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ABSTRACT
Background: Maintaining machines effectively continues to be a challenge for
industrial organisations, which frequently employ reactive or premeditated methods.
Recent research has begun to shift its attention towards the application of Predictive
Maintenance (PdM) and Digital Twins (DT) principles in order to improve
maintenance processes. PdM technologies have the capacity to significantly improve
profitability, safety, and sustainability in various industries. Significantly, precise
equipment estimation, enabled by robust supervised learning techniques, is critical to
the efficacy of PdM in conjunction with DT development. This study underscores the
application of PdM and DT, exploring its transformative potential across domains
demanding real-time monitoring. Specifically, it delves into emerging fields in
healthcare, utilities (smart water management), and agriculture (smart farm),
aligning with the latest research frontiers in these areas.
Methodology: Employing the Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques
shaping asset lifetime evaluation within the PdM context from 34 scholarly articles.
Results: The study revealed four important findings: various PdM and DT modelling
techniques, their diverse approaches, predictive outcomes, and implementation of
maintenance management. These findings align with the ongoing exploration of
emerging applications in healthcare, utilities (smart water management), and
agriculture (smart farm). In addition, it sheds light on the critical functions of PdM
and DT, emphasising their extraordinary ability to drive revolutionary change in
dynamic industrial challenges. The results highlight these methodologies’ flexibility
and application across many industries, providing vital insights into their potential to
revolutionise asset management and maintenance practice for real-time monitoring.
Conclusions: Therefore, this systematic review provides a current and essential
resource for academics, practitioners, and policymakers to refine PdM strategies and
expand the applicability of DT in diverse industrial sectors.
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INTRODUCTION
The dependency of modern industry on machine tools that are becoming increasingly
complicated presents a challenge for those in charge of maintenance planning (Aivaliotis,
Georgoulias & Chryssolouris, 2019; Zhang et al., 2022). Initial research conducted by Xiong
et al. (2021) and You et al. (2022) discovered that equipment failures during operation may
be unpredictable and may result in a decrease in production efficiency. Under the direst of
circumstances, the machinery will be rendered inoperable, resulting in the destruction of
machinery and the loss of human life (van Dinter, Tekinerdogan & Catal, 2022; Zhai &
Qiao, 2020). If the rapid intervention is not performed, the machine may encounter
unforeseen failures that result in low precision, production downtime, or even catastrophic
loss (Centomo, Dall’Ora & Fummi, 2020; Luo et al., 2020; Mubarak et al., 2022). In the
event that the concerns are not promptly remedied, there is an increased likelihood of the
occurrence of catastrophic events.

Over the years, modern machine tools have become increasingly complex, making it
difficult to anticipate when failures may occur. Using advanced analytics and sensor data,
PdM is implemented to monitor the machinery’s health in real-time. This enables
maintenance teams to detect potential problems early and resolve them prior to their
escalation into catastrophic failures. As opposed to responding to problems reactively or
doing significant periodic preventive maintenance, current PdM trends encourage
proactive maintenance (Hosamo et al., 2022; Nunes et al., 2023; Ong et al., 2022; Werner,
Zimmermann & Lentes, 2019; Xiong et al., 2021). The equipment maintenance pattern has
evolved due to the optimised selection of passive generation to active methods.
Simultaneously, it exhibits superior performance compared to traditional maintenance
approaches. Maintenance tasks that offer no value are diminished. The prolonged
operational lifetime and enhanced production efficiency may be attributed to the
heightened reliability and stability of the equipment.

This data-driven approach has enabled the foundation of continuous improvement
through data. In addition, the Industry 4.0 revolution trends aspire to widespread adoption
of DT. A wide range of industrial sectors have created virtual representations of physical
machines or systems using DT in various applications such as design, production,
manufacturing, and maintenance. Among these, maintenance is one of the applications
that has attracted the most attention from researchers (Errandonea, Beltrán &
Arrizabalaga, 2020). The term “DT” refers to two-way communication between a virtual
platform and a physical asset. This makes it possible to ensure operations while also
monitoring performance in real-time (Altun & Tavli, 2019; Cabeza-Gil et al., 2023; Chung
& Jung, 2023; Haleem et al., 2023; van Dinter, Tekinerdogan & Catal, 2022). The real-time
capability has allowed DT to notify repairs and maintenance by providing a detailed virtual
model of equipment and aiding maintenance teams in optimising maintenance schedules
and procedures, thus reducing the need for unnecessary repairs and maintenance tasks.
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The concept of the digital twins (DT) makes it possible to accurately assess the condition of
the equipment. For this reason, the DT concept is appearing more frequently in industrial
applications in connection with predictive maintenance (PdM). It is a technique for
forecasting the lifespan of vital components according to inspections or diagnoses.

Due to the recent technological advancements in Artificial Intelligence (AI), including
machine learning (ML) and deep learning (DL), the Internet of Things (IoT), computer
vision, and DT, there are numerous prospects for PdM utilising DT (Avornu et al., 2022;
van Dinter, Tekinerdogan & Catal, 2022). DT can be employed in conjunction with ML
algorithms to improve PdM capabilities. These algorithms can be trained using historical
data collected from sensors and other sources to identify patterns and anomalies in an
asset’s behaviour. Additionally, the algorithms can then be used to predict potential
failures or breakdowns and provide maintenance and repair recommendations. DT can
provide a virtual model of an asset, enabling simulation and testing of various maintenance
scenarios and strategies. Moreover, these simulation results can be used to optimise and
improve ML algorithms, making them more accurate and effective. Furthermore, ML
algorithms can be used in real-time to analyse data from DT, allowing for continuous
monitoring and PdM. This can aid in lowering downtime, increasing asset reliability, and
optimising maintenance schedules and procedures.

This study performs a systematic literature review (SLR) on integrating PdM and DT to
identify and summarise the significant study findings. The authors aim to select relevant
information regarding PdM using DT and discuss the feasibility of transforming other
major fields that require real-time monitoring, such as healthcare, utilities (smart water
management), and agriculture (smart farm). In addition, the authors use inclusion and
exclusion criteria to analyse and filter data, including using a software programme called
VOSviewer to create maps from network data and visualise and examine maps. The
outcome of PdM employing DT is crucial for the DT model, data integration, and
implementation, as it can result in more precise model predictions. In addition, substantial
research on PdM using DT for prediction based on real-time performance monitoring and
equipment operation assurance is still lacking despite the growing interest and use
(Errandonea, Beltrán & Arrizabalaga, 2020; Falekas & Karlis, 2021; van Dinter,
Tekinerdogan & Catal, 2022; You et al., 2022; Zhong et al., 2023).

Significantly, this integration has not thoroughly examined key industries such as
utilities (smart water management), healthcare, and agriculture (smart farm), highlighting
the need for a targeted exploration of these undiscovered areas. The most evident
deficiency in current research is the imbalanced focus on certain technical sectors,
resulting in a lack of comprehension of the possible applications and difficulties in vital
social areas. Utilities (smart water management), which are crucial for maintaining
infrastructure and healthcare, are essential for public well-being and need careful
consideration in integrating PdM and DT. Similarly, the agriculture (smart farm) sector,
which is essential for providing nourishment, has not fully explored the potential of these
technologies to optimise farming processes and machinery.

Utilities (smart water management), being essential components of infrastructure
networks, need reliable and continuous functioning systems such as water supply and
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electricity grids. Integrating PdM and DT may avoid downtime, maintaining the
dependability and efficiency of these crucial systems. Similarly, in the healthcare field,
where the utmost importance is placed on dependability for the well-being of patients,
incorporating PdM and DT technologies can completely transform maintenance
procedures, ensuring continuous and uninterrupted healthcare services. Meanwhile, the
agriculture (smart farm) sector, which is often disregarded in terms of technical progress,
offers unexplored possibilities. The agricultural industry has the potential to significantly
increase production while reducing resource waste, in line with the principles of
sustainable agriculture through the implementation of PdM and DT.

However, the lack of comprehensive frameworks for interoperability and
standardisation across several sectors impedes the smooth integration and deployment of
PdM and DT. Furthermore, the use of real-time analytics in extensive industrial
environments presents notable obstacles in terms of processing efficiency and scalability,
which hinder their efficient utilisation. Another factor that is often missed is the
integration of human-centric PdM and DT insights into decision-making procedures. The
ability to convert intricate insights into practical choices is essential for the planning and
implementation of maintenance tasks. The lack of intuitive interfaces and transparent
decision-making processes hinders the realisation of the potential advantages offered by
these technologies.

Therefore, identifying these gaps in research raises important concerns that should be
investigated, providing possibilities to modify discoveries and use insights in numerous
manners. This emphasises the necessity of identifying and delineating new study inquiries
that can drive subsequent inquiry and advancement in the subject. Consequently, these

Table 1 Mapping between identified research gaps and the potential research questions.

Research gaps Research questions

Gaps in application scalability and
real-time analytics

RQ1: How can the use of predictive maintenance (PdM) and digital twins (DT) be expanded to address
large-scale industrial applications while maintaining real-time performance?

RQ2: In what ways can innovative approaches or frameworks be devised to optimise the computational
efficacy of real-time DT simulations, specifically for expansive and intricate industrial settings?

RQ3: How do machine learning (ML) and distributed processing facilitate real-time analytics PdM,
particularly in industries with extensive and geographically dispersed infrastructures?

Strategies for seamless integration that
are insufficient

RQ4:What are the most effective strategies for ensuring the interoperability and standardisation of DT and
PdM solutions across industries and organisations?

RQ5: How can ML algorithms be optimised to handle increasing volumes of data generated by PdM and
DT systems without compromising performance?

RQ6: What are the best practices and strategies for extending PdM and DT applications from traditional
engineering sectors to critical domains such as healthcare, utilities (smart water management), and
agriculture (smart farm)?

Inadequate integration of human-centric
decision-making

RQ7: What collaborative frameworks and methodologies can foster effective communication and
collaboration between PdM and DT systems and human decision-makers in applications such as
healthcare, utilities (smart water management), and agriculture (smart farm)?

RQ8: What strategies can be employed to bridge the gap between data-driven decision-making from PdM
and DT systems and the human understanding of organisational objectives and strategies?
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issues stimulate knowledge exploration and practical application, providing a framework
for future study efforts. The mapping between identified research gaps and the
corresponding potential research questions is presented in Table 1.

These research questions cover various aspects of the incorporation of DT and PdM
technologies and can serve as a catalyst for future research and development in this area.
Identifying PdM with DT can aid in managing equipment maintenance by allowing
problems to be detected before they occur and, ideally, resolved before they become severe.
In addition, the authors discuss the applicability of PdM and DT in emerging disciplines as
technology has evolved. To the best of the authors’ knowledge, none of the included studies
contributed to the topic. Hence, this study aimed to determine the significance of PdM
utilising DT by systematically reviewing prior research.

SURVEY METHODOLOGY
Literature search
The systematic literature search was conducted using the stated standard PRISMA
technique for the evaluation and rigorous analysis of articles in the database search engines
(Page et al., 2021). Additionally, the inclusion and exclusion procedures from the pertinent
recent research were thoroughly followed, as tabulated in Table 2. The analysis of included
studies was identified to meet the goal of a systematic review in the field. Only the most
recent research articles and conferences in the subject area were considered for inclusion to
reduce the possibility of including irrelevant topics. In addition, only publications written
in English were included to aid the analytic process. Review articles are excluded from this
study to enhance the rigour, comprehensiveness, and dependability of the included
research. This exclusion is intended to guarantee that the selected research has undergone
a more stringent degree of review and adheres to conventional standards for quality.

