therefore, timely and36

accurate identification of wheat FHB can provide an essential guarantee for improving wheat yield and37

quality.38

With the development of artificial intelligence, machine learning-based target detection methods are39

beginning to find applications in agriculture (Xu et al., 2021; Zhang et al., 2020a). Khan et al. (2021) pro-40

posed a machine learning-based early detection model for wheat powdery mildew hyperspectral images,41

achieving an overall accuracy of over 82.35%. Zhang et al. (2020b) utilized an apple fruit segmentation42

algorithm and developed nine different machine learning algorithm-based classifiers, effectively segment-43

ing apple fruits in orchard images. Huang et al. (2021) established a red mold detection method based44

on continuous wavelet analysis and Particle Swarm Optimization Support Vector Machine (PSO-SVM),45

achieving a detection accuracy of 93.5%.46
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Although crop disease detection based on traditional machine learning algorithms can achieve an ideal47

recognition effect, these methods for the target detection of crops are easily influenced by factors such48

as terrain, weather, and the distance between the camera and crops. This makes it challenging to obtain49

accurate recognition in complex situations. In recent years, deep learning methods have gradually been50

applied to the field of agricultural production (Dı́az-Martı́nez et al., 2023). Mi et al. (2020) constructed a51

deep learning network, C-DenseNet, incorporating the Convolutional Block Attention Module (CBAM)52

attention mechanism to classify wheat stripe rust. The results showed that the test accuracy of C-DenseNet53

reached 97.99%. Wang et al. (2023a) used an algorithm based on improved YOLOv5s for recognizing54

corn and weeds in the field. The results indicated that the AP value of corn reached 96.3%, and the AP55

value of weeds reached 88.9%. Yang et al. (2023a) improved the YOLOv7 algorithm to identify fruits.56

The improved YOLOv7 algorithm achieved an accuracy rate of 96.7% on the test set. Ma et al. (2023)57

proposed an improved YOLOv8 algorithm for the detection of wheat stripe rust, leaf rust, and powdery58

mildew. The experimental results indicate that the mAP of the improved YOLOv8 model for detecting59

the three wheat leaf diseases is 98.8%.60

Traditional identification of wheat FHB primarily relies on manual detection. With the development61

of computer vision, deep learning algorithms are now being applied to wheat FHB detection. Su et al.62

(2021) proposed an algorithm based on the improved Mask-RCNN network to assess wheat FHB severity,63

achieving a prediction accuracy of 77.19%. Hong et al. (2022) utilized a lightweight improved YOLOv4-64

based FHB detection model for wheat ears, attaining an accuracy of 93.69% in wheat FHB detection.65

Zhang et al. (2022b) improved the YOLOv5 target detection network for wheat FHB detection, and the66

results demonstrated an average detection accuracy of 90.67%, which could satisfy the identification of67

wheat FHB under field conditions.68

Although the above recognition of wheat FHB has achieved good results, either the recognition69

accuracy is not high, or is not conducive to the deployment of mobile devices. This paper addresses the70

shortcomings of current target detection models in identifying wheat FHB, such as low accuracy, large71

parameters and high computation, increased model size leading to higher memory usage, and unsuitability72

for mobile terminals. The focus of this study is to create a lightweight model for identifying wheat FHB,73

providing valuable references for identifying FHB in field environments and deploying it on mobile74

terminals.75

1 MATERIALS AND METHODS76

1.1 Winter wheat FHB image dataset construction77

The wheat FHB images were collected in June 2022 at the Rocky Ford FHB nursery, Kansas State78

University. Four winter wheat varieties ”Clark”, ”Jagger”, ”Overley” and ”Everest” were used as the plant79

materials. The image acquisition device was a high-pixel smartphone, and the shooting process involved80

top-down photography. The resolution of the images was 3024×4032, with a total of 231 images. Crop81

images with a resolution of 832×832 from each original image. In this study, data augmentation on the82

self-built dataset was expanded to 1386 samples, randomly divided into a training set and a validation set83

at the ratio of 9:1. An example of wheat FHB images is shown in Figure 1.84
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Figure 1. Images of wheat FHB; (A) Original image; (B) Rotated image (C) Image after adjusting

brightness; (D) Scaled image

The images were labeled using the LabelImg tool to generate the corresponding XML files. These files85

contained location information for both healthy and diseased wheat ears, image size, and their respective86

category information. Mosaic data augmentation was used to handle data samples during training process.87

