
The effects of change decomposition on
code review—a controlled experiment
Marco di Biase1,2, Magiel Bruntink2, Arie van Deursen1 and
Alberto Bacchelli3

1 Delft University of Technology, Delft, The Netherlands
2 Software Improvement Group, Amsterdam, The Netherlands
3 University of Zurich, Zurich, Switzerland

ABSTRACT
Background: Code review is a cognitively demanding and time-consuming process.
Previous qualitative studies hinted at how decomposing change sets into multiple
yet internally coherent ones would improve the reviewing process. So far, literature
provided no quantitative analysis of this hypothesis.
Aims: (1) Quantitatively measure the effects of change decomposition on the
outcome of code review (in terms of number of found defects, wrongly reported
issues, suggested improvements, time, and understanding); (2) Qualitatively analyze
how subjects approach the review and navigate the code, building knowledge and
addressing existing issues, in large vs. decomposed changes.
Method: Controlled experiment using the pull-based development model involving
28 software developers among professionals and graduate students.
Results: Change decomposition leads to fewer wrongly reported issues, influences
how subjects approach and conduct the review activity (by increasing context-
seeking), yet impacts neither understanding the change rationale nor the number
of found defects.
Conclusions: Change decomposition reduces the noise for subsequent data analyses
but also significantly supports the tasks of the developers in charge of reviewing
the changes. As such, commits belonging to different concepts should be separated,
adopting this as a best practice in software engineering.

Subjects Human-Computer Interaction, Software Engineering
Keywords Code review, Controlled experiment, Change decomposition, Pull-based
development model

INTRODUCTION
Code review is one among the activities performed by software teams to check code
quality, with the purpose of identifying issues and shortcomings (Bacchelli & Bird,
2013). Nowadays, reviews are mostly performed in an iterative, informal, change- and
tool-based fashion, also known as modern code review (MCR) (Cohen, 2010). Software
development teams, both in open-source and industry, employ MCR to check code
changes before being integrated in to their codebases (Rigby & Bird, 2013). Past research
has provided evidence that MCR is associated with improved key software quality aspects,
such as maintainability (Morales, McIntosh & Khomh, 2015) and security (di Biase,
Bruntink & Bacchelli, 2016), as well as with less defects (McIntosh et al., 2016).

How to cite this article di Biase M, Bruntink M, van Deursen A, Bacchelli A. 2019. The effects of change decomposition on code review—a
controlled experiment. PeerJ Comput. Sci. 5:e193 DOI 10.7717/peerj-cs.193

Submitted 19 December 2018
Accepted 15 April 2019
Published 13 May 2019

Corresponding author
Marco di Biase, m.dibiase@tudelft.nl

Academic editor
Robert Winkler

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.193

Copyright
2019 di Biase et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.193
mailto:m.�dibiase@�tudelft.�nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.193
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Reviewing a source code change is a cognitively demanding process. Researchers
provided evidence that understanding the code change under review is among the
most challenging tasks for reviewers (Bacchelli & Bird, 2013). In this light, past studies
have argued that code changes that—at the same time—address multiple, possibly
unrelated concerns (also known as noisy (Murphy-Hill, Parnin & Black, 2012) or
tangled changes (Herzig & Zeller, 2013)) can hinder the review process (Herzig &
Zeller, 2013; Kirinuki et al., 2014), by increasing the cognitive load for reviewers.
Indeed, it is reasonable to think that grasping the rationale behind a change that
spans multiple concepts in a system requires more effort than the same patch committed
separately. Moreover, the noise could put a reviewer on a wrong track, thus leading
to missing defects (false negatives) or to raising unfounded issues in sound code
(false positives in this paper).

Qualitative studies reported that professional developers perceive tangled code
changes as problematic and asked for tools to automatically decompose them (Tao et al.,
2012; Barnett et al., 2015). Accordingly, change untangling mechanisms have been
proposed (Tao & Kim, 2015; Dias et al., 2015; Barnett et al., 2015).

Although such tools are expectedly useful, the effects of change decomposition on
review is an open research problem. Tao & Kim (2015) presented the earliest and
most relevant results in this area, showing that change decomposition allows practitioners
to achieve their tasks better in a similar amount of time.

In this paper, we continue on this research line and focus on evaluating the effects
of change decomposition on code review. We aim at answering questions, such as:
Is change decomposition beneficial for understanding the rationale of the change? Does
it have an impact on the number/types of issues raised? Are there differences in time
to review? Are there variations with respect to defect lifetime?

To this end, we designed a controlled experiment focusing on pull requests, a
widespread approach to submit and review changes (Gousios et al., 2015). Our work
investigates whether the results from Tao & Kim (2015) can be replicated, and extend
the knowledge on the topic. With a Java system as a subject, we asked 28 software
developers among professionals and graduate students to review a refactoring and a
new feature (according to professional developers (Tao et al., 2012), these are the most
difficult to review when tangled). We measure how the partitioning vs. non-partitioning of
the changes impacts defects found, false positive issues, suggested improvements, time
to review, and understanding the change rationale. We also perform qualitative
observations on how subjects conduct the review and address defects or raise false
positives, in the two scenarios.

This paper makes the following contributions:

� The design of an asynchronous controlled experiment to assess the benefits of
change decomposition in code review using pull requests, available for replication
(di Biase et al., 2018);

� Empirical evidence that change decomposition in the pull-based review environment
leads to fewer false positives.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 2/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

RELATED WORK
Several studies explored tangled changes and concern separation in code reviews. Tao et al.
(2012) investigated the role of understanding code changes during the software
development process, exploring practitioners’ needs. Their study outlined that grasping
the rationale when dealing with the process of code review is indispensable. Moreover,
to understand a composite change, it is useful to break it into smaller ones each concerning
a single issue. Rigby et al. (2014) empirically studied the peer review process for six
large, mature OSS projects, showing that small change size is essential to the more fine-
grained style of peer review. Kirinuki et al. (2014) provided evidence about problems
with the presence of multiple concepts in a single code change. They showed that these
are unsuitable for merging code from different branches, and that tangled changes are
different to review because practitioners have to seek the changes for the specified task
in the commit.