The articles were chosen within the period of 2018 to 2023 to ensure the incorporation
of the most current insights and findings within the field. Given the rapid evolution of this
area, recent studies are pivotal in capturing the latest advancements. Due to the limited
volume of articles available on this specific topic in the selected databases, most selected
articles are in the span commencing from 2019 to November 2023. There is a deliberate
exclusion of articles before 2018 due to the scarcity of literature within these databases
during that time frame.

Resources
The literature for this systematic review of PdM investigations employing DT was
primarily obtained from Web of Science and Scopus. Additionally, the literature search
was extended to six other prominent academic databases, namely IEEE Xplore, Science
Direct, Medline Complete, Emerald, Springer Link, and Dimensions.

Figure 1 illustrates the trend of scholarly publications from 2018 to 2023, obtained from
a comprehensive analysis of eight databases. This trend demonstrates a consistent rise in
the use of developing technologies over consecutive years, as observed by the growing
recognition among researchers. However, it is worth noting that in the year 2023, this
study remains unfinished at the conclusion of the year. Hence, a decline in this data is
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observed. Three prominent disciplines, namely engineering, computer science, and energy,
have had a consistent upward trend in growth. From 2018 to 2023, the total publications
(TP) from eight databases amounted to 24,724 for all PdM research fields using DT. Of
these 24,724 publications, the three fields with the most publications were selected, namely
13,287 publications in engineering, followed by 9,391 publications in computer science
and 809 in energy. Note that the total publications for other fields accounted for 1,237.

Identification
The process of identifying and selecting relevant studies consisted of four major steps.
First, the keywords for each topic area were identified. Thesauruses, encyclopaedias, and
prior investigations were utilised in order to discover suitable key phrases. Second, as
provided in Table 3, in November 2023, search algorithms were developed using the
keywords and characteristics of the eight databases, depending on the title of the articles.
Numerous articles from various sites covering related search terms might be found.
Among the keywords utilised in the choosing process are “equipment”, “machine”,
“maintenance”, “smart maintenance”, “predictive”, “digital twin”, and “virtual model”.

Furthermore, this review emphasises the research publications to evaluate the
methodology, data, and conclusions of the original studies that align with the purpose of
this review. As a result, 278 articles from Scopus and 164 articles fromWeb of Science were
discovered, and 5,242 items were determined in the six additional databases. Science

Figure 1 Trend publications by year from 2018 to 2023.
Full-size DOI: 10.7717/peerj-cs.1943/fig-1

Table 2 The inclusion and exclusion criteria for database searches.

Criterion Eligibility Exclusion

Literature type Journal (research articles) and conference proceeding Journal (review articles), chapter in a book, book, book series

Language English Non-English

Timeline Between 2018 and 2023 <2018

Subject area Related to PdM and DT Other than PdM and DT
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Direct, IEEE Xplore, Emerald, Medline Complete, Dimensions, and Springer Link are the
other six databases. Other methods, such as websites, organisations, and citation searches,
were used to find pertinent studies. For the other methods of this study, the authors use the
website Google Scholar. It is one of the other alternatives as a search engine, in addition to
the eight databases used in this study. A total of 5,699 references, including articles and
reports, were obtained after fifteen references were discovered by utilising similar
keywords.

A software programme called VOSviewer is used to make maps from network data and
to visualise and explore those maps. The VOSviewer produces a cluster, a collection of
items contained within a map, while a network is a collection of items and the connections
among the items in a map. Other than that, different colours denote the collection of items
on a map and are used to distinguish the clusters. The boxes in the maps represent the
object of interest, and the connections between two distinct objects are indicated by the
link in the connection. A line’s width denotes the strength of a link, while a longer length
denotes the availability of more publications online.

The visualisation map exhibits the terms or keywords present in the data file, utilising
the clustering methodologies accessible in VOSviewer. The strategy is founded upon
mapping and clustering, both of which operate on the identical fundamental principle
(Bukar et al., 2023; Waltman, van Eck & Noyons, 2010). By examining the connections
between the keywords in a variety of publications, co-occurrence analysis aims to identify
timely issues and assist scholars in comprehending contemporary scientific concerns (Yin
et al., 2022).

The crucial cluster or strong connection is indicated in red in Fig. 2, which provides an
overview of PdM and DT research’s six distinct association clusters. The colour scheme is
used to identify six distinct clusters: red denotes seven study subjects, green and blue for six

Table 3 Database search strings.

Searching texts/search strings Web of
Science

Scopus IEEE
Xplore

Medline
complete

Emerald Springer
link

Dimensions Science
direct

((“Equipment*” OR “machine*”) AND (“maintenance*” OR
“smart maintenance*”) AND (“predict*”) AND (“digital twin*”
OR “virtual model*”))

188 371 409 736 2,000 None 83 None

Equipment AND maintenance AND predictive AND digital
twin

53 106 107 864 247 7,907 111 4,336

Machine AND smart maintenance AND predictive AND virtual
model

10 8 28 1,269 649 13,917 14 7,713

Equipment AND smart maintenance AND predictive AND
virtual model

5 5 11 1,023 498 11,889 8 6,326

Machine AND maintenance AND predictive AND digital twin 120 200 187 963 295 8,803 200 4,923

Predictive maintenance AND digital twin 302 511 397 1,543 287 10,079 521 7,249

Total number of duplicates 490 830 730 5,662 1,976 52,595 854 30,547

Subtotals containing duplicates 93,684

Total selected articles 34

Abd Wahab et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1943 7/50

http://dx.doi.org/10.7717/peerj-cs.1943
https://peerj.com/computer-science/


topics, purple and yellow for five topics, and light blue for the smallest cluster, which has
four themes. The primary subjects covered by the largest cluster in Fig. 2 include data
analytics, Industry 4.0, maintenance, decision support, etc. Thus, these phrases will be used
as keywords in this study’s investigation of these crucial subjects.

In Fig. 3 for the DT study, Cluster 1 in red consists of three items: data analytics,
Industry 4.0, and manufacturing. Meanwhile, Cluster 2 in the purple colour indicates one
item of ML. The following group of clusters, namely Cluster 3 in the colour yellow, with
four different items, comprises decision-making, facility management, the Internet of
Things, and artificial intelligence. Cluster 4 in light blue represents three items: real-time
control, smart maintenance, and an information system. Cluster 5 in blue stands for five
items: predictive maintenance, deep learning, anomaly detection, data-driven systems, and
neural networks. Finally, Cluster 6 in green stands for two items: real-time fault diagnosis
and remaining useful life.

The two items in Cluster 1 (highlighted in red) of Fig. 4 for the PdM study are
manufacturing and Industry 4.0. Consequently, two items are indicated by Cluster 2,
which is coloured purple: data mining and machine learning. Artificial intelligence, facility
management, the Internet of Things, and decision-making are the four items in Cluster 3,
which is coloured yellow. The single point represented by Cluster 4 in the colour light blue

Figure 2 A general overview of PdM using DT and their relationship and connection to each other.
Full-size DOI: 10.7717/peerj-cs.1943/fig-2

Abd Wahab et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1943 8/50

http://dx.doi.org/10.7717/peerj-cs.1943/fig-2
http://dx.doi.org/10.7717/peerj-cs.1943
https://peerj.com/computer-science/


is the digital twin. On the other hand, six items depicted by Cluster 5 in blue are neural
networks, data-driven, outlier detection, anomaly detection, and deep learning. Lastly, the
four items represented by Cluster 6 in green are fault diagnosis, remaining useful life,
LSTM, and k-means.

These results indicate a lot of information mapped under the PdM and DT. All these
important details on a wide range of subjects available for thorough comprehension will be
covered in more detail in the results section.

Screening
Among 5,699 references, 5,684 were obtained using databases and registries, while 15 were
discovered using databases and other methods (see Fig. 5). Duplicate references and
unrelated topics were separated from the obtained references. The databases contained 387
duplicate articles, and the other approaches yielded ten referrals. After deleting redundant
references, 5,297 articles for the databases and five for the other approaches remained.
Duplicate references were eliminated, and the remaining references were then carefully
inspected by observing the title, keywords, and abstract.

Some criteria were also considered in other ways. First, the title and keywords included
the general terms PdM, DT, and equipment. Second, a reference to the quantitative
method for evaluating PdM performance using DT. From the 5,297 articles in the
databases, 5,249 were removed due to inappropriate content to the themes, leaving 48

Figure 3 The connection between DT and key regions in different clusters. Full-size DOI: 10.7717/peerj-cs.1943/fig-3
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articles pertinent to the study. However, 16 of these 48 articles were eliminated due to
inaccessible full-text articles in databases, and three of five were excluded using other
methods. As a result, only 32 articles from databases and two reports on other approaches
were discovered and chosen for the next phase.

Eligibility
The whole text of the publications was reviewed in this step to ensure that the 32 research
articles and two reports were synthesised and analysed. The articles’ essential material was
thoroughly evaluated to meet the inclusion and exclusion criteria. The study’s goal,
methods, and research conclusions were all thoroughly assessed. As a result, no database
articles or descriptions of other methodologies were included in these investigations. A
hand search resulted in the inclusion of two additional pertinent articles. Consequently, 34
additional publications were included in this analysis.

Quality evaluation and data extraction

To ensure the publications’ suitability for research, the authors conducted a quality
assessment of the ones they had chosen. The remaining articles were assessed using the
qualitative analysis method. The research purpose, research technique, contribution, and
article highlights were among the criteria used to evaluate the publications. The authors
also used the information they excluded from the publications for additional synthesis and

Figure 4 The connection between PdM and key regions in different clusters. Full-size DOI: 10.7717/peerj-cs.1943/fig-4

Abd Wahab et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1943 10/50

http://dx.doi.org/10.7717/peerj-cs.1943/fig-4
http://dx.doi.org/10.7717/peerj-cs.1943
https://peerj.com/computer-science/


analysis. An organised table was created to compile the retrieved data. The authors then
went over all the synthesised data. The synthesised data were divided into categories using
thematic analysis (Braun & Clarke, 2006; Guest, Namey & Chen, 2020; Nowell et al., 2017).
The authors extensively explored the classification of the input properties. The authors
reached a consensus on any differences or contradictions prior to reaching an agreement.

RESULTS
Background of the selected studies
The majority of the articles included in this analysis (nine) originated from China, as
shown in Fig. 6. In addition, three studies were conducted in India, and one reported study
was conducted in Malaysia and Singapore, bringing the total number of studies conducted
in Asia to 14. Sixteen additional studies were conducted in Europe, including three in
Norway and four in Greece and Italy. Meanwhile, two studies were conducted in the
United Kingdom and Germany, as well as one in France. Two studies were conducted in
North America, including Canada and the United States. One study was conducted in
Australia, and one was conducted in Turkey.

In terms of the sectors of the selected articles, the PdM and DT integration was
spearheaded and majorly involved in mechanical engineering (manufacturing) industries.

Figure 5 The study’s PRISMA flowchart. Full-size DOI: 10.7717/peerj-cs.1943/fig-5
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It was recorded that 18 studies dealing with this industry sector. Secondly, three studies in
civil engineering and architecture involve building systems. Meanwhile, there are two
studies for industries related to the railway, aerospace engineering, automotive
engineering, and mechanical engineering (hydraulic system). This is followed by other
industries, namely mechanical engineering, electronic engineering (IT-architecture),
electronic engineering (social internet), electrical engineering, and marine engineering,
with a specialisation in renewable energy sources.

