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ABSTRACT
Breast and ovarian cancers are prevalent worldwide, with genetic factors such as
BRCA1 and BRCA2 mutations playing a significant role. However, not all patients
carry these mutations, making it challenging to identify risk factors. Researchers have
turned to whole exome sequencing (WES) as a tool to identify genetic risk factors in
BRCA-negative women. WES allows the sequencing of all protein-coding regions of
an individual’s genome, providing a comprehensive analysis that surpasses
traditional gene-by-gene sequencing methods. This technology offers efficiency, cost-
effectiveness and the potential to identify new genetic variants contributing to the
susceptibility to the diseases. Interpreting WES data for disease-causing variants is
challenging due to its complex nature. Machine learning techniques can uncover
hidden genetic-variant patterns associated with cancer susceptibility. In this study,
we used the extreme gradient boosting (XGBoost) and random forest (RF)
algorithms to identify BRCA-related cancer high-risk genes specifically in the Saudi
population. The experimental results exposed that the RF method scored superior
performance with an accuracy of 88.16% and an area under the receiver-operator
characteristic curve of 0.95. Using bioinformatics analysis tools, we explored the top
features of the high-accuracy machine learning model that we built to enhance our
knowledge of genetic interactions and find complex genetic patterns connected to the
development of BRCA-related cancers. We were able to identify the significance of
HLA gene variations in these WES datasets for BRCA-related patients. We find that
immune response mechanisms play a major role in the development of BRCA-
related cancer. It specifically highlights genes associated with antigen processing and
presentation, such as HLA-B, HLA-A and HLA-DRB1 and their possible effects on
tumour progression and immune evasion. In summary, by utilizing machine learning
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approaches, we have the potential to aid in the development of precision medicine
approaches for early detection and personalized treatment strategies.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms, Data
Mining and Machine Learning
Keywords Machine learning, WES, Genetic risk factor, Bioinformatics, Breast cancer, Ovarian
cancer, BRCA

INTRODUCTION
Approximately 19.3 million people were diagnosed with cancer in 2020, causing 10 million
deaths, according to GLOBOCAN 2020 (Sung et al., 2021). Breast cancer—a BRCA-related
cancer—is the most-diagnosed cancer type in the world. Breast cancer was diagnosed in
2.3 million cases, which represented 11.7%, and there were 68,496 deaths, representing
6.9% of all cancer deaths. In total, 17.8% and 3%, breast cancer and ovarian cancers,
respectively, are the most common types of cancer among Saudi nationality (National
Cancer Center of the Saudi Health Council, 2024). While genetic factors are known to play
a significant role in their development, specifically mutations in the breast cancer 1
(BRCA1) and breast cancer 2 (BRCA2) genes, it is important to note that not all breast and
ovarian cancer patients carry these specific mutations. This poses challenges when
identifying genetic risk factors in these patients (Kurian et al., 2011). The BRCA1 and
BRCA2 genes are well-known tumor suppressor genes that play a crucial role in
maintaining the stability of the genome. Mutations in these genes significantly increase the
risk of developing hereditary breast and ovarian cancers (Petrucelli, Daly & Pal, 2022). The
prevalence of BRCA mutations in breast and ovarian cancer patients can vary among
different populations. Studies have estimated that only approximately around 5% to 10%
of breast and ovarian cancer patients have BRCA mutations (Godet & Gilkes, 2017). This
indicates that a substantial number of patients who test negative for these mutations may
still have an unidentified genetic risk factor contributing to their condition. There are
several limitations of BRCA testing in identifying genetic risk factors in BRCA-negative
patients. One limitation is the low occurrence of BRCA mutations in certain breast and
ovarian cancer patients, leading to false-negative results. Moreover, BRCA testing only
targets specific genes and mutations and does not analyze the entire genome for potential
genetic risk factors. This means that other genetic variants that may contribute to breast
and ovarian cancer susceptibility may be missed. Identifying genetic risk factors in patients
who test negative for BRCAmutations requires alternative approaches. One such approach
is whole exome sequencing (WES), which can identify genetic variants associated with
breast and ovarian cancer susceptibility beyond BRCA1 and BRCA2 mutations. WES is an
advanced DNA analysis technique that allows the sequencing of all protein-coding regions,
known as exons, in one comprehensive assay. This method offers several advantages
compared to other sequencing techniques such as whole-genome sequencing (WGS) and
targeted gene panels (Bartha & Győrffy, 2019). One significant advantage of WES is its
efficiency and cost effectiveness (Suwinski et al., 2019). WES also offers the advantage of
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identifying new genetic variants that could potentially contribute the susceptibility to the
disease. By analyzing genes beyond those already known to cause disease, WES provides a
more thorough examination of the genetic factors underlying various conditions (Rabbani,
Tekin & Mahdieh, 2014).