Regarding empirical controlled experiments on the topic of code reviews, the most
relevant work is by Uwano et al. (2006). They used an eye-tracker to characterize the
performance of subjects reviewing source code. Their experimentation environment
enabled them to identify a pattern called scan, consisting of the reviewer reading the entire
code before investigating the details of each line. In addition, their qualitative analysis
found that participants who did not spend enough time during the scan took more time to
find defects. Uwano’s experiment was replicated by Sharif, Falcone & Maletic (2012).
Their results indicated that the longer participants spent in the scan, the quicker they
were able to find the defect. Conversely, review performance decreases when participants
did not spend sufficient time on the scan, because they find irrelevant lines. Recently,
Baum, Schneider & Bacchelli (2019) highlighted how performance in code review is
significantly higher when code changes are small, whereas complex and longer changes
lead to lower review effectiveness.

Even if MCR is now a mainstream process, adopted in both open source and industrial
projects, we found only two studies on change partitioning and its benefits for code
review. The work by Barnett et al. (2015) analyzed the usefulness of an automatic
technique for decomposing changesets. They found a positive association between change
decomposition and the level of understanding of the changesets. According to their results,
this would help time to review as the different contexts are separated. Tao & Kim (2015)
proposed a heuristic-based approach to decompose changeset with multiple concepts.
They conducted a user study with students investigating whether their untangling
approach affected the time and the correctness in performing review-related tasks.
Results were promising: Participants completed the tasks better with untangled changes
in a similar amount of time. In spite of the innovative techniques they proposed to
untangle code changes and in these promising results, the evaluation of effects of
change decomposition was preliminary.

In contrast, our research focuses on setting up and running an experiment to
empirically assess the benefits of change decomposition for the process of code review,
rather than evaluating the performances of an approach.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 3/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

MOTIVATION AND RESEARCH OBJECTIVES
In this section, we present the context of our work and the research questions.

Experiment definition and context
Our analysis of the literature showed that there is only preliminary empirical evidence
on how code review decomposition affects its outcomes, its change understanding, time
to completion, effectiveness (i.e., number of defects found), false positives (issues
mistakenly identified as defect by the reviewer), and suggested improvements. This lack
of empirical evidence motivates us in setting up a controlled experiment, exploiting the
popular pull-based development model, to assess the conjecture that a proper separation
of concerns in code review is beneficial to the efficiency and effectiveness of the review.

Pull requests feature asynchronous, tool-based activities in the bigger scope of
pull-based software development (Gousios, Pinzger & Van Deursen, 2014). The pull-based
software process features a distributed environment where changes to a system are
proposed through patch submissions that are pulled and merged locally, rather than
being directly pushed to a central repository.

Pull requests are the way contributors submit changes for review in GitHub. Change
acceptance has to be granted by other team members called integrators (Gousios et al.,
2015). They have the crucial role of managing and integrating contributions and are
responsible for inspecting the changes for functional and non-functional requirements.
A total of 80% of integrators use pull requests as the means to review changes proposed
to a system (Gousios et al., 2015).

In the context of distributed software development and change integration, GitHub
is one of the most popular code hosting sites with support for pull-based development.
GitHub pull requests contain a branch from which changes are compared by an automatic
discovery of commits to be merged. Changes are then reviewed online. If further changes
are requested, the pull request can be updated with new commits to address the comments.
The inspection can be repeated and, when the patch set fits the requirements, the
pull request can be merged to the master branch.

Research questions
The motivation behind MCR is to find defects and improve code quality (Bacchelli & Bird,
2013). We are interested in checking if reviewers are able to address defects (referred in
this paper as effectiveness). Furthermore, we focus on comments pointing out false positives
(wrongly reported defects), and suggested improvements (non-critical non-functional
issues such as suggested refactorings). Suggested improvements highlight reviewer
participation (McIntosh et al., 2014) and these comments are generally considered very
useful (Bosu, Greiler & Bird, 2015). Our first research question is:

RQ1. Do tangled pull requests influence effectiveness (i.e., number of defects found),
false positives, and suggested improvements of reviewers, when compared to untangled
pull requests?

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 4/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Based on the first research question, we formulate the following null-hypotheses for
(statistical) testing:

Tangled pull requests do not reduce:

H0e the effectiveness of the reviewers during peer-review

H0f the false positives detected by the reviewers during peer-review

H0c the suggested improvements written by the reviewers during peer-review

Given the structure and the settings of our experimentation, we can also measure
the time spent on review activity and defect lifetime. Thus, our next research question is:

RQ2. Do tangled pull requests influence the time necessary for a review and defect
lifetime, when compared to untangled pull requests?

For the second research question, we formulate the following null-hypotheses:

Tangled pull requests do not reduce:

H0t1 time to review

H0t2 defect lifetime

Further details on how we measure time and define defect lifetime are described in
the section “Outcome Measurements”.

In our study, we aim to measure whether change decomposition has an effect on
understanding the rationale of the change under review. Understanding the rationale is
the most important information need when analyzing a change, according to professional
software developers (Tao et al., 2012). As such, the question we set to answer is:

RQ3. Do tangled pull requests influence the reviewers’ understanding of the change
rationale, when compared to untangled ones?

For our third research question, we test the following null-hypotheses:

Tangled pull requests do not reduce:

H0u change-understanding of reviewers during peer-review when compared to untangled
pull requests

Finally, we qualitatively investigate how participants individually perform the review to
understand how they address defects or potentially raise false positives. Our last research
question is then:

RQ4.What are the differences in patterns and features used between reviews of tangled
and untangled pull requests?

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 5/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

EXPERIMENTAL DESIGN AND METHOD
In this section, we detail how we designed the experiment and the research method that
we followed.