A summary of the existing literature and the research gap on PdM with DT is presented
in Table 4. By referring to the summary, the authors and year, field of interest, technique,
and research strategies for PdM using DT are provided for each article. In addition, the
outcomes and research gaps/future work to improve future research studies are
mentioned.

In 2019, there were six articles released, and in 2020, five studies came out, five studies
were published in 2021, nine articles were published in 2022, and nine studies were
published in 2023.

Figure 7 demonstrates the extensive adoption of PdM using DT across various
industries. Successful implementations were evident in seven of the ten sectors:
automotive, civil and architectural, aerospace, mechanical, marine, railway, electric and
electronic engineering. However, notably absent from current implementations are three
pivotal industries: healthcare, utilities (smart water management), and agriculture (smart
farm).

Figure 6 Countries and industries involved in the studies. Full-size DOI: 10.7717/peerj-cs.1943/fig-6
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Table 4 Existing literature and research gap on PdM using DT.

Authors, year and
field

Field of interests Technique
of PdM
using DT

Predictive outcome of
PdM using DT

Maintenance management
methods & strategies

Outcome Research gap/Future work
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Liu et al. (2019)
Mechanical
engineering
(Manufacturing)

Fault prediction and
maintenance
method
(Mechanical
equipment)

✓ ✓ Results show that when convergence rates are
comparable, this method’s model prediction
error is lower than the conventional
methods.

Enhancing the three-layer super network’s
data model in accordance with DT’s deep
data qualities and creating algorithms that
are more suited to the model’s operation.

Aivaliotis,
Georgoulias &
Chryssolouris
(2019)
Mechanical
engineering
(Manufacturing)

Robots ✓ ✓ ✓ Before performing a job, the user is able to
determine how it will influence the
machine’s status.

Include the suggested approach in a larger
DT using the PdM framework, whose
major objective will be to evaluate the
condition of the machinery and schedule
maintenance procedures.

Werner,
Zimmermann &
Lentes (2019)
Mechanical
engineering
(Manufacturing)

Integrated PdM
approach with DT
(Mechanical
equipment)

✓ ✓ ✓ ✓ To enhance the estimation of RUL, the DT
could produce outcomes for retrofitting
data-driven models for prediction.

Future work must incorporate data
modelling and physics-based simulation
processes. It is necessary to check and
verify the presented data transfer
interfaces and mathematical models with
real-world instances.

Rajesh et al. (2019)
Automotive
engineering

System of brake pads
for automobiles

✓ ✓ ✓ With an average inaccuracy of 11%, the results
reveal a good connection between the
simulation and computed values.

The creation of an entire DT of the vehicle
with the assistance of more sensors and
subsystems will be the main goal of future
work.

Aivaliotis et al.
(2019)
Mechanical
Engineering
(Manufacturing)

Robots ✓ ✓ The model was simulated, and the results of
the simulation signals were compared to
those measured by the actual robot. Multiple
iterations of the simulated comparing
refining process were conducted up until the
intended outcome was attained.

Future work will involve replicating the
process for another type of equipment and
validating it in an operational plant.
Furthermore, the accuracy of the
developed models will be enhanced in
order to remove discrepancies between
the actual data and the projected
performance.

(Continued)
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Table 4 (continued)
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Altun & Tavli
(2019)
Electronic
Engineering
(Social Internet)

PdM application to
commercial devices
via distributed
thing-to-thing
communication.

✓ ✓ ✓ A new model of reference that applies PdM to
socially communicating domestic appliance
DTs. Examines how PdM is applied using
the original model.

Not specified in the research study.

Luo et al. (2020)
Mechanical
Engineering
(Manufacturing)

CNC Machine Tool
(CNCMT) driven

✓ ✓ ✓ ✓ In comparison to a single strategy method, a
hybrid PdM approach enables a better DT
model and data integration and application,
which can lead to more accurate results.

Model migration learning based on DT, as
well as Cloud and Edge-based DT model
implementations.

Mi et al. (2020)
Mechanical
Engineering
(Manufacturing)

Bearings for vertical
mill

✓ ✓ To demonstrate the potential and superiority
of the proposed technique, an actual
technical scenario is examined.

Future studies will provide practical
technical assistance in this area.

Heim et al. (2020)
Aerospace
engineering

Aeroplane
maintenance parts

✓ ✓ ✓ The preliminary findings revealed that, despite
the addition of the extra qualitative
parameters of the level of procedure and
kind of situation. The precision for this
method was 88% on average for all parts
tested.

To provide a more complete and in-depth
look into the stresses in particular regions
of the aircraft, future work will involve the
propagation of cracks in the aircraft
frame.

Rossini et al. (2020)
Mechanical
engineering
(Manufacturing)

An adaptable and
scalable structure
for smart DT
implementation
(Mechanical
equipment)

✓ ✓ ✓ When compared to additional traditional
ways, utilising a DT for PdM can produce
superior outcomes.

The PdM module includes an optimisation
module for scheduling predicted
maintenance tasks according to current
planning and a prediction module for
future failures of components.

Centomo, Dall’Ora
& Fummi (2020)
Mechanical
engineering
(Manufacturing)

Approach for the
automation of
electronic
development
(Mechanical
equipment)

✓ ✓ ✓ The total number of recipes increases in
proportion to a given number of Predictive
Maintenance Supervisor (PMS) states.
Furthermore, implementing the PMS and
thresholds takes a shorter time and has a low
complexity with just one Monitoring State
Machine (MSM).

In upcoming work, the author will assist in
developing new standards.
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Das et al. (2021)
Automotive
Engineering

Li-ion battery packs
for a fleet of vehicles

✓ ✓ ✓ The outcomes establish the State of Health
(SOH) prediction system, the anomaly
detection system, and the efficacy of the
suggested model, which NASA has
examined.

The framework can be expanded to enable
various use cases for different
stakeholders, including Original
Equipment Manufacturers (OEM), service
providers, and vehicle operators.

Xiong et al. (2021)
Aerospace
engineering

Aero-engine ✓ ✓ ✓ ✓ According to the results of the experiment, the
data set used to train the model is 80 percent
comprehensive, the model’s predictions are
highly accurate, and Aeroengine RUL’s
estimated Root Mean Square Error (RMSE)
is 13.12, which is lower than that of other
experimental systems.

Long Short-Term Memory (LSTM) is a
supervised learning technique. To
improve the PdM of civil aviation
operations safety, efficient semi-
supervised and unsupervised learning
techniques for fault diagnosis and RUL
prediction must be investigated and
embedded in the DT model.

Moghadam, de
Rebouças &
Nejad (2021)
Marine
engineering

Floating offshore
wind turbine
drivetrains’
gearboxes

✓ ✓ ✓ The calculated contact loads and stresses were
in good agreement, and the method based
on a linear torsion model may be used with
fully automatic turbine control and is
computationally quick.

The algorithm was simulated using
Hardware-In-the-Loop (HIL) to see if it
could be executed in real-time for failure
prediction, handle the aforementioned
practicality issues, and be integrated into a
working wind turbine drivetrain system.

Pillai, Shih &
Roberts (2021)
Railway
engineering

Switch and crossing
(S&C) rails

✓ ✓ The outcomes for predicting regions prone to
surface damage.

The mechanical behaviour of the rail’s
substrate can be predicted using a FE
model.

Yang et al. (2021)
Railway
engineering

Switch machines ✓ Maintenance staff can create a suitable
maintenance schedule by combining the
switch machine’s visual model and the
findings of condition prediction.

The DT model can be supplied data from
numerous sources of switch machines.
The DT using the PdM framework is
applicable to PM for switch machines as
well as other pieces of equipment.

Hosamo et al.
(2022)
Civil engineering
& Architecture

Air handling unit
(AHU) (Systems
used in building)

✓ ✓ ✓ The findings demonstrate the effectiveness
and utility of the automatic fault detection
approach in AHUs.

A cutting-edge data model that establishes a
standardised data integration solution for
a variety of sensor types and application
platforms using an ontology-based
methodology.

(Continued)
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Wang et al. (2022)
Mechanical
engineering
(Hydraulic
System)

Hydraulic system
(Hydraulic
Equipment)

✓ ✓ ✓ The experimental findings show that, in the
absence of sufficient prior defect data, the
diagnostic accuracy of ten common
hydraulic cylinder faults can approach 89%,
which represents a 9% improvement over a
non-interactive simulation model.

Given the lack of feature data in actual
applications, the DT technique’s ability to
foresee fault characteristics and swiftly
update models will have significant
application value in the future.

Bondoc, Tayefeh &
Barari (2022)
Mechanical
engineering
(Manufacturing)

The vibration of a
structural asset/
machine
(Mechanical
equipment)

✓ ✓ HF digital model with a precursive sensor
network for health monitoring. Accuracy in
this learning phase depends on the
presumptions held.

Reduce the effects of obvious assumptions,
like picturing a fluid tank. The system’s
intrinsic frequencies will be impacted by
the tank’s enhanced pre-stress and mass
effects.

Yakhni et al. (2022)
Mechanical
Engineering
(Ventilation
System)

Condition
monitoring of
ventilation systems
(Mechanical
equipment)

✓ Experimental and simulated findings show the
effectiveness of this created method.

The method that has been developed can be
applied to many industrial systems and
issues. Processing current signals can be
done using a variety of techniques.

Avornu et al. (2022)
Mechanical
Engineering
(Manufacturing)

Data fusion approach
for PdM and DT
(Mechanical
equipment)

✓ ✓ ✓ ✓ Support Vector Machine (SVM) is the
algorithm that performs the best in the
presented study.

To make additional space for future
research, the dataset was trained using a
variety of machine-learning algorithms.

Mubarak et al.
(2022)
Mechanical
Engineering
(Manufacturing)

Open system design
enabling condition-
based maintenance
(Mechanical
equipment)

✓ ✓ ✓ ✓ ✓ ✓ It is anticipated that the suggested approach
will make maintenance more affordable and
enhance both the predictive process’s
intelligence and the precision of the
predicted outcomes.

Not specified in the research study.

Panagou et al.
(2022b)
Mechanical
Engineering
(Manufacturing)

Rolling mill ✓ ✓ ✓ The outcomes demonstrate that the two
sensors may predict real-world favorable
circumstances. In order to raise confidence
and dependability ratings, two of these
sensors are also employed in DT scenarios
and real-time conditions.

Not specified in the research study.

Zhang et al. (2022)
Mechanical
engineering
(Hydraulic
System)

Hydraulic System for
Shearers

✓ There are other benefits from using a Back
Propagation Neural Network (BPNN)
dependent on a grey rough, including
smoother fitting and a smaller variation in
the prediction outcomes.

Not specified in the research study.
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Panagou et al.
(2022a)
Mechanical
engineering
(Manufacturing)

Rolling mill ✓ ✓ ✓ ✓ With one false positive in the confusion
matrix, the training’s final accuracy was
0.99. After the feature significance was
filtered, two sensors had values greater than
0.05.

Not specified in the research study.

Aivaliotis et al.
(2023)
Mechanical
engineering
(Manufacturing)

Robots ✓ ✓ ✓ The results of this study indicate that a DT can
be designed, built, and operated with 95%
accuracy.

This includes replication for a different
machine type, like a CNC milling
machine, validation in several industry
sectors, and validation of the approach at
a production facility.