This involved randomly cropping and splicing four images into one image as training data to enrich the88

image background and enhance the model training efficiency.89

1.2 YOLOv8 model90

YOLOv8 is a target detection model and the latest version in the YOLO series of models (Redmon and91

Farhadi, 2018; Bochkovskiy et al., 2020; Zou et al., 2022). It offers improved speed and accuracy compared92

to previous YOLO models. YOLOv8 consists of five versions: YOLOv8n, YOLOv8s, YOLOv8m,93

YOLOv8l, and YOLOv8x. These versions are arranged based on model size, with YOLOv8n being the94

smallest and YOLOv8x being the largest. Since this study focuses on recognizing two categories, namely95

healthy wheat ears and diseased ears, and considers the need for real-time detection and easy deployment,96

the YOLOv8s model is selected as the base model. This model has fewer parameters and requires less97

computational effort.98

The YOLOv8s model is made up of four components: Input, Backbone, Neck, and Detection. The99

Input layer is used to pass the image into the model and perform preprocessing operations on it, while the100

Backbone network for extracting image features. The Neck layer performs feature fusion on the extracted101

features, and the Detection layer predicts features of three different dimensions, obtaining category and102

location information predicted by the network. In this study, the YOLOv8s model served as the base for103

identifying healthy wheat ears and FHB ears. Additionally, lightweight improvements were made to make104

it more suitable for deployment on mobile devices.105

1.3 YOLOv8s-CGF model106

Since the FasterNet (Chen et al., 2023) network can effectively reduce model computational redundancy107

and memory access, improving model speed without affecting accuracy, this paper proposes the C-108

FasterNet module based on the FasterNet module. It serves as the module for the main learning of features109

in the backbone network of YOLOv8s, which can be used to improve the model speed without affecting110

accuracy, while reducing the number of parameters and computation. GhostConv (Han et al., 2020) can111

generate more feature maps from inexpensive operations, fully revealing feature information. Therefore,112

replacing Conv in the backbone network with GhostConv reduces the model size while improving a113

certain degree of accuracy. Subsequently, the loss function is replaced with Focal CIoU to speed up model114

convergence. Finally, the large target detection head in the network is removed for further lightweight.115

The structure of the YOLOv8s-CGF model is shown in Figure 2.116
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Figure 2. YOLOv8s-CGF model.

1.3.1 C-FasterNet network117

C-FasterNet is a proposed module based on FasterNet. The FasterNet network is a new fast neural network118

proposed in 2023. The design of PConv (partial convolution) in the network exploits the redundancy in119

the feature maps by applying regular convolution only to some of the input channels, leaving the others120

unchanged. For consecutive or regular memory accesses, the first or last consecutive channel is considered121

a representative of the whole feature map for computation. Figure 3 shows how PConv works.122

Figure 3. PConv working principle diagram.

Figure 4 shows the whole structure of FasterNet, which consists of four stages. Each stage is preceded123

by an embedding stage (a regular Conv 4×4 with a step size of 4) or a merging stage (a regular Conv 2×2124

with a step size of 2) for spatial downsampling and channel count expansion. Each stage has a bunch of125

FasterNet blocks, and the blocks in the last two stages consume fewer memory accesses while having126

higher Floating Point Operations Per Second (FLOPS). Therefore, more FasterNet blocks are placed in127

the last two stages, and accordingly, more computation is allocated to these stages. The last three layers128

include Global Average Pooling, Conv 1×1, and a Fully Connected Layer for feature transformation and129

classification.130
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Figure 4. FasterNet network structure.

In this study, based on the above FasterNet module, we propose a C-FasterNet module, which consists131

of three standard convolutional layers and several FasterNet modules. C-FasterNet is the module that132

performs the main learning of the residual features. Its structure is divided into two branches: one that133

uses a stack of several FasterNet modules and a standard convolutional layer, and the other that only uses134

one standard convolution. Finally, the two branches are subjected to a Concat operation. The C-FasterNet135

module is used for YOLOv8s network feature extraction, reducing redundant computation and memory136

access while efficiently extracting spatial features. Its structure is shown in Figure 5:137

Figure 5. C-FasterNet model.