Object system chosen for the experiment
The system that was used for reviews in the experiment is JPacman, an open-source Java
system available on GitHub (https://github.com/SERG-Delft/jpacman-framework) that
emulates a popular arcade game used at Delft University of Technology to teach software
testing.

The system has about 3,000 lines of code and was selected because a more complex and
larger project would require participants to grasp the rationale of a more elaborate system.
In addition, the training phase required for the experiment would imply hours of effort,
increasing the consequent fatigue that participants might experience. In the end, the
experiment targets assessing differences in review partitioning and is tailored for a
process rather than a product.

Recruiting of the subject participants
The study was conducted with 28 participants recruited by means of convenience
sampling (Wohlin et al., 2012) among experienced and professional software
developers, PhD, and MSc students.1 They were drawn from a population sample
that volunteered to participate. The voluntary nature of participation implies the
consent to use data gathered in the context of this study. Software developers belong to
three software companies, PhD students belong to three universities, and MSc students to
different faculties despite being from the Delft University of Technology. We involved
as many different roles as possible to have a larger sample for our study and increase
its external validity. Using a questionnaire, we asked development experience, language-
specific skills, and review experience as number of reviews per week. We also included
a question that asked if a participant knew the source code of the game. Table 1 reports
the results of the questionnaire, which are used to characterize our population and to
identify key attributes of each subject participant.

Table 1 Descriptive data of the subject participants.

Group # of subjects Role FTE experience Reviews per week

Total with system
knowledge

μ per role per group

μ μ

Control
(tangled changes)

6 2 (33%) SW developer 4.3 4.8 4.8 3.3 3.6 3.6

3 1 (33%) PhD student 5.0 2.9 3.0 2.9

5 3 (60%) MSc student 2.2 0.7 2.6 3.8

Treatment
(untangled changes)

6 2 (33%) SW developer 4.8 2.9 3.3 3.4 4.0 6.4

3 1 (33%) PhD student 6.0 6.6 2.0 0.8

5 3 (60%) MSc student 2.2 1.1 6.0 9.0

1 Delft University of Technology Human
Research Committee approved our study
with IRB approval #578. University of
Zurich authorized the research with IRB
approval #2018-024.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 6/25

https://github.com/SERG-Delft/jpacman-framework
http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Monitoring vs. realism
In line with the nature of pull-based software development and its peer review with
pull requests, we designed the experimentation phase to be executed asynchronously.
This implies that participants could run the experiment when and where they felt
most comfortable, with no explicit constraints for place, time or equipment.

With this choice, we purposefully gave up some degree of control to increase realism.
Having a more strictly controlled experimental environment would not replicate the
usual way of running such tasks (i.e., asynchronous and informal). Besides, an experiment
run synchronously in a laboratory would still raise some control challenges: It might
be distracting for some participants, or even induce some follow the crowd behavior, thus
leading to people rushing to finish their tasks.

To regain some degree of control, participants ran all the tasks in a provided virtual
machine available in our replication package (di Biase et al., 2018). Moreover, we
recorded the screencast of the experiment, therefore not leaving space to misaligned
results and mitigating issues of incorrect interpretation. Subjects were provided with
instructions on how to use the virtual machine, but no time window was set.

Independent variable, group assignment, and duration
The independent variable of our study is change decomposition in pull requests.
We split our subjects between a control group and a treatment group: The control
group received one pull request containing a single commit with all the changes tied
together; the treatment group received two pull requests with changes separated
according to a logical decomposition. Our choice of using only two pull requests
instead of a larger number is mainly dictated by the limited time participants were
allotted for the experiment, and the possibly increased influence of distractions.
Changes spanning a greater part of the codebase require additional expertise,
knowledge, and focus, which reviewers might lack. Extensive literature in psychology
(Shiffrin, 1988; Wickens, 1991; Cowan, 1998; James, 2013) reports that cognitive
resources such as attention are finite. Since complex tasks like reviewing code drain such
resources, the effectiveness of the measured outcomes will be negatively impacted
by a longer duration.

Participants were randomly assigned to either the control group or the treatment
using strata based on experience as developers and previous knowledge. Previous research
has shown that these factors have an impact on review outcome (Rigby et al., 2012;
Bosu, Greiler & Bird, 2015). Developers who previously made changes to files to be
reviewed had a higher proportion of useful comments.

All subjects were asked to run the experiment in a single session so that external
distracting factors could be eliminated as much as possible. If a participant needed a pause,
the pause is considered and excluded from the final result as we measure and monitor
for periods of inactivity. We seek to reduce the impact of fatigue by limiting the expected
time required for the experiment to an average of 60 min; this value is closer to the
minimum rather than the median for similar experiments (Ko, LaToza & Burnett, 2015).
As stated before, though, we did not suggest or force any strict limit on the duration of

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 7/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

the experiment to the ends of replicating the code review informal scenario. No learning
effect is present as every participant runned the experiment only once.

Pilot experiments
We ran two pilot experiments to assess the settings. The first subject (a developer with
five FTE2 years of experience) took too long to complete the training and showed some
issues with the virtual machine. Consequently, we restructured the training phase
addressing the potential environment issues in the material provided to participants.
The second subject (a MSc student with little experience) successfully completed the
experiment in 50 min with no issues. Both pilot experiments were executed
asynchronously in the same way as the actual experiment.

Tasks of the experiment
The participants were asked to conduct the following four tasks. Further details are
available in the online appendix (di Biase et al., 2018).

Preparing the environment
Participants were given precise and detailed instructions on how to set-up the
environment for running the experiment. These entailed installing the virtual machine,
setting up the recording of the screen during the experiment, and troubleshooting
common problems, such as network or screen resolution issues.

Training the participants
Before starting with the review phase, we first ensured that the participants were
sufficiently familiar with the system. It is likely that the participants had never seen the
codebase before: this situation would limit the realism of the subsequent review task.