Findings from studies using WES in BRCA-negative breast and ovarian cancer have
identified specific genes and variants associated with the susceptibility to breast and
ovarian cancer. These studies have provided valuable insights into the genetic factors
underlying these cancers, potentially informing personalised treatment and risk
management approaches. For instance, a recent study by Felicio et al. (2021) used WES
analysis to identify new genes linked to the predisposition to breast and ovarian cancer.
The researchers examined germline variants in cancer-related genes and conducted
bioinformatic analyses to pinpoint potential genetic risk factors. Notably, they discovered a
variant called c.149T > G in the FAN1 gene, present in two unrelated families, with a loss of
heterozygosity observed in one family’s tumor tissue. This finding suggests that FAN1 may
be a promising candidate associated with hereditary breast and ovarian cancer
susceptibility (Felicio et al., 2021). In a recent study by Lee et al. (2022), the researchers
used WES and case-control analyses to investigate genetic variants that might be linked to
breast cancer susceptibility in individuals without BRCA mutations. Their findings
uncovered new and potentially important genetic variants that could contribute to the risk
of breast cancer in this particular population. Among the candidate genes identified, one of
note was MUC16, which has previously been associated with increased susceptibility to
ovarian cancer (Lee et al., 2022). Another study by BenAyed-Guerfali et al. (2022) focused
on BRCA-negative Tunisian patients at high risk of hereditary breast/ovarian cancer.
Using WES, the study aimed to identify other genes that may contribute to susceptibility.
Their findings shed light on potential genetic risk factors beyond BRCA mutations,
highlighting candidate genes such as RAD51C, which have been previously linked to the
susceptibility to breast and ovarian cancer (BenAyed-Guerfali et al., 2022). Furthermore, a
recent study conducted by Grasel et al. (2020) used WES to identify genetic variants that
may contribute to an increased risk of breast cancer in individuals from families with a
history of the disease who tested negative for BRCA mutations. The study revealed
potential candidate genes, one of which is the ATM gene, previously linked to the
susceptibility to breast cancer.

Conversely, the process of interpreting WES data and finding the disease-causing
variants among thousands of variants remains a challenge due to the characteristics of
these data (Huang et al., 2022). Thus, using machine learning (ML) with these kinds of
data supports humans in dealing with these large and complex data (Fan et al., 2022).

Many studies profit from ML algorithms using WES for different diseases. For example,
in Trakadis et al. (2019), they applied extreme gradient boosting (XGBoost), random forest
(RF), L1.Logistic and a support vector machine (SVM) on WES data to identify the high-
risk genes for the schizophrenia (SCZ) disease. XGBoost yielded ideal results with an
accuracy equal to 85.7%, a specificity equal to 86.6%, a sensitivity equal to 84.9% and an
area under the receiver operator characteristic (AUC) equal to 0.95. Moreover, they
analyzed the top 50 genes of the algorithms that are associated with SCZ using
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bioinformatic resources. In addition, in Hooshmand (2020), they applied a naive Bayesian
algorithm on 1,091 ovarian cancer samples from The Cancer Genome Atlas (TCGA)
research network and 179 healthy people from the Genotype-Tissue Expression (GTEx)
project to distinguish between cancerous and noncancerous cells. They yielded amazing
results with 100% accuracy, 100% specificity, 100% sensitivity and an AUC equal to one.
Additionally, in Wadapurkar et al. (2023), they applied five supervised machine learning
algorithms-SVM, decision tree (DT), RF, Naive Bayes and XGBoost - to identify variants
that are associated with ovarian cancer. XGBoost yielded 94.64% in accuracy and 0.97 as
the AUC. RF and XGBoost are efficient machine learning methods because they work well
for problems with high dimensions and they generally allow nonlinear relationships
between the features (ref).