1.3.2 GhostConv structure138

GhostNet is a lightweight CNN network proposed by the Huawei team. Its core component, the Ghost139

module (GhostConv), generates a portion of feature maps through original convolution, while the rest140

is generated using a Cheap operation. This Cheap operation can be a linear transformation of the141

remaining feature map or a similar feature map generated by Depthwise convolution on the output of142

the original convolution. The structure of GhostConv is shown in Figure 6, where C1 and C2 represent143

the input and output channels, respectively. Half of the output feature maps come from one regular144

convolution, while the other half is generated by a 5×5 Depthwise convolution on the result of the first145

one. GhostConv achieves the same or even more efficient feature extraction with less complexity than the146

original convolutional layer. Whereas in CNN networks there is generally a lot of redundant convolutional147

computation with intermediate feature maps, Ghost convolution forces the network to learn useful features148

from half of the convolutional kernels. Simultaneously, Depthwise convolution is utilized to generate149

a feature map for this convolutional portion. The use of a 5×5 Depthwise convolution helps widen the150

receptive field of the generated feature map, enhancing the overall information contained within it.151

In this study, GhostConv is employed to replace the convolution module in YOLOv8s, aiming to152

compress the model rapidly and efficiently and extract target features.153

1.3.3 Focal CIoU loss function154

There is often a serious imbalance between positive and negative samples in target detection. However,155

the default CIoU loss (Zhang et al., 2022c) of the YOLOv8s model, which is equal for all samples, does156
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Figure 6. GhostConv structure.

not effectively address this problem. As a result, the model will excessively focus on prediction boxes157

that have less overlap with the true value, leading to a degradation of model performance. To solve this158

problem, a Focal CIoU loss function is introduced. This function increases the contribution of positive159

samples in LCIoU by resetting the weights in LCIoU according to the IoU values. IoU measures the overlap160

between the predicted box (A) and the true box (B). The formula for Focal CIoU is as follows:161

LFocal−CIOU = IoU γ LCIOU, (1)

where IoU denotes intersection over union, the parameter γ determines the degree of outlier suppression,162

and LCIoU denotes CIoU loss. γ has a default value of 0.5.163

IoU =
|A∩B|

|A∪B|
, (2)

164

CIoU = 1− IoU +
ρ2 (b,bgt)

c2
+αv, (3)

where b and bgt denote the centroids of the predicted bounding box and the true bounding box, respectively;165

ρ denotes the Euclidean distance between the two centroids; c denotes the diagonal length of the smallest166

closed rectangle containing the predicted bounding box and the true bounding box; ν is used to quantify167

the consistency of the aspect ratio; and α is a weight function. The equations for ν and α are as follows:168

v =
4

π2

�

arctan
wgt

hgt
− arctan

w

h

�

, (4)

169

α =
v

1− IoU
+ v, (5)

where wgt and hgt denote the width and height of the ground-truth bounding box, and w and h denote the170

width and height of the prediction bounding box, respectively.171

1.4 Experimental environment and parameters172

All experiments in this study use PyTorch as the deep learning model framework, and the GPU is NVIDIA173

GeForce RTX3090. The optimizer chosen is the AdamW optimizer, with an initial learning rate of 0.01,174

momentum set to 0.937, weight decay at 0.0005. The input image size is 640 × 640, the batch size is set175

to 32, and the model is trained for 200 epochs.176

1.5 Model evaluation metrics177

To evaluate the detection effect of the algorithm on wheat ears, the model performance is examined using178

recall, precision, average precision and mean average precision as evaluation metrics. The number of179

parameters, computation, and model size are used to reflect the complexity of the model. The recall180

reflects the model’s ability to find positive sample targets, the precision reflects the model’s ability to181

classify samples, and the average precision reflects the model’s overall performance in target detection182

and classification. The calculation formula is as follows:183

Precision =
T P

T P+FP
, (6)
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184

Recall =
T P

T P+FN
, (7)