To train our participants we asked subjects to implement three different features in
the system:

1. Change the way the player moves on the board game, using different keys,

2. check if the game board has null squares (a board is made of multiple squares) and
perform this check when the board is created, and

3. implement a new enemy in the game, with similar artificial intelligence to another
enemy but different parameters.

This learning by doing approach is expected to have higher effectiveness than providing
training material to participants (Slavin, 1987). By definition, this approach is a method of
instruction where the focus is on the role of feedback in learning. The desired features
required change across the system’s codebase. The third feature to be implemented targeted
the classes and components of the game that would be object of the review tasks. The choice
of using this feature as the last one is to progressively increment the level of difficulty.

No time window was given to participants, aiming for a more realistic scenario. As
explicitly mentioned in the provided instructions, participants were allowed to use any
source for retrieving information about something they did not know. This was permitted
as the study does not want to assess skills in implementing some functionality in a

2 A full-time employee (FTE) works the
equivalent of 40 hours a week. We con-
sider 1 FTE-year when a person has
worked the equivalent of 40 hours a week
for one year. For example, an individual
working two years as a developer for 20
hours a week would have 1 FTE-year
experience.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 8/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

programming language. The only limitation is that the participants must use the tools
within the virtual machine.

The virtual machine provided the participants with the Eclipse Java IDE. The setup
already had the project imported in Eclipse’s workspace. We used a plugin in Eclipse,
WatchDog (Beller et al., 2015), to monitor development activity. With this plugin, we
measured how much time participants spent reading, typing, or using the IDE. The
purpose was to quantify the time to understand code among participants and whether
this relates to a different outcome in the following phases. Results for this phase are
shown in Fig. 1, which contains boxplots depicting the data. It shows that there is
no significant difference between the two groups. We retrieve the non-statistical
significance by performing Mann–Whitney U-tests on the four variables in Fig. 1, with
the following p-values: IDE active: p-value = 0.98, User Active: p-value = 0.80, Reading:
p-value = 0.73, Writing: p-value = 0.73.

Perform code review on proposed change(s)
Participants were asked to review two changes made to the system:

1. the implementation of the artificial intelligence for one of the enemies

2. the refactoring of a method in all enemy classes (moving its logic to the parent class).

These changes can be inspected in the online appendix (di Biase et al., 2018) and
have been chosen to meet the same criteria used by Herzig, Just & Zeller (2016) when
choosing tangled changes. Changes proposed can be classified as refactoring and
enhancement. Previous literature gave insight as to how these two kinds of changes,
when tangled together, are the hardest to review (Tao et al., 2012). Although recent research
proposed a theory for the optimal ordering of code changes in a review (Baum, Schneider &

Figure 1 Boxplots for training phase measurements. The results highlight no differences between the
two groups. Full-size DOI: 10.7717/peerj-cs.193/fig-1

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 9/25

http://dx.doi.org/10.7717/peerj-cs.193/fig-1
http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Bacchelli, 2017), we used the default ordering and presentation provided by GitHub, because
it is the de-facto standard. Changesets were included in pull requests on private GitHub
repositories so that participants performed the tasks in a real-world review environment.
Pull requests had identical descriptions for both the control and the treatment, with no
additional information except their descriptive title. While research showed that a short
description may lead to poor review participation (Thongtanunam et al., 2017), this does
not apply to our experiment as there is no interaction among subjects.

Subjects were instructed to understand the change and check its functional correctness.
We asked the participants to comment on the pull request(s) if they found any problem
in the code, such as any functional error related to correctness and issues with code
quality. The changes proposed had three different functional issues that were intentionally
injected into the source code. Participants could see the source code of the whole
project in case they needed more context, but only through GitHub’s browser-based UI.

The size of the changeset was around 100 lines of code and it involved seven files.
Gousios, Pinzger & Van Deursen (2014) showed that the number of total lines changed
by pull requests is on average less than 500, with a median of 20. Thus, the number of
lines of the changeset used in this study is between the median and the average. Our
changeset size is also consistent with recent research which found that code review is
highly effective on smaller changes (Baum, Schneider & Bacchelli, 2019) and rewiewability
can be empirically defined through several factors, one being change size (Ram et al., 2018)

Post-experiment questionnaire
In the last phase participants were asked to answer a post-experiment questionnaire.
Questions are showed in the section “Results,” RQ3: Q1–Q4 were about change-
understanding, while Q5–Q12 involved subjects’ opinions about changeset
comprehension and its correctness, rationale, understanding, etc. Q5–Q12 were a
summary of interesting aspects that developers need to grasp in a code change, as
mentioned in the study of Tao et al. (2012). The answers must be provided in a Likert
scale (Oppenheim, 2000) ranging from “Strongly disagree” (1) to “Strongly agree” (5).

Outcome measurements
Effectiveness, false positives, suggested improvements
Subjects were asked to comment a pull request in the pull request discussion or in-line
comment in a commit belonging to that pull request. The number of comments addressing
functional issues was counted as the effectiveness. At the same time, we also measured
false positives (i.e., comments in pull request that do not address a real issue in the code) and
suggested improvements (i.e., remarks on other non-critical non-functional issues).
We distinguished suggested improvements and false positives from the comments that
correctly addressed an issue because the three functional defects were intentionally put in
the source code. Comments that did not directly and correctly tackle one of these three issues
were classified either as false positives or suggested improvements. They were classified by
the first author by looking at the description provided by the subject. A correctly identified
issue needs to highlight the problem, and optionally provide a short description.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 10/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Time
Having the screencast of the whole experiment, as well as using tools that give time
measures, we gathered the following measurements:

� Time for Task 2, in particular:

– total time Eclipse is [opened/active]

– total time the user is [active/reading/typing];
as collected by WatchDog (section “Tasks of the Experiment”).

� Total net time for Task 3, defined as from when the subject opens a pull request until
when (s)he completes the review, purged of eventual breaks.