In conclusion, it is crucial to continue exploring genetic risk factors for breast and
ovarian cancers in individuals who do not have BRCA1 and BRCA2 mutations. While
these mutations are significant risk factors, a considerable number of patients lack them,
underscoring the need to identify other robust biomarkers. Machine learning techniques
for analyzing WES data have emerged as a powerful tool for uncovering hidden genetic
variant patterns associated with the susceptibility to cancer beyond the established BRCA
genes.

MATERIALS AND METHODS
The model, which contains three stages-data pre-processing, machine learning and
pathway analysis-is shown in Fig. 1. The complete source code and data files are available
on Zenodo at https://zenodo.org/records/10720553, https://doi.org/10.5281/zenodo.
10926612.

Exome data set
We utilized WES data obtained from the Center of Excellence in Genomic Medicine
Research (CEGMR) at King Abdulaziz University. The dataset includes 76 women who
were diagnosed with BRCA-related cancer but tested negative for known risk variants
(BRCA genes). Ethical approval for this study was obtained under IRB No. 32-CEGMR-
Bioeth-2021, and written informed consent was obtained from all participants. Among the
participants, 21 individuals had a positive BRCA genetic status, while 55 individuals had a
negative BRCA genetic status. The data files were provided in the VCF file, containing a
total of 249,430 germline short variants (single nucleotide polymorphisms (SNP) and
indel) calls. Figure 2 illustrates the screenshot of the VCF file.

VCF file pre-processing
Raw whole-exome sequencing data were aligned with the human reference genome
GRCh38 and then called using GATK’s (v.4.1.2) HaplotypeCaller. After that, BCFtools
V.1.13.1 was used to merge all VCF files into one cohort VCF. In the merged VCF file, all
SNPs are biallelic SNPs that have been filtered to remove calls with a depth of less than 20.
The data were annotated by ANNOVAR (Wang, 2010) using the reference genome
hg38/GRCh38.
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Figure 1 The machine learning pipeline. Image source credits: Feature selection icons created by
herikus-Flaticon. Data table icon, Designed by Freepik. Machine learning icon, Designed by Freepik.
Magnifying glass icons created by Freepik-Flaticon. Classifier model icon, Designed by Freepik.
Benchmark icons created by srip-Flaticon. Genes icons created by Smashicons-Flaticon.

Full-size DOI: 10.7717/peerj-cs.1942/fig-1
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The last step in this phase is encoding the genotype matrix to be ready to use in the
machine learning phase. The encoding step was done using VCFtools (Danecek et al.,
2011) Version 0.1.16-3 through the ‘012 matrix’ command (Figueiredo de Sá et al., 2019;
Magi et al., 2015; Carvalho et al., 2020). VCFtools provides simple tools for working with
genetic variation data stored in VCF files. The encoding accomplished was as follows:

� 0/0 denotes the reference homozygote that is coded as 0.

� 0/1 and 1/0 denote the heterozygote that is coded as 1.

� 1/1 denotes the alternative homozygote that is coded as 2.

� All missing values are coded as −1.

Figure 3 illustrates the final data used in the machine learning process.

Machine learning process
We used random forest (RF) and XGBoost supervised machine learning algorithms with
the labeled genotype matrix for the 76 individual datasets to identify features or genes that
might correlate with BRCA-related risk factors. The following subsections discuss the
feature selection process and machine learning in detail.

Feature selection process
As a preliminary step, we employed ANOVA and chi-square feature selection techniques
in order to prevent overfitting. Using the top 5,000 and 7,000 variants of each technique,
we reduced the number of variants in the genotype matrix. Thus, after applying feature
selection techniques, we obtained the top 500 and 700 variants for each feature selection
method (ANOVA and chi-square).

Figure 2 The snapshot of the dataset (VCF file). Full-size DOI: 10.7717/peerj-cs.1942/fig-2
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Machine learning process
For splitting data into training and testing datasets, we applied stratified k-fold cross-
validation with the k equal to four (Bukhari et al., 2022; Bukhari, Webber & Mehbodniya,
2022). For the training data, the Synthetic Minority Oversampling Technique (SMOTE)
was used to avoid problems of imbalanced data using the imbalanced-learn package
Version 0.10.1. To evaluate the classifier model, the testing datasets were used. Table 1
shows an illustration of the parameters of the supervised machine learning algorithms
which that chosen through GridSearchCV.