185

AP =
� 1

0
P ·RdR, (8)

186

mAP =
1

N

N

∑
i=1

APi, (9)

where T P denotes the number of correctly identified positive samples, FP denotes the number of187

incorrectly identified positive samples, FN denotes the number of incorrectly identified negative samples188

and N represents the number of categories of data. Positive and negative samples are judged by setting189

the average IoU threshold between the predicted target region and the actual target region, and if the IoU190

of both exceeds this threshold, it is a positive sample, and vice versa, it is a negative sample. mAP@0.5 is191

the AP evaluated by the object detection model with an IoU value of 0.5, and mAP@0.5 is the mean of all192

its classes. mAP@0.5:0.95 represents the average mAP over different IoU thresholds (from 0.5 to 0.95,193

step size 0.05) (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95).194

2 RESULTS AND ANALYSIS195

2.1 Results of ablation experiment196

Aiming at the problems that the original YOLOv8s model has a large number of parameters and com-197

putations, and the model size takes up a large amount of memory, this study improves the structure of198

the YOLOv8s network by proposing the C-FasterNet module based on the FasterNet module as the main199

learning module of the YOLOv8s backbone network. Then, it replaces the Conv in the YOLOv8s back-200

bone network with GhostConv to reduce model size and improve accuracy. GhostConv in the YOLOv8s201

backbone network to reduce the model size while improving accuracy. Introducing Focal CIoU reduces202

the loss value and accelerates the model convergence. Finally, removing the large target detection head in203

the network further reduces the size of the model without affecting the accuracy of the model, making204

it more suitable for the recognition of wheat FHB and later deployment. To analyze and validate the205

improved lightweight network model, eight groups of ablation experiment are designed, and the specific206

experiment results are shown in Table 1:

Table 1. Ablation experiment results

Test C- Ghost Focal detection parameters computation model size mAP@0.5 mAP@0.5:0.95

number FasterNet Conv CIoU head /×106M /GFLOPs /MB /% /%

1 × × × × 11.1 28.4 22.5 99.489 92.515

2 ✓ × × × 10.1 25.8 20.5 99.486 92.115

3 × ✓ × × 10.4 26.6 21.0 99.500 92.722

4 × × ✓ × 11.1 28.4 22.5 99.491 92.526

5 × × × ✓ 7.5 25.5 15.2 99.492 92.079

6 ✓ ✓ ✓ × 9.4 24.1 18.1 99.495 92.931

7 ✓ × ✓ ✓ 6.5 22.9 13.2 99.488 92.210

8 ✓ ✓ ✓ ✓ 5.7 21.1 11.7 99.492 92.784

207

According to the ablation experiment in Table 1, it can be observed that using the C-FasterNet208

module to replace the C2f module in the model backbone network reduces the number of parameters209

and computation amount of the model, and also diminishes the size of the weights generated by the210

model, while basically keeping the mAP unchanged and slightly lowering the recall rate. The reason for211

this analysis is that the C-FasterNet module utilizes the FasterNet module, which reduces the number212

of memory accesses and the model’s computational redundancy, and has higher FLOPS. This results in213

a reduction of the number of parameters in the model, improvement in model computation speed, and214

ensures the network is lightweight while maintaining high recognition accuracy. Additionally, from the215

ablation experiment, it can be observed that after replacing GhostConv, the number of parameters in the216

model and the computation amount are further reduced, and the model precision is slightly improved. The217

analyzed reason is that GhostConv can generate more feature maps from cheap operations. Based on a218

set of intrinsic feature maps, a series of linear transformations are applied at low cost to generate many219
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reshaped feature maps, fully revealing the information of intrinsic features. With the introduction of Focal220

CIoU, the number of parameters and the amount of computation in the model did not change, and the221

mAP values remained essentially unchanged. Finally, the large target detection head in the network is222

removed to further reduce the number of model parameters and the weight size. Figure 7 shows the graph223

of the loss value changes of the model during the training process, indicating that the Focal CIoU loss224

function can achieve smaller loss values than CIoU, and the model convergence is faster. Combining the225

ablation experiment, the YOLOv8s-CGF model proposed in this study ensures high precision in wheat226

FHB identification and achieves the goal of lightweight.227

Figure 7. Loss in training.