� Defect lifetime, defined as the period during which a defect continues to exist. It is
measured from the moment the subject opens a pull request to when (s)he writes a
comment that correctly identifies the issue. For the case of multiple comments on the
same pull request, this is the time between finishing with one defect and addressing
the next. A similar measure was previously used by Prechelt & Tichy (1998).

All the above measures are collected in seconds elapsed.

Change-understanding
In this experiment, change understanding was measured by means of a questionnaire
submitted to participants post review activity, as mentioned in Task 4 in the section
“Tasks of the Experiment.” Questions are shown in the section “Results,” RQ3, from Q1
to Q4. Its aim is to evaluate differences in change-understanding. A similar technique
was used by Binkley et al. (2013).

Final survey
Lastly, participants were asked to give their opinion on statements targeting the perception
of correctness, understanding, rationale, logical partitioning of the changeset, difficulty in
navigating the changeset in the pull request, comprehensibility, and the structure of the
changes. This phase, as well as the previous one, was included in Task 4, corresponding
to questions Q5–Q12 (section “Results,” RQ3). Results were given on a Likert scale
from “Strongly disagree” (1) to “Strongly agree” (5) (Oppenheim, 2000), reported as
mean, median and standard deviation over the two groups, and tested for statistical
significance with the Mann–Whitney U-test.

Research method for RQ4
For our last research question, we aimed to build some initial hypothesis to explain the
results from the previous research questions. We sought what actions and patterns
led a reviewer in finding an issue or raising false positive, as well as other comments.
This method was applied only to the review phase, without analyzing actions and patterns
concerning the training phase. The method to map actions to concepts started by
annotating the screencasts retrieved after the conclusion of the experimental phase.
Subjects performed a series of actions that defined and characterized both the outcome

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 11/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

and the execution of the review. The first author inserted notes regarding actions
performed by participants to build a knowledge base of steps (i.e., participant opens
fileName, participant uses GitHub search box with the keyword, etc.).

Using the methodology for qualitative content analysis delineated by Schreier (2013),
we firstly defined the coding frame. Our goal was to characterize the review activity
based on patterns and behaviors. As previous studies already tackled this problem and
came up with reliable categories, we used the investigations by Tao et al. (2012) and Sillito,
Murphy & De Volder (2006) as the base for our frame. We used the concepts from
Tao et al. (2012) regarding Information needs for reasoning and assessing the change
and Exploring the context and impact of the change, as well as the Initial focus points
and Building on initial focus points steps from Sillito, Murphy & De Volder (2006).

To code the transcriptions, we used the deductive category application, resembling
the data-driven content analysis technique by Mayring (2000). We read the material
transcribed, checking whether a concept covers that action transcribed (e.g., participant
opens file fileName so that (s)he is looking for context). We grouped actions
covered by the same concept (e.g., a participant opens three files, but always for context
purpose) and continued until we built a pattern that led to a specific outcome (i.e.,
addressing a defect or a false positive). We split the patterns according to their concept
ordering such that those that led to more defects found or false positive issues were
visible.

THREATS TO VALIDITY AND LIMITATIONS
Internal validity
The sample size comprised in our experiment poses an inherent threat to the internal
validity of our experiment. Furthermore, using a different experimental strategy (e.g., that
used by Tao & Kim (2015)) would remove personal performance biases, while causing
a measurable learning effect. In fact,Wohlin et al. (2012) state that “due to learning effects,
a human subject cannot apply two methods to the same piece of code.” This would
result in affecting the study goals and construct validity. In addition, the design and
asynchronous execution of the experimental phase creates uncertainty regarding
possible external interactions. We could not control random changes in the experimental
setting, and this translates to possible disturbances coming from the surrounding
environment, that could cause skewed results.

Moreover, our experiment settings could not control if participants interacted among
them, despite participants did not have any information about each other.

Regarding the statistical regression (Wohlin et al., 2012), tests used in our study
not performed with the Bonferroni correction, following the advice by Perneger:
“Adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical
inference” (Perneger, 1998). Other corrections such as the false discovery rate (FDR) are
also not suited for our study. The de-facto standard to perform the FDR correction is
the Benjamini–Hochberg (BH) (Benjamini & Hochberg, 1995). The BH, though useful
when dealing with large numbers of p-values (e.g., 100), needs careful adjustment of a

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 12/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

threshold to detect false positives. The number of statistical tests performed in our study
is small enough to warrant not applying FDR or other significance corrections.

Construct validity
Relatively to the restricted generalizability across constructs (Wohlin et al., 2012), in
our experiment, we uniquely aim to measure the values presented in the section “Outcome
Measurements.” The treatment might influence direct values we measure, but it could
potentially cause negative effects on concepts that our study does not capture.
Additionally, we acknowledge threats regarding the time measures taken by the first author
regarding RQ2. Clearly, manual measures are suboptimal, that were adopted to avoid
participants having to perform such measures themselves.

When running an experiment, participants might try to guess what is the purpose of
the experimentation phase. Therefore, we could not control their behavior based on
the guesses that either positively or negatively affected the outcome.

Threats to construct validity are connected to designing the questionnaires used for
RQ3, despite designed using standard ways and scales (Oppenheim, 2000). Finally, threats
connected to the manual annotation of the screencasts recorded and analyzed by the
first author could lead to misinterpreted or misclassified actions performed by the
participants in our experiment.

External validity
Threats to external validity for this experiment concern the selection of participants to
the experimentation phase. Volunteers selected with convenience sampling could have an
impact on the generalizability of results, which we tried to mitigate by sampling
multiple roles for the task. If the group is very heterogeneous, there is a risk that the variation
due to individual differences is larger than due to the treatment (Cook & Campbell, 1979).