Molecular pathway and network analysis
Molecular pathway analysis
The machine learning models were used to identify the top 100 significant variants
through feature importance. Gene ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were conducted on the significant top
variants and their corresponding genes using DAVID and R to explore the potential
mechanisms and risk factors associated with BRCA-related cancer, including both BRCA-
positive and BRCA-negative patients. The statistically significant enriched terms were
considered for an adjusted P-value less than 0.01.

RESULTS AND DISCUSSION
Machine learning process
In order to identify the most important variants and genes related to ovarian cancer and
breast cancer in the Saudi population, a prediction model was trained using machine
learning techniques. Specifically, we employed the XGBoost and RF algorithms. The
performance of these models was evaluated using various metrics, including accuracy,
precision, recall, F1 score and AUC.

Table 2 presents the results of the feature selection techniques used to improve the
performance of the machine learning algorithms. The feature selection technique
ANOVA, using the top 5,000 variants, achieved an accuracy of 78.95% for XGBoost and
88.16% for RF. On the other hand, chi-squared feature selection demonstrated the best

Figure 3 The final data set that is used in the machine learning process.
Full-size DOI: 10.7717/peerj-cs.1942/fig-3

Alganmi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1942 7/21

http://dx.doi.org/10.7717/peerj-cs.1942/fig-3
http://dx.doi.org/10.7717/peerj-cs.1942
https://peerj.com/computer-science/


performance in this study, particularly in combination with RF. Figure 4 shows the ROC
curve for the best-performing algorithm. The accuracy of XGBoost was 82.89%, while RF
achieved an accuracy of 88.16%. Additionally, the F1 score improved from 52.63% to
64.64% with XGBoost and from 68.56% to 71.30% with RF.

Gene ontology analysis
The analysis revealed an enrichment in the biological processes regarding the immune
response, such as antigen processing and presentation, T cell-mediated cytotoxicity and
immune cell differentiation (Fig. 5). These findings highlighted the crucial role of immune
mechanisms in the evolution of BRCA-related cancer. Additionally, genes associated with
MHC class I and II molecules, including HLA-B, HLA-A and HLA-DRB1, were identified,
emphasizing the significance of antigen presentation and immune recognition in this
cancer (Liu et al., 2021). Disruptions in these processes may facilitate immune evasion and
contribute to tumour advancement. Moreover, the enrichment of the genes involved in
protein hetero-tetramerization and cell adhesion suggested the potential involvement of
cellular interactions and communication in BRCA-related cancers (Godet & Gilkes, 2017).
Alterations of these aspects may disrupt cell-cell adhesion, promoting cancer cell
metastasis and invasiveness. Unexpectedly, the analysis also revealed the enrichment of
genes involved in tissue-specific processes such as muscle organ development, heart
development and spermatogenesis. This suggested potential correlations between these

Table 1 List of the machine learning algorithms’ parameters with optimized values.

Machine learning algorithm Parameter name Parameter value

XGBoost Loss function log_oss

Number of boosting stages 100

Function to measure the quality of a split friedman_mse

Minimum number of samples required to split 2

Minimum number of samples required to be at a leaf node 1

RF Criterion of trees gini

Number of trees in the forest 100

Minimum number of samples required to split 2

Minimum number of samples required to be at a leaf node 1

Number of features for the best split sqrt

Table 2 Performance metrics among supervised machine learning algorithms with ANOVA and chi-
squared feature selection (5,000 features).

Model\Metric Accuracy Precision Recall F1 score AUC

ANOVA XGBoost 78.95% 72.50% 46.67% 52.63% 0.79

RF 88.16% 100% 55.83% 68.56% 1.0

Chi-squared XGBoost 82.89% 81.67% 52.5% 64.64% 0.81

RF 88.16% 95% 60.83% 71.30% 0.95
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processes and BRCA-related cancers, indicating the possible role of tissue-specific
dysfunctions in cancer susceptibility or phenotype expression (Zhang & Li, 2018). Table 3
shows the key findings (genes) and their pivotal functions.

KEGG pathway analysis
The KEGG pathway analysis using DAVID (Sherman et al., 2022; Huang, Sherman &
Lempicki, 2009) identified several pathways of potential relevance to BRCA-related
cancers. The enrichment of pathways associated with the immune response,
immunological diseases, natural killer cell-mediated cytotoxicity and allograft rejection
further emphasises the importance of immune cell interactions in these cancers.
Additionally, pathways related to hormone signaling, including the estrogen-signalling
pathway, were enriched, suggesting the influence of estrogen signalling even in BRCA-
negative patients (Yin et al., 2020).