Singh et al. (2023)
Electric
engineering

Induction motors ✓ ✓ ✓ ✓ ✓ It can be inferred that the models exhibit
coherence on the two software platforms,
indicating that they remain acceptable with
the exchange of data even with the platform
transition.

A workable remedy for the appearance of
both short- and long-term conditions is
developed by the proposed research.

Hu et al. (2023a)
Civil engineering
& Architecture

Indoor climate ✓ ✓ ✓ ✓ The algorithm achieves its best performance
with a warning time of 30 minutes
(Precision = 0.96, Accuracy = 0.87, F1 score
= 0.86, and Recall = 0.77).

To increase the prediction model’s precision
and dependability, future studies should
employ devices in various interior
building locations and take other
pertinent factors into consideration.

Hosamo et al.
(2023)
Civil engineering
& Architecture

Building information
modeling (BIM)
and HVAC System

✓ ✓ ✓ ✓ For the forecast, the optimal approach was
Extreme Gradient Boosting (XGB). XGB
exhibits an accuracy advantage of up to 5%
over the other models and an average of
2.5% over Multi-Layer Perceptron (MLP).
Compared to XGBoost, Random Forest is
about 96% quicker and easier to use.

Prospective research avenues encompass
investigating alternative machine learning
techniques, integrating additional
variables to the probability model of
comfort for users, and broadening the
framework’s use.

Feng et al. (2023)
Mechanical
engineering
(Manufacturing)

Offshore production
system for oil and
gas

✓ In a reasonable amount of time, traditional
variable neighborhood search (VNS) can
produce decent solutions, but as the data
scale grows, the difference from the optimal
result rises progressively.

In order to more precisely simulate the real
mechanisms of communication across
numerous organisations, future research
can try to develop a more comprehensive
PdM decision-making model based on
DT.

(Continued)
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Mourtzis, Tsoubou
& Angelopoulos
(2023)
Mechanical
engineering
(Manufacturing)

Robots ✓ ✓ ✓ ✓ The evaluated ML model predicts “urgent”
data with a 100% accuracy rate, while
“good” and “alert” data are predicted
accurately 96% and 96.4% of the time,
respectively.

The authors envisage a variety of robot
configurations for the purpose of future
studies, including hybrid cells that feature
human operators coexisting within the
cell and collaborating with robotic arms.

Siddiqui,
Kahandawa &
Hewawasam
(2023)
Mechanical
engineering
(Manufacturing)

Automation systems
(Mechanical
equipment)

✓ ✓ ✓ The outcomes showed the DT created in this
study could successfully identify anomalies
in the automated system since the trained
model functioned incredibly well.

Not specified in the research study.

Harries et al. (2023)
Mechanical
engineering
(Manufacturing)

RUL of the bicycle
factory’s machinery

✓ ✓ ✓ ✓ ✓ PdM outperformed Time-Based Maintenance
(TBM) on average when it came to
degradation rather than similarities. For
linear profiles, the similarity model
outperformed TBM by 8.1%, while for
exponential profiles, it outperformed TBM
by 4.8%.

Not specified in the research study.

Mrzyk et al. (2023)
Electronic
engineering (IT-
Architecture)

Flexible IT-
architecture

✓ ✓ This evaluation’s result demonstrates that the
DT for PdM can be grouped into
characteristic functioning, which can then
be further subdivided into tool-specific,
standardised, and used particularly to the
case elements.

Building on these findings, future research
might examine how to further minimise
the resources needed to produce DT and
whether these findings can be applied to
additional tool solutions found in the IT
framework.
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The deliberate selection of these industries (healthcare, utilities (smart water
management), and agriculture (smart farm)) derives from their underexplored status in
the field of PdM using DT. Despite their crucial significance, these sectors remain largely
untapped in terms of harnessing the synergies of PdM and DT technologies. The
prioritisation of these sectors is based on both their relevance and their effect. Integrating
PdM and DT in healthcare may bring about a revolutionary improvement in equipment
dependability. This integration ensures that the equipment consistently and optimally
functions, which is crucial for providing high-quality treatment when patient’s well-being
and lives are at risk. Likewise, in the fields of utilities (smart water management) and
agriculture (smart farm), this connection is crucial to reduce periods of inactivity, ensuring
the dependability of systems vital to everyday life.

Main studies outcomes
The results were obtained from the thematic analysis conducted on the selected articles.
Thematic analysis was performed on 34 selected articles and revealed four main themes:
(1) field of interest and types of models; (2) approaches; (3) predictive outcome; and (4)
implementation of maintenance management. The following subsections describe the
background of the selected research.

Figure 7 Types of industries. Photo credit: Nur Haninie Abd Wahab. Full-size DOI: 10.7717/peerj-cs.1943/fig-7
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Field of interest and types of models
The fundamental concept of PdM using DT was applied in various applications such as a
battery for vehicles (Das et al., 2021), CNC machine tool (CNCMT) (Luo et al., 2020),
aero-engine (Xiong et al., 2021), railways (Pillai, Shih & Roberts, 2021; Yang et al., 2021),
hydraulic equipment and system (Wang et al., 2022; Zhang et al., 2022), robots, (Aivaliotis
et al., 2023; Aivaliotis, Georgoulias & Chryssolouris, 2019; Aivaliotis et al., 2019; Mourtzis,
Tsoubou & Angelopoulos, 2023), ventilation systems (Yakhni et al., 2022) and others.
Several types of models can be discovered in the results of previous studies related to the
field of interest. These models include the physical model (PM), the behavioural, the
decision-making, and the hybrid model.

Physical model
A PM is used to simulate physical qualities and loads (van Dinter, Tekinerdogan & Catal,
2022). The PMs are descriptive models. Descriptive models are primarily used for
comprehension, prediction, and communication (Kaul, Bender & Sextro, 2019). According
to Fig. 8, the percentage of PM in previous studies was 41%. The 14 studies involved in PM
are Aivaliotis et al. (2023), Aivaliotis, Georgoulias & Chryssolouris (2019), Aivaliotis et al.
(2019), Altun & Tavli (2019), Avornu et al. (2022), Centomo, Dall’Ora & Fummi (2020),
Heim et al. (2020), Liu et al. (2019),Mubarak et al. (2022), Rajesh et al. (2019), Rossini et al.
(2020), Siddiqui, Kahandawa & Hewawasam (2023), Singh et al. (2023) and Yakhni et al.
(2022). PMs also have drawbacks, such as being time-consuming and expensive to destroy
and restore.

The studies conducted by Aivaliotis et al. (2023), Aivaliotis, Georgoulias & Chryssolouris
(2019), Aivaliotis et al. (2019) focused on forecasting the remaining useful life (RUL) of
machines and methodology to enable dynamic DT and virtual model evolution in
industrial robotics were studied. Yakhni et al. (2022) utilised the DT approach to monitor
ventilation system conditions by incorporating fault prediction and maintenance methods
(Liu et al., 2019).

Notably, this study indicated that eight studies applied ML techniques for PdM through
data-driven modelling across various sectors such as aeroplane maintenance, automobile
brake pads, and induction motors (Altun & Tavli, 2019; Avornu et al., 2022; Heim et al.,
2020;Mubarak et al., 2022; Rajesh et al., 2019; Rossini et al., 2020; Siddiqui, Kahandawa &
Hewawasam, 2023; Singh et al., 2023). Additionally, performance prediction studies have
demonstrated the potential of ML as a useful technique.

Behavioural model
The behavioural model elucidates how external stimuli, such as driving forces or disruptive
influences, impact the physical system (van Dinter, Tekinerdogan & Catal, 2022). These
models serve a dual purpose, serving as descriptive models while enabling a comprehensive
understanding of system component deterioration and their dynamic behaviour,
specifically in reliability modelling. It is based on industry-standard models, such as
Systems Modelling Language (SysML), Matrix laboratory (Matlab)/Simulation and link
(Simulink), Dynamic modelling laboratory (Dymola), and MSC Automated Dynamic
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Analysis of Mechanical Systems (ADAMS), used in model-based development processes
(Kaul, Bender & Sextro, 2019). In the context of behavioural models, as indicated in the
previous studies (Bondoc, Tayefeh & Barari, 2022;Moghadam, de Rebouças & Nejad, 2021;
Mourtzis, Tsoubou & Angelopoulos, 2023; Pillai, Shih & Roberts, 2021), these studies
constitute approximately 12% of the field. However, an inherent limitation of these models
is their reliance on inadequate theory, which occasionally leads to inaccuracies in
behaviour prediction.

Within this field of interest, Mourtzis, Tsoubou & Angelopoulos (2023) elaborated on
ways to identify and categorise the crucial component’s malfunctioning behaviour and for
mechanical equipment vibration of a structural asset/machine (Bondoc, Tayefeh & Barari,
2022). For railway engineering, the field of interest of the behavioural model is switches
and crossings (S&C) (Pillai, Shih & Roberts, 2021). This equipment uses PdM with DT
using a proprietary DT model to improve the prediction accuracy of the results. In
addition, PdM and DT, concerning marine engineering (Moghadam, de Rebouças &
Nejad, 2021), gearboxes for floating offshore wind turbines.

Decision-making model
The decision-making model serves as a framework for the analysis, justification, and
validation of the model, incorporating an algorithm, a defined set of restrictions and
guidelines, and adjustable input. An intelligent data-driven modelling technique is the
decision-making model. Decision-making techniques, such as ML algorithms, lower the
time-to-market of DT while increasing accuracy slightly (van Dinter, Tekinerdogan &
Catal, 2022). Despite its significance, studies employing decision-making models for DT
development are relatively scarce, comprising only 6% (Feng et al., 2023; Mi et al., 2020).
Meanwhile, the field of interest for the decision-making model for mechanical equipment
and bearings for vertical mills was discussed in Mi et al. (2020). Additionally, Feng et al.
(2023) highlighted the utilisation of DT in supporting multi-stage PdM for intelligent
industrial systems, emphasizing its pivotal role in enhancing system reliability and
efficiency.

Figure 8 The field of interest and type of model representation for PdM using DT for each study.
Full-size DOI: 10.7717/peerj-cs.1943/fig-8
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Hybrid model
A hybrid model is another sort of representation. A PM and a data-driven model (DDM),
for example, are two models that this model combines. DDMs can use this data to discover
hidden patterns that can subsequently be used to model a physical asset. According to
Errandonea, Beltrán & Arrizabalaga (2020), DT provides the most accurate
synthetic data when employing a model-based approach. The PdM hybrid technique,
superior to the single-strategy approach at each stage, can produce a more accurate RUL
forecast with fewer errors (Luo et al., 2020). Several model representations of PdM using
DT were developed. In total, 14 studies used such a hybrid model (Das et al., 2021; Harries
et al., 2023; Hosamo et al., 2022, 2023; Hu et al., 2023a; Luo et al., 2020;Mrzyk et al., 2023;
Panagou et al., 2022a, 2022b; Wang et al., 2022; Werner, Zimmermann & Lentes, 2019;
Xiong et al., 2021; Yang et al., 2021; Zhang et al., 2022) with a percentage of 41% from
these studies.