Furthermore, we acknowledge and discuss the possible threat regarding the
system selection for the experimental phase. Naturally, the system used is not fully
representative of a real-world scenario. Our choice, however, as explained in the section
“Object System Chosen for the Experiment,” aims to reduce the training phase effort
required from participants and to encourage the completion of the experiment. Despite
research empirically showed that small code changes are easier to review (Ram et al., 2018)
and current industrial practice reports reviews being almost always done on very small
changesets (Sadowski et al., 2018), the external validity of our study is influenced by the
size of the changes under review and number of pull requests used in the experimental
setup. Lack of empirical studies that provide an initial reference on the size of tangled
changesets left us unable to address such threats. Future research should provide empirical
evidence about the average tangled change, as well as the impact of larger changeset or
number of pull requests on the results of our experiment.

Finally, our experiment was designed considering only a single programming language,
using the pull-based methodology to review and accept the changes proposed using
GitHub as a platform. Therefore, threats for our experiment are related to mono-operation
and mono-method bias (Wohlin et al., 2012).

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 13/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

RESULTS
This section presents the results to the four research questions we introduced in the section
“Research Questions”.

RQ1. Effectiveness, false positives, and suggestions
For our first research question, descriptive statistics about results are shown in Table 2.
It contains data about effectiveness of participants (i.e., correct number of issues
addressed), false positives, and number of suggested improvements. Given the sample size,
we applied a non-parametric test and performed a Mann–Whitney U-test to test for
differences between the control and the treatment group. This test, unlike a t-test, does
not require the assumption of a normal distribution of the samples. Results of the statistical
test are intended to be significant for a confidence level of 95%.

Results indicate a significant difference between the control and the treatment group
regarding the number of false positives, with a p-value of 0.03. On the contrary, there is
no statistically significant difference regarding the number of defects found (effectiveness)
and number of suggested improvements.

The example of a false positive is when one of the subjects of the control group writes:
“This doesn’t sound correct to me. Might want to fix the for, as the variable varName is
never used.” This is not a defect, as varName is used to check how many times the
for-statement has to be executed, despite not being used inside the statement. This is also
written in a code comment. Another false positive example is provided from a participant
in the control group who, reading the refactoring proposed by the changeset under
review, writes: “Themethod methodName is used only in Class ClassName, so fix this.” This is
not a defect as the same methodName is used by the other classes in the hierarchy. As such,
we can reject only the null hypothesis H0f regarding the false positives, while we cannot
provide statistically significant evidence about the other two variables tested in H0e and H0c.

The statistical significance alone for the false positives does not provide a measure to
the actual impact of the treatment. To measure the effect size of the factor over the
dependent variable we chose the Cliff’s Delta (Cliff, 1993), a non-parametric measure
for effect size. The calculation is given by comparing each of the scores in one group to
each of the scores in the other, with the following formula: d ¼ #ðx1>x2Þ�#ðx1<x2Þ

n1n2
where x1,

x2 are values for the two groups and n1, n2 are their sample size. For data with skewed

Table 2 RQ1—number of defects found (effectiveness), false positives and suggested improvements.

Group # of subjects Total Median Mean Confidence interval 95% p-value

Effectiveness (defects found) Control 14 20 1.0 1.42 0.72 [0–2.85] 0.6

Treatment 14 17 1.0 1.21 0.77 [0–2.72]

False positives Control 14 6 0 0.42 0.5 [0–1.40] 0.03

Treatment 14 1 0 0.07 0.25 [0–0.57]

Suggested improvements Control 14 7 0 0.5 0.62 [0–1.22] 0.4

Treatment 14 19 1.0 1.36 1.84 [0–5.03]

Note:
Statistically significant p-values in boldface.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 14/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

marginal distribution it is a more robust measure if compared to Cohen standardized
effect size (Cohen, 1992). The computed value shows a positive (i.e., tangled pull
requests lead to more false positives) effect size (d = 0.36), revealing a medium effect.
The effect size is considered negligible for jdj < 0.147, small for jdj < 0.33, medium for
jdj < 0.474, large otherwise (Romano et al., 2006).

Result 1: Untangled pull requests (treatment) lead to fewer false positives with a
statistically significant, medium size effect.

Given the presence of suggested improvements in our results, we found that the control
group writes in total seven, while the participants in the treatment write 19. This difference is
interesting, calling for further classification of the suggestions. For the control group,
participants wrote respectively three improvements regarding code readability, two
concerning functional checks, one regarding understanding of source code and one regarding
other code issues. For the treatment group, we classified five suggestions for code readability,
eight for functional checks and seven for maintainability. Although subjects have been
explicitly given the goal to find and comment exclusively functional issues (section “Tasks of
the Experiment”), they wrote these suggestions spontaneously. The suggested improvements
are included in the online appendix (di Biase et al., 2018) along with their classification.

RQ2. Review time and defect lifetime
To answer RQ2, we measured and analyzed the time subjects took to review the pull
requests, as well as the amount of time they used to fix each of the issues present.
Descriptive statistics about results for our second research question are shown in Table 3.
It contains data about the time participants used to review the patch, completed by the
measurements of how much they took to fix respectively two of the three issues
present in the changeset. All measures are in seconds. We exclude data relatively to the
third defect as only one participant detected it. To perform the data analysis, we used the
same statistical means described for the previous research question. When computing
the review net time used by the subjects, results show an insignificant difference, thus
we are not able to reject null-hypothesis H0t1. This indicates that the average case of the
treatment group takes the same time to deliver the review, despite having two pull

Table 3 RQ2—review time, first and second defect lifetime.