Figure 4 ROC curve for best performing algorithm: RF with chi-square (5,000 variants).
Full-size DOI: 10.7717/peerj-cs.1942/fig-4
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These findings highlighted the complex interplay of factors, including immune-related
processes, hormone signalling and natural killer cell-mediated cytotoxicity, as potential
risk factors for BRCA-related cancers, extending beyond BRCA mutations’ cell targeting.
For example, genes involved in antigen processing and presentation, TAP binding and T
cell receptor binding were implicated, indicating their potential roles in immune
recognition and cancer (Reeves & James, 2017). The enrichment of the graft-vs.-host
disease pathway suggests that immune dysregulation may contribute to BRCA-related

Figure 5 The GO analysis conducted in R reveals significant biological processes linked to the genes
of interest. Full-size DOI: 10.7717/peerj-cs.1942/fig-5

Table 3 Table encapsulating the regarding genes and their pivotal functions.

Gene Process involved in Description/Pivotal function

HLA-A Antigen processing and presentation Crucial for immune response, presents peptide antigens to T cells

HLA-B Graft-versus-host disease, allograft
rejection

Plays a key role in immune system recognition, impacting graft compatibility

HLA-
DRB1

Antigen processing and presentation Involved in presenting antigens to immune cells, crucial to the immune response

KIR2DL1 Natural killer cell-mediated cytotoxicity Regulates natural killer cell activity, important for immune surveillance

KIR2DL3 Natural killer cell-mediated cytotoxicity Influences the activity of natural killer cells, key in immune defense mechanisms

KIR2DS1 Natural killer cell-mediated cytotoxicity Affects natural killer cell function, important in immune system’s response

KIR2DS5 Natural killer cell-mediated cytotoxicity Modulates the activity of NK cells, playing a role in immune response

GHR Estrogen signalling pathway While primarily known for growth hormone receptor, may interact with estrogen signaling

SHC1 Estrogen signalling pathway Involved in signal transduction, potentially linking to estrogen pathways

SIRT1 Estrogen signalling pathway Known for roles in aging and metabolism, may have links to estrogen signaling
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cancer susceptibility (Table 4). Additionally, metalloendopeptidase activity and calcium
channel activity were identified as potential mechanisms, pointing to the involvement of
extracellular matrix remodeling, cell migration and calcium signalling in cancer
progression (Chen et al., 2013).

The analysis of the KEGG pathway using the KEGG Mapper, as shown in Figs. 6 and 7
(Kanehisa & Sato, 2020; Kanehisa, Sato & Kawashima, 2022; Kanehisa & Goto, 2000;

Table 4 The KEGG pathways associated with the analysed genes, highlighting their involvement in specific biological pathways and networks.

Category Term RT Count % P-value Benjamini

KEGG_PATHWAY Antigen processing and presentation RT 8 5.7 6.9E-7 1.1E-4
KEGG_PATHWAY Graft-vs-host disease RT 6 4.3 7.5E-6 5.7E-4
KEGG_PATHWAY Natural killer cell-mediated cytotoxicity RT 6 4.3 1.5E-3 7.4E-2
KEGG_PATHWAY Estrogen signalling pathway RT 5 3.5 1.3E-2 4.9E-1
KEGG_PATHWAY Allograft rejection RT 3 2.1 2.6E-2 7.9E-1
KEGG_PATHWAY Type I diabetes mellitus RT 3 2.1 3.3E-2 8.3E-1
KEGG_PATHWAY Autoimmune thyroid disease RT 3 2.1 4.8E-2 1.0E0

KEGG_PATHWAY Human T-cell leukemia virus 1 infection RT 5 3.5 5.9E-2 1.0E0

KEGG_PATHWAY Viral myocarditis RT 3 2.1 6.0E-2 1.0E0

Figure 6 The enriched KEGG pathways analysed using R linked to the selected genes, providing
insights into their functional relationships and potential roles in biological processes.