For the field of interest, CNC machine tools (CNCMT) (Luo et al., 2020) and hydraulic
systems for hydraulic equipment (Wang et al., 2022; Zhang et al., 2022) offer a more
practical solution method for integrated hydraulic systems for PdM using DT, made up of
numerous interconnected parts and components. Meanwhile, Hosamo et al. (2022) state
that the heart of a building’s heating, ventilation, and air conditioning (HVAC) systems is
its air handling unit (AHU) system. AHU stability is essential for maintaining high
efficiency and increasing the lifespan of HVAC systems. For railway engineering (Yang
et al., 2021), a separate model DT is used for switch drives to enhance the outcomes’
forecasting accuracy. RUL estimation is used in seven studies for this hybrid model, which
is of interest for various domains, such as flexible IT architectures, indoor climate, and
others (Harries et al., 2023; Hosamo et al., 2023; Hu et al., 2023a; Luo et al., 2020; Mrzyk
et al., 2023; Werner, Zimmermann & Lentes, 2019; Xiong et al., 2021). Other studies
involving PdM and DT are in aerospace engineering, i.e., aircraft aero-engine (Xiong et al.,
2021), marine engineering (Das et al., 2021), rolling mills (Panagou et al., 2022a, 2022b),
and lithium-ion batteries for a fleet of vehicles.

Approaches
Table 4 shows two main approaches that were frequently used: (i) deep learning and (ii)
machine learning.

Deep learning technique
DL algorithms are used to represent DT or for predictive analytics. DL is an important
subset of AI and a subset of ML that demonstrates how machines can mimic humans in
learning certain types of information and accumulating situational awareness (Akhtar
et al., 2023; Brownlee, 2017; Huang et al., 2023; Mehrjardi et al., 2023; Rastall & Green,
2022; Tanveer et al., 2023; Usuga-Cadavid et al., 2022; Velichko et al., 2023; Zhao et al.,
2020a; Zhou et al., 2023). DL techniques such as long short-term memory (LSTM), deep
neural network (DNN), and other DL architectures were used (Neo et al., 2022). DNNs are
formed by stacking these layered networks (Brownlee, 2017). In the review, four studies
focus on DL, such as the LSTM approach (Hu et al., 2023a; Xiong et al., 2021; Yang et al.,
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2021). The issue of a series’ long-term reliance can be resolved with LSTM by analysing the
inputs in time a series (Li, Wang & Li, 2022).

An example of a combined approach can be discovered in the study (Kamat, Sugandhi
& Kumar, 2021). This study uses a combination of RUL, DL, and anomaly detection
approaches. Machine supervisors must determine the RUL of rotating machinery based on
deterioration data. DL models are popular and reliable techniques for predicting the
breakdown of rotating machinery, such as bearings. Notably, RUL is not clearly defined
when the machine is operating normally. This study suggests that anomalies be kept an eye
on throughout RUL estimator training and used to overcome this problem. In addition,
raw bearing vibration data are processed to extract relevant time-domain data, which is
then processed using DL algorithms to look for anomalies. Consequently, this data triggers
data-driven RUL estimation. Unsupervised clustering is utilised for anomaly trend
analysis, and semi-supervised methods are employed for anomaly detection and RUL
estimation. Estimating the equipment’s RUL and detecting anomalies are improved with
DL-based methods (Kamat, Sugandhi & Kumar, 2021; Lin & Tao, 2019; Pang et al., 2021;
Wen et al., 2021). DL algorithms have recently been proposed as a more effective approach
for extracting text features for the classification of texts (Zhong et al., 2020). To
automatically categorise occupational injuries, Zhang (2022) developed a structure-based
DNN with a Word2Vec model. With an F1 score of 72%, the suggested hybrid architecture
demonstrated good predictive power.

Machine learning technique
There are two types of ML, namely supervised and unsupervised learning. Supervised
approaches, which may be used for both classification and regression issues, train a model
based on known input and output data to predict future events. Unsupervised learning is
typically applied to clustering issues and looks for hidden patterns or intrinsic structures in
the input data (Abd-Elrazek et al., 2021). ML techniques such as naive Bayes, random
forest, support vector machine (SVM), decision tree, and regression models are the most
widely used AI approaches (Khairuddin et al., 2022, 2023; Neo et al., 2022), artificial neural
network (ANN), and decision trees (Hosamo et al., 2022) and ML is also used for
Autoregressive Integrated Moving Average (ARIMA) (Yang et al., 2021). From the review,
19 studies use ML approaches for PdM using DT (Altun & Tavli, 2019; Avornu et al., 2022;
Das et al., 2021; Harries et al., 2023; Heim et al., 2020; Hosamo et al., 2022, 2023; Hu et al.,
2023a; Luo et al., 2020; Mourtzis, Tsoubou & Angelopoulos, 2023; Mubarak et al., 2022;
Panagou et al., 2022a, 2022b; Rajesh et al., 2019; Rossini et al., 2020; Siddiqui, Kahandawa
&Hewawasam, 2023; Singh et al., 2023;Wang et al., 2022;Werner, Zimmermann & Lentes,
2019).

According to a preliminary study conducted byWang & Wu (2023), the model extends
the usual ML used in genetic studies to enable the discovery of epistatic effects. In Genome-
Wide Association Studies (GWAS), it is the standard statistical method for estimating
Single Nucleotide Polymorphism (SNP) interactions. With an accuracy of 99.42% for the
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maintenance preventative model and 99.80% for the replacement prioritisation model,
SVM performs better than other algorithms when prioritising medical devices. The
prioritisation mode was created by combining supervised and unsupervised ML
techniques (Zamzam et al., 2021b).

Predictive outcome
The predictive results of PdM using DT are indicated in Table 4. The extracted predictive
outcomes were divided into the following categories: (1) Prognostics and Health
Management (PHM), (2) fault diagnosis, (3) anomaly detection, and (4) RUL estimation.

To employ DT for more effective maintenance, practically all investigations aim to
estimate, foresee, or detect the status of a system, component, or system of systems. As a
result, the expected result is different. These results can be divided into several predictive
outcomes. In 23 studies, an attempt was made to predict PHM (health indicator). Note that
17 studies targeted fault diagnosis, and 12 targeted anomaly detection for PdM using DT.
Subsequently, 17 studies aimed to estimate the RUL. In the following sections, the
predictive outcomes for the predictive algorithm of PdM are described using DT.

Prognostics and health management
According to a preliminary study conducted by Toothman et al. (2023), PHM systems play
a crucial role in diagnosing equipment health and anticipating potential issues. These
systems offer valuable insights into the components likely to fail, expediting early detection
and maintenance. Their efficacy lies in swiftly pinpointing machine parts requiring
immediate attention, enhancing failure prediction. PHM aims to provide methods and
tools for developing an appropriate maintenance policy for a given asset under its
operating and degrading conditions to achieve high availability at the lowest possible cost.
It can be perceived as a comprehensive approach to effective and efficient system health
management (Fink et al., 2020). Utilising sensor technology and analytical capabilities,
PHM continuously monitors machine health, detects degradation, and facilitates
maintenance planning for various components. Sensors strategically placed on machines
gather crucial raw data reflecting their condition, forming the backbone of the PHM
system. It is crucial to emphasise the meticulous placement of these sensors to ensure
accurate data collection. The collected data undergoes comprehensive analysis within
PHM systems, enabling a deep understanding of the manufacturing system’s behaviour
and the proactive anticipation of potential operational challenges, as elucidated by Ardila
et al. (2020).

Fault diagnosis
In studies verified using data from controlled experiments, test beds, or numerical
simulations, PdM confronts various failure diagnosis and prognosis concerns that are
typically overlooked (Fernandes, Corchado & Marreiros, 2022). Correspondingly, Xu et al.
(2019) proposed a fault diagnosis method that uses DT technology to move fault
information from a virtual entity to its physical counterpart. Therefore, fault detection and
diagnostics significantly reduce downtime and unexpected failure of increasingly
sophisticated industrial machinery and equipment (Sun et al., 2017). In contrast to
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traditional fault diagnosis, which relies on engineers’ extensive human expertise to
determine the relationship between monitored data and machine health, intelligent fault
diagnosis applies ML theories to fault diagnosis, automating the fault detection and
classification process (Lei et al., 2020).

Anomaly detection
Anomaly detection is the process of identifying significant deviations from the rest of the
data (López et al., 2023; Wang et al., 2021). Failures can be made, and the operator is
notified in time to save the system from failing by spotting anomalies (He et al., 2023).
Thus, extensive study has gone into the field of log anomaly detection, which attempts to
automatically identify any aberrant logs from log data to allow operators to swiftly address
problems and ensure system stability (Bertero et al., 2017; Zhao et al., 2021). A machine
intelligence method provides an anomaly detection strategy that captures the temporal and
spatial link between several battery characteristics to increase battery life and system safety
(Das et al., 2021). Any divergence from the nominal torque signal corresponding to the
current task (defined by a specific set of waypoints—position signals) would indicate an
anomaly in the robot’s performance (Aivaliotis et al., 2023). Additionally, IoT devices
continuously gather energy and meteorological data, which the model carefully processes
and accurately examines in real-time to find any potential irregularities in energy
consumption (Malki, Atlam & Gad, 2022).

Remaining useful life estimation

The RUL is the time frame from the present until the expiration of the useful life (Cai et al.,
2022;Han, Li & Chen, 2023;Hu et al., 2023b;Mitici et al., 2023; Shaheen, Kocsis & Németh,
2023; Wang et al., 2023; Yang et al., 2023; Yousuf, Khan & Khursheed, 2022; Zhu et al.,
2023). RUL has been used in numerous industries, such as rotating equipment, batteries,
and aerospace, to name a few, to warn operators of early failures (Zhao et al., 2020b).
According to a preliminary study conducted by Kang, Catal & Tekinerdogan (2021), the
RUL is primarily utilised as a risk indication. It suggests how long a machine may be used
properly before breaking down. Run-to-failure data from machine operations must be
collected for RUL modelling. However, this task is challenging. Knowledge-based models
(KBM), PM, DDM, and DL are possible areas for study on RUL prediction. In KBM,
experts define the rule sets and evaluate the equipment’s state based on historical failures,
occasionally leading to disparities (Garga et al., 2001).

Implementation of maintenance management
According to the preliminary studies by Lopes et al. (2016), the term “maintenance
management” refers to a group of tasks that specify maintenance goals, plans, and roles as
well as how they are conducted. These tasks include planning, controlling, and monitoring
maintenance, enhancing organisational procedures, and considering economic factors. To
increase productivity and lessen the effects of unplanned downtime, maintenance
management uses a variety of methods and strategies, such as failure mode and effects
analysis (FMEA), total productive maintenance (TPM), and reliability-centred
maintenance (RCM) (Oliveira, Lopes & Figueiredo, 2012). Similarly, Fraser, Hvolby &
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Tseng (2015) discovered that the most widely used management models are condition-
based maintenance (CBM), RCM, and TPM. TPM aims to achieve minimal malfunctions,
accidents, and faults in the production system by improving the efficacy of the equipment
(Alkhoraif, Rashid & McLaughlin, 2019). Companies can improve their competitive
position by offering their consumers lower pricing and faster delivery times when
implementing TPM programmes successfully (Teera-achariyakul & Rerkpreedapong,
2022). RCM is a technique for maintenance that emphasises system dependability (Keynia
et al., 2022). To create proactive maintenance plans that increase equipment performance
and dependability, RCM concentrates on comprehending failure modes and their effects.
RCM has also been extensively applied in industry to lower maintenance costs (Geisbush &
Ariaratnam, 2023). According to the preliminary studies by Filz et al. (2021), a popular
technique for identifying fault conditions in parts, components, or larger capital goods in
advance is FMEA. With the goal of averting mistakes and failures during the development
stage, FMEA is frequently employed in the product development and design phases. This
can improve a system’s overall reliability as well as the dependability of its individual parts.
Based on the system status, which is determined by the rate of deterioration or level of
performance, CBM chooses a maintenance action. Of all the maintenance types, CBM has
drawn the most attention since it avoids needless maintenance actions, reducing costs
while also considering safety (Bousdekis et al., 2018; Shi et al., 2020). Computerised
Maintenance Management System (CMMS) to facilitate increased performance and
dependability. It is an efficient computerised process management system (Wienker,
Henderson & Volkerts, 2016). A CMMS is a standardised platform combining information
from TPM, RCM, FMEA, CBM, and procedures. Other than that, it guarantees that
maintenance activities are in accordance with the organisation’s goals and priorities,
facilitates data-driven decision-making, and expedites maintenance operations.