Group # of subjects Median Mean Confidence Interval 95% p-value

Review net time Control (tangled changes) 14 831 853 385 [99–1,607] 0.66

Treatment (untangled changes) 14 759 802 337 [140–1,463]

1st defect lifetime Control 11 304 349 174 [8–691] 0.79

Treatment 11 297 301 109 [86–516]

2nd defect lifetime Control 6 222 263 149 [0–555] 0.17

Treatment 6 375 388 122 [148–657]

Note:
Measurements in seconds elapsed.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 15/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

requests to deal with instead of one. However, analyzing results regarding the defect
lifetime we also see no significant difference and cannot reject H0t2. Data show that the
mean time to address the first issue is about 14% faster in the treatment group if
compared with the control. This is because subjects have to deal with less code that concerns
a single concept, rather than having to extrapolate context information from a tangled
change. At the same time the treatment group is taking longer (median) to address the
second defect. We believe that this is due to the presence of two pull requests, and as such, the
context switch has an overhead effect on that. From the screencast recordings we found no
reviewer using multi-screen setup, therefore subjects had to close a pull-request and then
review the next, where they need to gain knowledge on different code changes.

Result 2: Our experiment was not able to provide evidence for a difference in net review
time between untangled pull requests (treatment) and the tangled one (control); this despite
the additional overhead of dealing with two separate pull requests in the treatment group.

RQ3. Understanding the change’s rationale
For our third research question, we seek to measure whether subjects are affected by
the dependent variable in their understanding of the rationale of the change. Rationale
understanding questions are Q1–Q4 (Table 4) and Fig. 2 reports the results. Q1–Q12
mark the respective questions, while answers from the (C)ontrol or (T)reatment group
are marked respectively with their first letter next to the question number. Numbers in
Figure count the participants’ answers to questions per Likert Item. Higher scores for Q1,
Q2, and Q4 mean better understanding, whereas for Q3 a lower score signifies a correct

Table 4 RQ3—Post-experiment questionnaire.

Questions on understanding the rationale of the changeset

The purpose of this changeset entails ...

Q1 ... changing a method for the enemy AI

Q2 ... the refactoring of some methods

Q3 ... changing the game UI panel

Q4 ... changing some method signature

Questions on participant’s perception on the changeset

Q5 The changeset was functionally correct

Q6 I found no difficulty in understanding the changeset

Q7 The rationale of this changeset was perfectly clear

Q8* The changeset a logical separation of concerns

Q9 Navigating the changeset was hard

Q10* The relations among the changes were well structured

Q11 The changeset was comprehensible

Q12* Code changes were spanning too many features

Note:
Questions with * have p < 0.05.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 16/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

understanding. As for the previous research questions, we test our hypothesis with a
non-parametrical statistical test. Given the result we cannot reject the null hypothesis
H0u of tangled pull requests reducing change understanding. Participants are in fact
able to answer the questions correctly, independent of their experimental group.

After the review, our experimentation also provided a final survey (Q5–Q12 in Table 4)
that participants filled in at the end. Results shown in Fig. 2 indicate that subjects
judge equally the changeset (Q5), found no difficulty in understanding the changeset
(Q6), agree on having understood the rationale behind the changeset (Q7). This results

C

C

C

C

4

8

4

7

3

4

7

4

8

4

6

3

1

2

1

2

1

1

4

5

1

2

8

9

1

2

1

1

2

3

3

1 166

6 5 3

1 2 3 6 2

1 4 9

1 3 6 4

2 2 2 5 3

1 10 2 1

1 3 6 4

2 4 7 1

1 7 6

1 7 2 4

2 3 8 1

8 2

1 11 1

1 3 2 6 2

3 9 1

4

Strongly Disagree Disagree Agree Strongly Agree

1

1

Q1

Neither

Questions on understanding the rationale of the changeset

Control (tangled changes)

Treatment (untangled changes)

00510 5 10

Q2
C

T

Q3
C

T

Q4
C

T

Q5
C

T

Q6
C

T

Q7
C

T

Q8*
C

T

Q9
T

Q10*
T

Q11
T

2
Q12*

T

Figure 2 RQ3—Answers to questions Q1–Q12 in Table 4. (C)ontrol and (T)reatment answers are
marked with their respective first letter. Numbers count the participants’ answers to questions per Likert
item. Questions with � have p < 0.05. Full-size DOI: 10.7717/peerj-cs.193/fig-2

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 17/25

http://dx.doi.org/10.7717/peerj-cs.193/fig-2
http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

shows that our experiment cannot provide evidence of differences in change
understanding between the two groups.

Participants did not find the changeset hard to navigate (Q9), and believe that the
changeset was comprehensible (Q11). Answers to questions Q9 and Q11 are surprising
to us, as we would expect dissimilar results for code navigation and comprehension.
In fact, change decomposition should allow subjects to navigate code easier, as well as
improve source comprehension.

On the other hand, subjects from the control and treatment group judge differently
when asked if the changeset was partitioned according to a logical separation of concerns
(Q8), if the relationships among the changes were well structured (Q10) and if the
changes were spanning too many features (Q12). These answers are in line with what
we would expect, given the different structure of the code to be reviewed. The answers
are different with a statistical significance for Q8, Q10 and Q12.

Result 3: Our experiment was not able to provide evidence of a difference in
understanding the rationale of the changeset between the experimental groups. Subjects
reviewing the untangled pull requests (treatment) recognize the benefits of untangled pull
requests, as they evaluate the changeset as being (1) better divided according to a logical
separation of concerns (Q8), (2) better structured (Q10), and (3) not spanning too many
features (Q12).

RQ4. Tangled vs. untangled review patterns
For our last research question, we seek to identify differences in patterns and features
during review, and their association to quantitative results. We derived such patterns from
Tao et al. (2012) and Sillito, Murphy & De Volder (2006). These two studies are relevant as
they investigated the role of understanding code during the software development process.
Tao et al. (2012) laid out a series of information needs derived from state-of-the-art
research in software engineering, while Sillito, Murphy & De Volder (2006) focused on
questions asked by professional experienced developers while working on implementing
a change. The mapping found in the screencasts is shown in Table 5.

Table 6 contains the qualitative characterization, ordered by the sum of defects
found. Values in each row correspond to how many times a participant in either group
used that pattern to address a defect or point to a false positive.

Table 5 RQ4—Concepts from literature and their mapped keyword.