Full-size DOI: 10.7717/peerj-cs.1942/fig-6
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Kanehisa et al., 2023) revealed only two significant pathways with implications for BRCA-
related cancers: the graft-vs.-host disease pathway and the antigen processing and
presentation pathway. The ‘graft-vs.-host disease pathway’ pathway was identified as an
enriched pathway in the analysis. This pathway is typically associated with complications
that can occur after haematopoietic stem cell transplantation (HSCT), where immune cells
from the donor (graft) attack the recipient’s (host) tissues (Zeiser & Blazar, 2017). The
involvement of this pathway in BRCA-related cancers suggests a potential role for immune
dysregulation in contributing the susceptibility to cancer. The presence of genes associated
with this pathway pointed to the importance of immune-related factors beyond BRCA
mutations.

The antigen processing and presentation pathway, a fundamental process for immune
recognition and elimination of pathogens or abnormal cells, including cancer cells, was
also enriched. This pathway (shown in Fig. 8) involves the presentation of antigens to
immune cells, initiating an immune response. Antigens are processed and presented on the
cell’s surface through two major pathways: the major histocompatibility complex class I
(MHCI) pathway and the major histocompatibility complex class II (MHCII) pathway
(Wieczorek et al., 2017). In the MHCI pathway, intracellular proteins, such as viral or
tumour antigens, are broken down into small peptide fragments within the cytosol. These
peptides are then transported into the endoplasmic reticulum (ER), where they bind to
MHCI molecules. The MHCI-peptide complexes are subsequently presented on the cell’s

Figure 7 KEGG pathway diagram for graft-vs.-host disease depicting the complex interplay of cellular and molecular interactions involved in
the pathogenesis of graft-vs.-host disease (GVHD). Key components include donor T cells, antigen-presenting cells (APCs) and various cytokines.
The detailed interactions between these components highlighted the roles of immune response and inflammation in GVHD progression (Image
source credit: Kanehisa Laboratories). Full-size DOI: 10.7717/peerj-cs.1942/fig-7
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surface, allowing cytotoxic T cells to recognise and eliminate infected or malignant cells.
The presence of genes associated with MHCI-mediated antigen presentation, including
HLA-B, HLA-A and HLA-DRB1, suggested their potential roles in BRCA-related cancers.
Dysregulation or abnormalities in this pathway may impact the immune system’s ability to
recognise and combat cancer cells, independent of BRCA mutations. The MHCII pathway
involves the presentation of antigens derived from extracellular sources, such as bacteria or
proteins released from dying cells (Abualrous, Sticht & Freund, 2021). Antigen-presenting
cells (APCs), including dendritic cells, macrophages and B cells, take up the extracellular
antigens. Within the APCs, the antigens are processed into peptide fragments and loaded

Figure 8 KEGG pathway diagram for antigen processing and presentation illustrating the central processes involved in antigen processing and
presentation, which are essential for immune system function. The diagram focuses on the breakdown of pathogens into peptide fragments, their
subsequent association with MHC molecules and their presentation to T cells, thereby triggering an immune response (Image source credit:
Kanehisa Laboratories). Full-size DOI: 10.7717/peerj-cs.1942/fig-8

Alganmi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1942 13/21

http://dx.doi.org/10.7717/peerj-cs.1942/fig-8
http://dx.doi.org/10.7717/peerj-cs.1942
https://peerj.com/computer-science/


onto MHCII molecules. The MHCII-peptide complexes are then displayed on the cell’s
surface, activating helper T cells to coordinate the immune response. The identification of
genes associated with MHCII-mediated antigen presentation, such as HLA-DM, further
emphasizes the involvement of immune recognition and immune response mechanisms in
BRCA-related cancers. The dysregulation of these pathways and abnormalities in immune
recognition and response may contribute to the development and progression of BRCA-
related cancers. Studies have shown that PALB2, ATM, CHEK2 and TP53, among others,
have also been associated with the increased risk of breast cancer (Easton et al., 2015;
Gracia-Aznarez et al., 2013). For example, TP53 mutations are known to play a significant
role in Li-Fraumeni syndrome, which elevates the risk of breast cancer as well as other
types of cancer (Gracia-Aznarez et al., 2013).

Variant analysis in genes associated with cancer-related pathways
The study sought to identify additional genetic variants associated with cancer
susceptibility in patients who are BRCA1/2 mutation-negative but have BRCA-related
cancers. The analysis examined genetic variants in genes known to be involved in cancer-
related pathways, beyond BRCA1/BRCA2 mutations. These variants may represent other
genetic risk factors for BRCA-related cancers (see Fig. 9).