As provided in Table 4, the research presents that five studies apply CBM to
maintenance management methods and strategies (Avornu et al., 2022; Centomo, Dall’Ora
& Fummi, 2020; Harries et al., 2023; Mrzyk et al., 2023; Mubarak et al., 2022). Three
studies deal with the application of FMEA (Aivaliotis, Georgoulias & Chryssolouris, 2019;
Mourtzis, Tsoubou & Angelopoulos, 2023; Werner, Zimmermann & Lentes, 2019), two
studies with CMMS (Hosamo et al., 2022, 2023), and only one study with the application of
RCM methods and strategies (Mubarak et al., 2022). However, no study uses TPM
techniques and strategies.

Typical difficulties and obstacles to putting maintenance management into practice are
unplanned maintenance, occurred when an unforeseen breakdown happens, which is bad
for the organisation. The management always feels that spending on labour, inventory, and
service costs is superfluous. Hence, these expenses always run counter to the budget. It is
vital to shift from reactive maintenance to PdM to accomplish this. Effective time
management is crucial for producing high-calibre and effective work. Two cutting-edge
technologies that could completely change how equipment and system maintenance are
managed are PdM and DT. AI techniques like ML and DL can further the research of
equipment or system performance forecasting if sufficient data frommaintenance histories
exists to build the most accurate model feasible. Therefore, PdM and DT models must be
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proposed in all industries to further increase the availability and reliability of the
equipment and maximise the efficiency of the organisation. Accurately determining the
actual times of issue occurrence, reporting, and resolution is made easier with real-time
monitoring. Organisations may effectively handle reoccurring difficulties and become
more proactive with their response strategies by figuring out these times. There are
numerous advantages to implementing maintenance management practices. It reduces
operational disruptions and costly maintenance by preventing equipment breakdowns and
unforeseen downtime. Other than that, it promotes worker and user safety, optimises the
equipment’s performance, and prolongs its lifespan. This implementation of maintenance
management gives the PdM study using DT significance for application in various
industries.

DISCUSSION
Outcomes and research gaps/future work for PdM using DT
The current literature on PdM utilizing DT is succinctly synthesised in Table 4, outlining
findings and highlighting avenues for further investigation. The collective body of research
underscores the affirmative outcomes of employing PdM through DT. Each study
introduces distinct DT models and techniques, contributing to the diversity and richness
of approaches within this domain. Moreover, identifying research gaps and prospects for
future exploration varies across studies, contingent upon specific recommendations
tailored to diverse sectors. Despite the variations in the implementations of DT and PdM
and the existence of research gaps and areas for future study, the result suggests that this
idea has been effectively implemented in three primary domains. These concerns were also
essential in managing intricate equipment or systems within the primary three domains of
facilities.

PdM and DT are two emerging technologies that possess the capacity to fundamentally
transform equipment or system administration maintenance. AI-assisted algorithms for
predicting the performance of systems or equipment can be developed if sufficient
maintenance history data is available to construct the most precise model. Moreover,
numerous industries can benefit from a predictive analytics model that predicts potential
defects, increases equipment utilisation, and reduces future failures. Alternatively, DT can
provide a virtual representation of a physical system or piece of apparatus or system so that
its performance can be monitored and its maintenance requirements can be anticipated. It
enables real-time monitoring and analysis of equipment or system behaviour, allowing
maintenance teams to identify issues before they become critical.

Integrating DT and PdM could promote the transition of equipment or system
maintenance teams from a reactive to a proactive maintenance strategy. This transition
leads to enhanced equipment or system uptime and patient safety while simultaneously
reducing costs. These technologies allow maintenance teams to identify possible issues in a
timely manner, enhancing the overall dependability of equipment or systems and
decreasing the probability of failure during operation. This article provides a novel insight
into combining data-driven PdMwith DTmodelling to address maintenance management
in healthcare, utilities (smart water management), and agriculture (smart farm).
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Elevating industries with integrated PdM and DT solutions
PdM using DT for medical equipment maintenance management
In the ever-evolving realm of contemporary healthcare, the proficient administration of
medical equipment maintenance emerges as a pivotal element in guaranteeing the highest
standard of patient care and operational effectiveness. Integrating PdM and DT
technologies offers a paradigm-shifting approach to improve maintenance practices for
medical equipment. Moreover, the integration of PdM and DT allows for proactive
problem prediction, enhances the effectiveness of troubleshooting, optimises maintenance
scheduling, and enables decision-making based on data analysis. Drawing upon the
findings obtained from the systematic evaluation of relevant literature, a fully integrated
framework is proposed, which combines the capabilities of PdM and DT technologies, as
illustrated in Fig. 9. This framework functions as a crucial blueprint that coordinates the
smooth integration of diverse components to enable effective management of medical
equipment maintenance in healthcare environments. Furthermore, the core of the
integrated framework is comprised of a precisely crafted system architecture. The
architectural design functions as a central point of connection, facilitating the integration
of many components essential to the maintenance management process. The system is
continuously supplied with a flow of data streams, each contributing to a comprehensive
comprehension of the status and operation of the medical equipment. However, the most
essential data source for this integrated system is the physical medical equipment.

The aforementioned entity serves as the fundamental component of the maintenance
ecosystem, playing a crucial role in supporting the overall structure. In addition to the
physical equipment, there are data streams created by sensors. The real-time data inputs
are obtained via a network of embedded sensors that are strategically placed on the medical
equipment. These inputs provide a live view of the operating condition of the equipment.
The framework further incorporates a DT model, serving as a virtual depiction of the
medical equipment. The digital replica has diverse attributes, qualities, and actions that
closely resemble those of its tangible counterpart. The virtual model functions as a
dynamic representation that has the ability to simulate real-world circumstances and
forecast future outcomes. Data technology plays a crucial role in enabling the use of
predictive analytics and real-time monitoring. In addition, DL algorithms can be used to
represent DT or predictive analysis, including Health Index (HI), predictive model, and
fault diagnosis or prediction of RUL.

The architecture for PdM of medical equipment, known as the DT architecture, is
constructed based on actual physical medical equipment and their corresponding
operating environment. Various kinds of sensors are often installed on physical medical
equipment. These sensors are crucial in providing data for data-driven operations such as
RUL prediction and component failure detection. Sensors are used to gather real-time
operating data for medical equipment, which is then employed to develop a DT model or
virtual model of the item using simulation data. Furthermore, the use of sensor
technologies for the collection and transmission of data from medical equipment to a
central system enables the instantaneous remote monitoring of the operational data of
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such equipment. This technology facilitates the remote monitoring of medical equipment
by healthcare practitioners, allowing for tracking usage trends and timely detection of
possible issues or failures. Through the real-time monitoring of operational data,
healthcare practitioners have the ability to proactively detect and address issues before they
escalate, reducing the probability of medical equipment failure or outage.

The model is founded upon empirical facts, with the functioning of medical equipment
yielding a substantial volume of data. The use of a data-driven approach mandates that
prior sensor data undergo a series of procedures prior to its application in prediction tasks.
These procedures include noise reduction, data pre-processing, feature extraction, and
state detection. Creating hybrid simulation models that strike a compromise between
computational economy and accuracy by fusing data-driven and physics-based modelling.
These are some methods for coming up with creative techniques to maximise the
computational effectiveness of real-time DT simulations. By processing data closer to the
origination point, edge computing lowers the latency in transmitting data to a central
server. Lower latency allows for faster analysis of sensor data and quicker reaction to
possible maintenance issues, which is crucial in PdM, where rapid insights are required.

Figure 9 The proposed framework of DT using the PdM framework in the healthcare industry. Image source credit: middle persons in between
support service and healthcare practitioners, Aizat Hilmi Zamzam. Photo credit (Physical Medical Equipment images, DT Model/Virtual Model,
PdM using DT Model): Nur Haninie Abd Wahab. Full-size DOI: 10.7717/peerj-cs.1943/fig-9
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The integrated system effectively collects real-time data from physical equipment and
sensors, including performance measurements, operational parameters, and
environmental factors. The data stream is further processed using sophisticated analytical
techniques to derive a HI. It serves as a measurable indicator of the equipment’s
comprehensive health and operational soundness (Yin et al., 2020). Note that the state of
medical equipment is tracked using a HI for PdM to determine when maintenance is
required. A HI is usually created by analysing data obtained from sensors and other
monitoring equipment that record numerous factors. First, the equipment’s health factors
were identified, and its state of health was assessed. The HI-based prediction model uses
the input data and labels it generates (Zheng et al., 2021). DL methods are employed,
including ANN, LSTM, and DNN, amongst others (Neo et al., 2022). DL models can be
trained to forecast the need for maintenance, enabling maintenance personnel to plan
replacements or repairs before a significant breakdown occurs. The DT model/virtual
model, driven by DT for PdM of medical equipment, has assessment, optimisation,
prediction, and other capabilities, such as fault detection and RUL prediction of medical
equipment, as well as a conceptual model. Organisations can facilitate the efficient transfer
of knowledge for applying PdM using DT in the medical industry through various
strategies. For example, developing comprehensive training programmes for employees at
all levels, including engineers, data scientists, medical professionals, and maintenance staff.
Other than that, providing practical training that covers the principles of PdM, the
development and use of DT, and the specific requirements and intricacies of the medical
industry. Personnel involved in using PdM insights using DT for decision-making in the
medical industry should have a combination of technical, domain-specific, and operational
skills. Personnel must comprehensively understand the medical devices and systems to be
monitored. This includes knowing how the devices work, their critical parameters, and
potential failure modes. Training in collaboration and communication between different
disciplines is essential. Personnel should be able to effectively communicate findings and
recommendations to medical professionals, engineers, and decision-makers.

ML and DL were utilised, each showcasing unique advantages. A comparative analysis
was performed, revealing ML’s superiority over DL in accuracy, precision, specificity, and
F1 score. Although DL has a shorter training time, its accuracy is lower than that of ML
(Rahman et al., 2023). However, according to the preliminary studies by Zhai & Qiao
(2020), DL’s excellent performance is primarily due to a massive amount of training data
and a deep network topology. The proposed framework employs DT technology to detect
and diagnose problems and predict medical equipment components, enabling
maintenance personnel to make more informed decisions at the appropriate moment. This
will enhance the models to create the ideal strategies for future medical equipment in the
healthcare industry. Several technical obstacles and challenges can arise when seamlessly
integrating these technologies, such as medical facilities being subject to constant changes
such as equipment upgrades and replacements and workflow changes.

To ensure that DT remains accurate and current in a dynamic medical environment, a
robust mechanism for continuous updating and adaptation is required. In addition,
collaboration between healthcare providers, vendors, medical device manufacturers, and
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regulatory bodies is essential for successfully implementing PdM and DT. Coordinating
the efforts and expectations of these different stakeholders can be challenging due to
differing priorities, timelines, and business models.