2.2 Comparative analysis of different models228

To assess the performance of the improved lightweight network model with other algorithmic models229

and explore the superiority of the improved algorithms in this study, other target detection algorithms230

from the YOLO series, such as YOLOv5s, YOLOv6s, and YOLOv7-tiny, are selected for the comparative231

experiment. The variation of the mAP@0.5 curve for each model on the training dataset is depicted in232

Figure 8.233

Figure 8. Each model mAP@0.5 curve.
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As shown in the figure, mAP improves rapidly in the early stages of training. The model exhibits234

fluctuations between 10 and 60 epochs, but the overall trend is upward. After 80 epochs, mAP converges235

and stabilizes, with YOLOv8s-CGF achieving the highest mAP. The performance comparisons for each236

model are presented in Table 2.237

Table 2. Compare experiment results with different models

model name parameters/×106M computation/GFLOPs model size/MB precision recall mAP@0.5 mAP@0.5:0.95

YOLOv5s 7.0 15.8 14.4 0.992 0.985 0.994 0.841

YOLOv6s 16.3 44.0 32.8 0.978 0.98 0.993 0.875

YOLOv7-Tiny 6.0 13.2 12.3 0.995 0.927 0.977 0.708

YOLOv8s 11.1 28.4 22.5 0.994 0.997 0.995 0.925

YOLOv8s-CGF 5.7 21.1 11.7 0.996 0.996 0.995 0.928

According to the experimental results in Table 2, it can be seen that the YOLOv7-tiny model has the238

lowest mAP. This is attributed to the YOLOv7-tiny model having fewer parameters and less computation,239

which hinders achieve higher detection precision. The YOLOv6s model has the highest number of240

parameters, largest computation and model weight, which doesn’t meet the requirement for lightweight.241

While the YOLOv5s model achieves good precision with fewer parameters and computation, its precision,242

recall and mAP are slightly lower compared to the YOLOv8s model. The YOLOv8s-CGF model proposed243

in this study has the fewest parameters, generates the smallest weight file, and attains the highest precision,244

recall, and mAP. It achieves superior recognition precision while remaining lightweight, and its detection245

speed is higher, meeting real-time detection requirements. The recognition results of different models on246

wheat FHB are shown in Figure 9.247

Figure 9. Prediction results for different models

2.3 Statistical analysis248

To analyze whether the performance improvement of the modified model is significantly enhanced249

from a statistical perspective, 10 experiments were conducted for both the pre-improvement and post-250

improvement models using different random seeds. Paired samples t-test were employed to analyze six251

performance metrics, and the results are presented in Table 3.252

Table 3. Statistical test

model name parameters computation model size precision recall mAP@0.5:0.95

T - - - -3.122 1.309 -3.444

P 0.000 0.000 0.000 0.012 0.222 0.007

From the table, it is evident that there is a significant difference among groups in terms of the precision253

metric (P <0.05). Therefore, it is considered that the improvement method has a significant impact on254
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precision (i.e., significantly improving the model’s precision). On the recall metric, there is no significant255

difference among groups (P >0.05), indicating that the improvement method has no significant impact256

on recall (i.e., cannot significantly improve the model’s recall). Regarding the mAP@0.5:0.95 metric,257

there is a significant difference among groups (P <0.05), suggesting that the improvement method has a258

significant impact on mAP@0.5:0.95 (i.e., significantly improving the model’s mAP@0.5:0.95). Due259

to the fixed parameters, computation, and model size before and after the model improvement, and the260

significant reduction in parameters, computation, and model size after the improvement, it is considered261

that the improved model exhibits significance in these three metrics compared to the original model.262

In summary, the improved model shows significant differences in all five metrics, indicating that the263

proposed improvement method in this study significantly enhances model performance.264