Figure 9 Karyotype with SNP locations represented by blue points. Each blue point is labeled with the corresponding gene name, indicating the
genes associated with the identified variants. The figure offers a comprehensive view of the genetic variations within the karyotype and their specific
gene associations. Full-size DOI: 10.7717/peerj-cs.1942/fig-9
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The search for cancer risk-associated genes was accomplished by focusing on variants
located especially in known cancer-related pathways that result in non-synonymous
mutations, potentially affecting protein function, and are more prevalent in cancer patients
compared to BRCA-negative patients. The role of non-BRCA genes in cancer-related
pathways is increasingly being recognized (Evans et al., 2021). These genes, which include
PALB2, ATM and CHEK2 among others, are known to interact with BRCA1 and BRCA2
in DNA repair pathways and mutations in these genes have been associated with a
moderate increase in the risk of breast and ovarian cancer (Couch et al., 2017; Cybulski
et al., 2015; Easton et al., 2015). Non-synonymous mutations, which result in changes to
the protein sequence, have a higher likelihood of affecting protein functioning compared
to synonymous mutations (Miosge et al., 2015). These mutations can alter protein activity,
stability or interaction with other proteins, leading to the dysregulation of cellular
pathways. In the context of BRCA-related cancers in patients who are BRCA negative,
non-synonymous mutations may represent additional genetic risk factors.

By observing non-synonymous mutations in genes known to be involved in DNA repair
or cell cycle control, we identified potential disruptions in normal cellular functions that
could contribute to an increased risk of cancer. For example, a non-synonymous variant in
the RNF223 gene, which changes the proline at position 231 to arginine (P231R), may
impact the protein’s function. BRCA-related cancer patients exhibit a diverse range of
genetic variants, emphasising the polygenic nature of cancer susceptibility (Vihinen, 2022).
These variants occur in multiple genes, some of which are already known to be associated
with cancer, while others may represent novel candidate susceptibility genes. For instance,
the dataset revealed a nonsynonymous variant in the RNF223 gene, which encodes an E3
ubiquitin-protein ligase (Feng et al., 2021). Disruptions in such genes can interfere with the
protein degradation process, potentially leading to the accumulation of harmful proteins
that promote cancer. Additionally, the GABRD gene encodes a subunit of the gamma-
aminobutyric acid (GABA) receptor (Wu et al., 2023). Perturbations in GABA signalling
have been implicated in various cancers, suggesting that alterations in this pathway could
contribute to the development of cancer.

Additionally, several variants were found in non-coding regions or led to synonymous
changes (no change in the encoded amino acid). While these variants do not alter protein
sequences, they can still influence gene regulation and expression, thereby potentially
contributing to cancer susceptibility (Sharma et al., 2019). These regions, once considered
‘junk DNA’, are now recognized as crucial regulatory regions capable of influencing gene
expression. Variants in these regions can impact the binding of transcription factors or
other regulatory molecules, leading to changes in the expression levels of associated genes.
Such regulatory alterations can profoundly affect cellular processes and potentially
contribute to the development or progression of cancer. They can influence mRNA
stability, splicing and translation, thereby impacting protein levels within the cell. For
instance, the analysis identified a synonymous variant in the FAM131C gene. Although
this variant does not change the protein sequence it could still influence the expression or
function of FAM131C, which may be relevant to cancer (Gotea et al., 2015). Taking this
into consideration, further research is required to validate these potential risk factors,
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investigate their interactions with each other and determine their interplay with non-
genetic factors. Such endeavors will contribute to a more comprehensive understanding
the cancer risk in BRCA-negative patients.

CONCLUSION
In this study, we used WES samples from 76 women with BRCA-related cancer who
tested negative for BRCA gene mutations. We present a machine-learning approach to
detect the high-risk genes in the Saudi population. The RF algorithm achieves 88% accuracy
and an AUC of 0.95 on the testing dataset. The learned model has been analysed to
extract the features as variants to be studied. The analysis of the data and the results
indicate that changes in HLA genes affecting the immune system are crucial to the
development of cancers related to BRCA. Thus, understanding the interplay between
immune dysregulation and BRCA-related cancers could provide valuable insights for the
development of immunotherapeutic strategies and improved treatment outcomes. Further
research is required to validate these potential risk factors, investigate their interactions
with each other and determine their interplay with non-genetic factors. Such
endeavours will contribute to a more comprehensive understanding of cancer risk in
BRCA-negative patients.
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