The significant outputs of the DT model will maximise operating costs within budgeted
costs by improving medical equipment maintenance operations through the
implementation of effective maintenance management practices. Moreover, accidents,
financial losses, and fatalities can be avoided by scheduling maintenance in advance when
it is acknowledged that medical equipment will fail. Medical equipment significantly
contributes to the effectiveness of healthcare quality (Zamzam et al., 2021a). In addition,
the primary goals of maintenance are dependability, maintainability, availability, and
safety. Hence, medical equipment should not fail frequently and should be repaired as soon
as a flaw is discovered (Abd Rahman et al., 2023).

This study has some limitations despite producing good performance prediction results.
Most studies only evaluate monitoring data without fully examining the equipment’s real-
time state, leading to biased results and low real-time forecast accuracy. As a result, the
relationship between the actual operational state and the virtual simulation must be
actualised using real-time monitoring data. It will aid in comprehensively forecasting
equipment health conditions (Yang et al., 2021). Thus, the proposed framework can be
embedded with the existing national standard of handling medical equipment.

For example, the concept of data-driven DT-PdM can be adopted in any healthcare
institution, such as an imaging department. DT can simulate the behaviour of imaging
equipment, including Magnetic Resonance Imaging (MRI) machines, Computed
Tomography (CT) scanners, and ultrasound machines. Analysing real-time data from
these medical types of equipment makes it possible to develop PdM models that optimise
maintenance schedules and prevent unscheduled downtime.

PdM using DT for smart water management
As medical equipment health indices paved the way for timely interventions, intelligent
maintenance strategies can monitor and optimise the urban equivalent, from water and
energy distribution to transportation and waste management. Due to urbanisation, the
world has recently confronted numerous issues, including urban poverty, exorbitant
prices, traffic congestion, lack of shelter, absence of financial backing, increased crime,
environmental degradation, and inequality (O’Brien, Pike & Tomaney, 2019). To meet the
predicted growth in urbanisation, it is becoming increasingly difficult to design, build, run,
and maintain urban infrastructure systems such as water distribution networks (WDN)
with sufficient sustainability and resilience (Wu et al., 2023). The adoption of a Smart
Water Grid (SWG) is an effective technique for ensuring adequate WDN sustainability
and resilience (Public Utilities Board Singapore, 2016).

The proposed combined PdM and DT framework consists of a water distribution
system (WDS), sensors, data collection and management from sensors and PdM using the
DT model (see Fig. 10). The purpose is to track drinking water quality and pipeline leaks
and exchange this data in order to save water and enhance the present WDS. The DT
architecture for PdM is built on real physical WDS for pipe monitoring or the PipeSense
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system of a physical layer. In physical WDS, numerous types of sensors have been placed in
water treatment facilities as well as around the pipe monitoring or PipeSense system, and
these sensors then provide information for data-driven analysis. The sensors displayed in
Fig. 10 are water quality sensors and pH and flow sensors that serve as measurement
objects of the WDS layer. The idea of numerous networked sensors on equipment,
individuals, and products, along with intelligent monitors, is becoming more attainable
due to the advancements in communication technology (Olsen & Tomlin, 2020).

The sensor data layer of this structure includes sensor data collecting and management
to analyse the acquired data. This involves network data transfer as well as server storage
and database administration. Sensors collect operational data in real-time for WDS, and
simulation data is used to generate a PdM using the DT model. Furthermore,
implementing real-time remote monitoring will allow for more efficient decision-making
for PdM using DT. These technologies could serve as the basis for the PdM using DT of the
city and help in the sustainable design of smart cities. With this technology, facility
management staff or users can remotely monitor water system operation, examine usage
patterns, and spot potential faults or malfunctions in real-time. The model is based on

Figure 10 The proposed framework of DT using the PdM framework in the smart water
management. Full-size DOI: 10.7717/peerj-cs.1943/fig-10
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data, and the operation of the water network generates a large amount of data. In the data-
driven method, the previous sensor data must go through a series of steps before it can be
used for prediction, including cloud data storage, communication, data analysis, and
processing.

Businesses can use a range of approaches to facilitate knowledge transfer that will
guarantee the effective use of DT for PdM in smart water management. Other than that,
encourage the sharing of knowledge through unofficial channels so team members with
less experience can benefit from their mentors’ real-world expertise. In order to properly
analyse insights from PdM and DT for smart water management decision-making, staff
members need to be trained in problem-solving and critical thinking. Hence, they will gain
communication skills to communicate technical findings effectively and clearly to
stakeholders who are not technical.

Optimising the computational efficiency of real-time simulations with DT in large-scale
and complex industrial environments, especially in smart water management, requires the
consideration of several innovative approaches and frameworks. Therefore, integrating
ML algorithms aid in predicting system behaviour and optimise simulation parameters.
Train models using historical data to make predictions, facilitating real-time adjustment of
simulation parameters. This enhances computational efficiency for improved
performance. With edge computing and distributed processing, real-time analytics for
PdM is made possible in large, geographically dispersed businesses like smart water
management. By processing data closer to the source, edge computing lowers the delay in
sending data to a central server. In smart water management, where prompt problem-
solving and prevention are paramount, reduced latency guarantees prompt sensor data
processing for PdM.

The application level is the highest level in the water management system’s framework.
Data from sensors can be enhanced by models to create useful PdM using DT for better
maintenance decision-making. To produce a more precise forecast for pipe monitoring or
the PipeSense system, the anticipated circumstances are then updated using the
observational data collected by the system to produce an accurate prediction result.

An effective strategy to ensure PdM using DT according to the standard of the proposed
approach can be incorporated into the current national standard for maintaining water
treatment assets for Smart Cities System maintenance. Therefore, urban drainage
terminology and actions to establish a DT through constructing digital ecosystems and
open data standards format are crucial in the water sector (Pedersen et al., 2021). The
integration of DT for PdM in smart water management is promising. Nevertheless,
companies may encounter unforeseen technological hurdles and difficulties. These
difficulties include accurate prediction depending on the availability and quality of real-
time data from sensors and other devices. This data can sometimes be delayed, erroneous,
or incomplete. Hence, the protection of confidential information is an important issue,
especially when it comes to vital infrastructure such as water management. When using
DT, users can transmit sensitive information. Furthermore, several rules and regulations
apply to the smart water business, and adhering to them might be difficult. Establishing
unambiguous communication channels with regulatory bodies, keeping up a continuous
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dialogue to comprehend and fulfil compliance obligations, and actively engaging in
industry standardisation initiatives are all crucial. The successful deployment of PdM and
DT frequently necessitates cooperation between several entities, such as regulators,
technology vendors, and water utilities. Encourage a culture of cooperation, form alliances
and consortia, and take part in industry coalitions state expectations for cooperation as
well as roles and responsibilities.

A limitation of this study is that a large data set must be collected, which requires pre-
processing to determine if the data can be used. Data pre-processing involves checking the
data for errors such as missing or duplicate records. In addition, DT necessitates collecting
enormous amounts of data from various endpoints, each providing a possible point of
vulnerability (Wu et al., 2023).

A practical and affordable alternative, an integrated sensor platform, is offered by
PipeSense. Monitoring the WDS and locating leakage through real-time monitoring data
or DT is possible. The idea of data-driven DT using PdM, for instance, can be used in any
system for smart cities, particularly in the field of WDS, for example, real-time monitoring
of asset conditions. This proposed model contributes to innovative maintenance
management using the concept of PdM with DT. The advantages that DT offers in
implementing PdM in the water industry in terms of digital transformation and improving
system performance are substantial and immediate impacts on customer satisfaction in
water services, cost efficiency in asset maintenance, and ensuring greater upkeep and
environmental safety. In addition, DT enables estimation of utilisation during periods of
high demand, improves water flow and pressure control, and significantly increases system
dependability and flexibility during operation (Ramos et al., 2022).

PdM using DT for smart farm maintenance management
Population growth has caused a sharp increase in food consumption, and agricultural
mechanisation has become a key strategy for enhancing grain yield and quality (Mantoam
et al., 2020). The machinery of agriculture is becoming a fundamental and important
equipment in modern farming (Han et al., 2020). Regular maintenance is required to avoid
losses caused by failures, and firms deploy maintenance vehicles to assure stability in
agricultural machinery operations (Wang, Hu & Ren, 2021). Modern agriculture is not
possible without accurate and current information regarding the farming process.
Nevertheless, farms are being forced to concentrate a growing amount on digital
technology, like measuring and monitoring tools, sophisticated data analysis, and smart
machinery (Verdouw et al., 2021). As a result of the quick growth of technologies like
computing in the cloud, big data, the IoT, ML, virtual reality, and the field of robotics,
agricultural production is quickly shifting towards smart farming technologies (Kamilaris
& Prenafeta-Boldú, 2018; Zhai et al., 2020).

The proposed architecture of PdM with DT for smart farm equipment is divided into
three layers: the physical, communication protocol, and application layers. Each layer is
important for obtaining a good model with accurate results (see Fig. 11).

At the physical level, various sensors are installed in the smart agriculture field, where
data is collected using sensor applications. The proposed framework has two types of
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sensors: environmental and camera. Camera sensors work to detect the farm condition,
while environmental sensors are smart farm characteristics such as temperature, humidity,
air velocity, light, and ventilation (Sung & Kim, 2022). Multiple types of sensors are
strategically implemented into agricultural machinery, generating a vast amount of real-
time operating data that serves as the foundation for data-driven analysis (Javaid, Haleem
& Suman, 2023). The sensors are used to generate real-time data for smart farming and
store it in the database for the next shift process. Furthermore, real-time remote
monitoring will enable more efficient decision-making for PdM using DT. These
developments could serve as the basis for PdM using DT of farm equipment and help
develop sustainable farm equipment. Hence, users or farmers can use this technology to
monitor farm equipment remotely, investigate consumption trends, and detect potential
defects or malfunctions in real-time.

Optimising the computational efficiency of real-time DT simulations in large-scale and
complex industrial environments, especially in the smart farm industry, requires the
consideration of innovative approaches and frameworks. Thus, real-time data
compression techniques are implemented to reduce the amount of data transferred
between sensors and the central system. The use of intelligent filters to transfer only the
information is essential for running simulations and reduces the computing load. In
sectors like smart farms with extensive and dispersed infrastructures, edge computing and
distributed processing are essential to providing real-time analytics for PdM. It keeps

Figure 11 The proposed framework of DT using the PdM framework in smart farm equipment.
Photo credit: Nur Haninie Abd Wahab. Full-size DOI: 10.7717/peerj-cs.1943/fig-11
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private data inside the local infrastructure, which helps alleviate privacy worries.
Consequently, encryption and secure communication protocols guarantee the
confidentiality and integrity of information shared among dispersed nodes.

Next is the communication protocol layer, where data is transferred to the
communication protocol to analyse and visualise the pre-process. In this process,
observation of missing data and data cleaning is conducted. In addition, normalisation of
the data was necessary to guarantee that the gap between every characteristic value was
equally weighted (Zamzam et al., 2021b). This preliminary process will also send this data
to the data analytics layer. A PdM using the DT model is created at the application level
from the analysed, integrated, and visualised data for improved maintenance decisions.
The model can provide accurate outcome predictions for smart farm equipment
monitoring. In addition, the authors propose to call this model the model for intelligence,
efficiency, and visibility.