3 DISCUSSION265

At present, machine learning-based methods have been applied to the field of agricultural disease recog-266

nition (Basavaiah and Arlene Anthony, 2020; Chemchem et al., 2019; Kayad et al., 2019). Although267

relatively good results have been achieved, the recognition processes are cumbersome. With the develop-268

ment of artificial intelligence, researchers have gradually turned to deep convolutional neural networks269

for the classification and recognition of crop diseases, and have achieved better results than traditional270

machine learning algorithms in crop identification (Liu et al., 2020; Zhang et al., 2022a), weed identi-271

fication (Gallo et al., 2023; Tripathi et al., 2022), and pest identification (Yang et al., 2023b; Talukder272

et al., 2023). In recent years, an increasing number of scholars have focused on developing lightweight273

models by reducing parameters, computation, and model size, aiming for convenient deployment on274

mobile terminals. Cong et al. (2023) introduced a lightweight mushroom detection model, MYOLO,275

exhibiting a 2.04% increase in mAP and a 2.08-fold reduction in the number of parameters. This model276

lays a crucial theoretical foundation for the automated harvesting of fresh shiitake mushrooms. Fang277

et al. (2023) devised a lightweight multi-scale Convolutional Neural Networks (CNN) model, integrating278

the residual module and the inception module to recognize six wheat diseases, achieving an impressive279

98.7% accuracy on the test dataset. Furthermore, Jia et al. (2023) enhanced the YOLOv7 algorithm for280

identifying rice pests and diseases. Utilizing the lightweight network MobileNetV3 as the backbone,281

this approach reduced the number of model parameters and combined attention mechanisms (CA) with282

the Scylla Intersection over Union (SIoU) loss function to enhance accuracy, resulting in a remarkable283

mAP@0.5 of 93.7% for the lightweight model.284

In recent years, techniques utilizing hyperspectral and multispectral imaging have shown promise in285

wheat FHB detection in the field (Mustafa et al., 2022). Gao et al. (2023) proposed a UAV multispectral286

method that combines Vegetation Indices (VIs), Texture Indices (TIs), and an XGBoost model for FHB287

monitoring. The results demonstrated an accuracy of 93.63% on the test set. Ma et al. (2021) employed288

a wheat FHB detection model based on spectral feature combination, revealing that the combination289

of spectral bands, vegetation indices, and wavelet features performed exceptionally well in wheat FHB290

detection. However, these techniques involve complex steps and expensive instruments (Bernardes et al.,291

2022). In contrast, deep learning models offer promising applications in crop disease detection, allowing292

high-precision detection with low complexity by training on ordinary RGB images. Hence, this study293

proposes a target detection model for wheat FHB based on an improved YOLOv8s. This model not only294

features the fewest parameters and computations, resulting in the smallest model size, but also excels295

in recognizing wheat FHB. It achieves the highest mAP without issues such as detection gaps or leaks,296

ensuring complete coverage of wheat FHB within the detection frame. The model is designed for future297

deployment on mobile devices or embedding in UAVs for wheat FHB disease monitoring, enhancing the298

model’s applicability in real-world scenarios.299

Although the model performs well in recognizing wheat FHB, it currently can’t classify disease300

severity and be applied to all wheat field. In future work, diseased wheat ear images of more varieties and301

growth stages will be added to enrich the dataset and enhance the generalization ability of the model. In302

addition, counting the number of diseased wheat ears and calculating the disease ear rate will be used to303

grade the disease severity, it will be beneficial for farmers to carry out scientific prevention and appropriate304

treatment strategies. Furthermore, improving the different models to make them more lightweight and305

practical for deployment in real field environment.306
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4 CONCLUSIONS307

In this study, we improve the YOLOv8s model with lightweight by first replacing the C2f module in the308

YOLOv8s backbone network with the C-FasterNet module, secondly replacing the Conv in the backbone309

network with GhostConv, then adding the Focal CIoU to speed up the model convergence, and finally310

removing the large-target detection header in the model. This reduces the number of model parameters311

and computations while decreasing the model size and increasing the precision of the detection. The size312

of the improved lightweight model is only 52% of the original model; the number of parameters is only313

51.4% of the original model; the computational volume is only 74.3% of the original model, and the314

precision of the model is improved by 0.2% compared with the original model, while the mAP@0.5:0.95315

is improved by 0.269%. It shows that the improved model has high recognition accuracy while being316

lightweight, can accurately recognize overlapped and obscured wheat ears, and operates at a faster speed317

to meet the demand for real-time detection. This validates the feasibility of the improved lightweight318

model for wheat FHB in this study and provides a reference for the deployment of the model on mobile319

terminals in the next step.320
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