The contribution to the creation of this model in the agricultural field is that it can help
the farmer or user increase crop yield by increasing equipment uptime. PdM using DT can
help predict equipment damage that occurs and reduce maintenance costs. Organisations
that adopt the DT can gain major advantages such as improved processes, reduced time to
the marketplace, and innovation in goods and services (Ante, 2021; Javaid et al., 2022;
Vitorino et al., 2019). Businesses can guarantee that staff members possess the skills and
knowledge required to apply PdM using DT in the smart farm sector by employing various
approaches, including cross-disciplinary workshops, external training opportunities,
internal workshops and seminars, and collaborative learning platforms. Maintaining the
workforce’s current knowledge of cutting-edge technology and industry best practices
requires ongoing training and upskilling. Therefore, workers in smart farms must possess
crucial knowledge and experience requirements, including familiarity with agricultural
operations, maintenance procedures, and the ability to convert PdM knowledge into
actionable decisions.

The usage of sensors in individual equipment to gather data has helped IoT applications
advance. Nevertheless, discrete sensor and internet covering of every location resulted in
substantial facility management expenses. Moreover, adherence, safety, and
trustworthiness standards are becoming more stringent and subject to rapid change
(Masmoudi et al., 2016).

Using applications for real-time monitoring equipment, the model can be integrated
with PdM, utilising DT to facilitate decision-making. The user and farmer can
comprehend the data without difficulty. The concept of DT in smart agriculture is still in
its earliest stages. At the beginning demonstrating stage, numerous farmers are exploring
incorporating smart technology and methods that enhance the effectiveness of agricultural
processes (Verdouw et al., 2021). Agricultural mechanisation can save labour time and
other resources, enhance labour efficiency, and lower production costs (Mu et al., 2018). In
addition, the proposed technique can be implemented in the existing national standard for
agricultural machinery maintenance as an efficient method to ensure PdM with DT in
accordance with the standard. DT integration of PdM in the smart agricultural sector
could encounter several technological challenges. Variations in the weather, plant health,
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and pest infestations are only a few examples of the dynamic and unpredictable variations
that affect agriculture the creation of adaptable DT models that can be modified on the fly.
Hence, it establishes feedback and real-time monitoring systems to inform the DT about
the changing agricultural landscape. In addition, effective implementation of PdM and DT
often requires collaboration between different organisations, including farmers,
technology providers, and regulators. These organisations can foster a culture of
collaboration, establish partnerships, and participate in industry consortia or alliances.
Clearly define roles, responsibilities, and expectations for collaboration.

Five review articles are included in this discussion and discuss PdM using DT. There are
different aims for all the papers. The first review article aims to redefine the concept of
next-generation-Digital-Twin (nexDT). Furthermore, it introduces a specialised term for
electrical machines manufacturing, PdM, and control, summarising the majority of
pertinent work in the process. Other than that, it offers a new definition unique to PdM
and serves as a basis for future efforts (Falekas & Karlis, 2021). This study reviews the most
recent descriptions found in the broader literature and addresses the open challenge given
by the indirect usage of an established Digital Twin Framework (DTF) in industry,
specifically system security and risk assessment. Aspects such as goals, application areas,
platforms, representation types, approaches, abstraction levels, patterns of design,
protocols for communication, twin parameters, challenges, and solutions are highlighted
in the second review article on PdM through the use of DT (van Dinter, Tekinerdogan &
Catal, 2022). There are 42 primary studies that have been evaluated. The study revealed
that the computational effort, the variety of data, and the complexity of the models,
systems, or components represent the greatest challenges in the development of these
models. Consequently, a presentation is given on using a DT framework in PdM and its
expansions via physics-based modelling and ML. Planning for repair, logistics for
deployment, and performance assessment measures are all included in fleet management
(Kunzer, Berges & Dubrawski, 2022). This study attempts to clarify the definition of the DT
by looking at the term’s history and original context in asset maintenance and fleet
management, planning, operations and product lifecycle management. The challenges for
this study are safety protocols, the adoption of the DT framework in the workplace, the
robustness of the sensors, missing data, poor quality data, and offline sensors. Review four
examines the modelling techniques, the application framework, and the relationship
between the virtual image and the physical object as recent developments (You et al., 2022).
This study aims to describe the benefits of the PdM using the DT paradigm that are
thought to exist and examine the methods and applications for each category. A total of 30
primary studies were examined. Four critical challenges for DT-driven PdM discussed in
this study are the standardisation of the framework, holistic evaluation methods, the need
for a digital model with high fidelity, and a multi-level model and multi-component. Note
that the creation and assessment of reference architectures created with the use of well-
known software architecture techniques are the topics of the final review article (van
Dinter, Tekinerdogan & Catal, 2023). The study revealed three viewpoints for DT-based
PdM systems. The authors developed a context diagram for the user view, and for the
structural view, they created a package diagram. The authors also created an application
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architecture for each case study based on the features of the study using each reference
architecture view, a layered view to illustrate the system’s breakdown into layers, and a
deployment view to depict the hardware, software, and surrounding environment. There
are 42 selected primary studies for which a trait model was developed. This study is about
the continuous consideration of challenges in production, such as changes in data
distribution, skewing of training data, or problems with data quality.

From all the highlighted review articles, this study differs by focusing on three areas of
PdM-based DT implementation, namely healthcare, utilities (smart water management),
and agriculture (smart farm), and fulfilling the objectives of this study. This work analysed
34 articles from 2018 to 2023 and discussed various challenging PdMwith DT. In addition,
an explanation of the use of sensor types for the relevant industries, and finally, the
implementation of maintenance management, which focuses on the diversity of
maintenance management methods and strategies, issues proposed in the study, PdM and
DT methods, studies conducted in real-time monitoring, and the importance of research.

The integration of DT and PdM technologies has resulted in industry-altering
advancements. This integration enables proactive equipment maintenance in healthcare
management by simulating real-time conditions and anticipating potential malfunctions.
DT and PdM optimise the operation of infrastructure in utilities (smart water
management) by integrating real-time sensor data with predictive analytics to anticipate
leakage and system inefficiencies. Similarly, in agriculture (smart farm), the combination
of DT and PdM aids in the surveillance of apparatus in real-time, while predictive insights
guide opportune productivity-enhancing interventions. These applications demonstrate
the value of DT and PdM in revolutionising maintenance practises across industries,
thereby paving the way for enhanced operational efficiency, resource optimisation, and
overall performance.

However, implementing PdM and DT to maintain equipment or systems can present
various challenges. Here are some of the major considerations to address prior to adopting
the concept:

1) Data collection and management: Collecting and managing the enormous quantities
of data required for PdM and DT can be difficult, particularly for aged equipment or
systems not necessarily designed to collect and transmit data. Facilities must invest in
automated data acquisition and management tools to ensure accurate, trustworthy, and
secure data. To achieve a balance between optimising network maintenance through
PdM and DT and meeting stringent regulatory requirements, meticulous planning and
implementation are required.

2) Data integration: It can be difficult to integrate data from multiple sources, such as
equipment sensors, electronic medical records, and patient feedback. A data integration
strategy must be developed by facilities to ensure that all data sources are integrated and
accessible for analysis.

3) Model development: Developing accurate PdM models and DT requires an in-depth
comprehension of the behaviour and performance of equipment or systems. To develop
and evaluate these models, facilities must invest in expertise and resources.
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4) Compliance with regulations: PdM and DT technologies must comply with the
country’s own regulations, which can present additional challenges for facilities. It is
essential to ensure that these technologies adhere to regulatory requirements and that
data is kept secure. In healthcare, utilities (smart water management), and agriculture
(smart farm), the need to adhere to sector-specific rules can confound the integration of
PdM and DT. Utilising these technologies in healthcare, patient data privacy statutes
such as the Health Insurance Portability and Accountability Act (HIPAA) and General
Data Protection Regulation (GDPR) must be adhered to. Similarly, water networks
must comply with water quality regulations and data security. In agriculture, machinery
optimisation must consider environmental regulations and data privacy. It is essential
for the safe and effective implementation of PdM and DT methods in each field that
they adhere to these regulations.

5) Cost: Implementing PdM and DT technologies can be costly, necessitating substantial
investments in hardware, software, and personnel. The costs and benefits of these
technologies must be thoroughly evaluated by facilities to determine if they are worth
the investment.

6) Changes to organisational cultures: Adopting new technologies and modifying
maintenance practises can be difficult for organisations, necessitating a shift in
organisational culture and perspective. Facilities must invest in change management
and training to ensure their employees are prepared to implement these technologies
and procedures.

Across all industries, integrating PdM and DT technologies presents obstacles. This
involves managing immense quantities of data, integrating diverse data sources, creating
accurate models, and ensuring compliance with sector-specific regulations such as HIPAA,
GDPR, water quality standards, and agricultural regulations. Implementing PdM and DT
can be expensive, necessitating a thorough cost-benefit analysis and a cultural
transformation in organisations, necessitating change management and training for
successful adoption. Therefore, implementing PdM and a DT to maintain three potential
applications for equipment or systems requires meticulous planning, investment, and
specialised knowledge. Facilities must be prepared to surmount these obstacles To reap the
benefits of these technologies, which include improved equipment or system uptime,
reduced costs, and increased patient or worker safety.

CONCLUSIONS
Early maintenance planning significantly reduces the probability of failures, financial losses,
and even fatalities by enabling more accurate prediction of delays. PdM is vital for
organisations, delivering cost-effective maintenance, extended equipment lifespan, and
improved safety. Hence, integrating it with DT offers immense potential. However, its
application in crucial sectors like healthcare, utilities (smart water management), and
agriculture (smart farm) remains unexplored. Although these industries have the potential
to benefit greatly from the integration of PdM and DT, there is a dearth of comprehensive
research in this area. This article analysed 34 articles from 2018 to 2023, identifying gaps in
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PdM using DT. Four major themes emerged from the research: various model categories,
diverse approaches, predictive outcomes, and implementation of maintenance
management. It is discovered that integrating supervised learning with diverse algorithms
has been identified as the most efficacious approach to assessing equipment performance,
providing practical insights that can inform maintenance decisions. DT-driven models
improve maintenance decisions and help optimize operational costs within budgets. They
facilitate the implementation of cost-effective equipment maintenance and enhance overall
reliability by offering real-time data insights. Nevertheless, the absence of studies in
healthcare, utilities (smart water management) sectors, and agriculture (smart farm)
signifies a critical gap. Therefore, recommendations for implementing PdM using DT in
these domains are crucial for progress. Concrete suggestions on leveraging DT to enhance
systems in these sectors offer a pathway for practical solutions based on real-time data. To
address this research gap, suggesting PdM utilising DT in these sectors is necessary. These
initiatives hold the potential to revolutionise maintenance practices, enhance system
optimisation, and provide effective solutions. The study’s findings are of immense value as
they indicate the possibility of groundbreaking progress, especially in unexplored
industries. Although PdM with DT exhibits significant potential, its application in critical
industries such as healthcare, utilities (smart water management), and agriculture (smart
farm) remains largely unexplored. However, there is a limitation in implementing PdM
with DT, where every equipment or system must be monitored in real time with sensors.
Therefore, only facilities that have internet coverage can implement this PdM with DT. To
overcome these limitations, facility management will incur significant costs to implement
PdM with DT comprehensively. Future research that addresses this knowledge deficit will
facilitate the development of practical solutions, such as improved equipment dependability
and optimised maintenance procedures, which will have substantial societal benefits.
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