Concept Mapped keyword

What is the rationale behind this code change? (Tao et al., 2012) Rationale

Is this change correct? Does it work as expected? (Tao et al., 2012) Correctness

Who references the changed classes/methods/fields? (Tao et al., 2012) Context

How does the caller method adapt to the change of its callees? (Tao et al., 2012) Caller/callee

Is there a precedent or exemplar for this? (Sillito, Murphy & De Volder, 2006) Similar/precedent

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 18/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Results indicate that pattern P1 is the one that led to most issues being addressed in the
control group (eight), but at the same time is the most imprecise one (three false positives).
We conjecture that this is related to the lack of context-seeking concept. Patterns P1 and P3
have most false positives addressed in the control group. In the treatment group, pattern
P2 led to more issues being addressed (five), followed by the previously mentioned P1 (four).

Analyzing the transcribed screencasts, we note an overall trend of reviewing code
changes in the control group, exploring the changeset using less context exploration than
in the treatment. Among the participants belonging to the treatment, we witnessed a much
more structured way of conducting the review. The overall behavior is that of getting the
context of the single change, looking for the files involved, called, or referenced by the
changeset, in order to grasp the rationale. All of the subjects except three repeated this step
multiple times to explore a chain of method calls, or to seek for more context in that same
file opening it in GitHub. We consider this the main reason to explain that untangled pull
requests lead to more precise (fewer false positives) results.

Result 4: Our experiment revealed that review patterns for untangled pull requests
(treatment) show more context-seeking steps, in which the participants open more
referenced/related classes to review the changeset.

DISCUSSION
In this section, we analyze and discuss results presented in the section “Results,” with
consequent implications for researchers and practitioners.

Implications for researchers
In past studies, researchers found that developers call for tool and research support for
decomposing a composite change (Tao et al., 2012). For this reason, we were surprised that

Table 6 RQ4—Patterns in review to address a defect or leading to a false positive.

ID Pattern Control Treatment

1st concept 2nd
concept

3rd concept Defect FP Defect FP

P1 Rationale Correctness 8 3 4 0

P2 Rationale Context Correctness 4 0 5 0

P3 Context Rationale Correctness 3 2 3 0

P4 Context Correctness Caller/callee 1 0 2 0

P5 Context Correctness 2 1 0 0

P6 Correctness Context 0 0 2 0

P7 Rationale Correctness Context 0 0 1 0

P8 Correctness Context Caller/callee 1 0 0 0

P9 Correctness Context Similar/
precedent

1 0 0 1

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 19/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

our experiment was not able to highlight differences in terms of reviewers’ effectiveness
(number of defects found) and reviewers’ understanding of the change rationale, when the
subjects were presented with smaller, self-contained changes. Further research with
additional participants is needed to corroborate our findings.

If we exclude latent problems with the experiment design that we did not account for,
this result may indicate that reviewers are still able to conduct their work properly, even
when presented with tangled changes. However, the results may change in different
contexts. For example, the cognitive load for reviewers may be higher with tangled
changes, with recent research showing promising insights regarding this hypothesis
(Baum, Schneider & Bacchelli, 2019). Therefore, the negative effects in terms of
effectiveness could be visible when a reviewer has to assess a large number of changes every
day, as it happens with integrators of popular projects in GitHub (Gousios et al., 2015).
Moreover, the changes we considered are of average size and difficulty, yet results may be
impacted by larger changes and/or more complex tasks. Finally, participants were not
core developers of the considered software system; it is possible that core developers would
be more surprised by tangled changes, find them more convoluted or less “natural,” thus
rejecting them (Hellendoorn, Devanbu & Bacchelli, 2015). We did not investigate these
scenarios further, but studies can be designed and carried out to determine whether
and how these aspects influence the results of the code review effort.

Given the remarks and comments of professional developers on tangled changes
(Tao et al., 2012), we were also surprised that the experiment did not highlight any
differences in the net review time between the treatment groups. Barring experimental
design issues, this result can be explained by the additional context switch, which does
not happen in the tangled pull request (control) because the changes are done in the
same files. An alternative explanation could be that the reviewers with the untangled
pull requests (treatment) spent more time “wondering around” and pinpointing small
issues because they found the important defects quicker; this would be in line with the
cognitive bias known as Parkinson’s Law (Parkinson & Osborn, 1957) (all the available
time is consumed). However, time to find the first and second defects (3) is the same
for both experimental groups thus voiding this hypothesis. Moreover, similarly to us, Tao &
Kim (2015) also did not find a difference with respect to time to completion in
their preliminary user study. Further studies should be designed to replicate our experiment
and, if results are confirmed, to derive a theory on why there is no reduction in review time.

Our initial hypothesis on why time does not decrease with untangled code changes is
that reviewers of untangled changes (control) may be more willing to build a more
appropriate context for the change. This behavior seems to be backed up by our qualitative
analysis (section “Results”), through the context-seeking actions that we witnessed for
the treatment group. If our hypothesis is not refused by further research, this could
indicate that untangled changes may lead to a more thorough low-level understanding
of the codebase. Despite we did not measure this in the current study, it may explain
the lower number of false positives with untangled changes. Finally, untangled changes
may lead to better transfer of code knowledge, one of the positive effects of code review
(Bacchelli & Bird, 2013).

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 20/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Recommendation for practitioners
Our experiment is not able to show no negative effects when changes are presented as
separate, untangled changesets, despite the fact that reviewers have to deal with two
pull requests instead of one, with the subsequent added overhead and a more prominent
context switch. With untangled changesets, our experiment highlighted an increased
number of suggested improvements, more context-seeking actions (which, it is reasonable
to assume, increase the knowledge transfer created by the review), and a lower number
of wrongly reported issues.

For the aforementioned reasons, we support the recommendation that change
authors prepare self-contained, untangled changeset when they need a review. In fact,
untangled changesets are not detrimental to code review (despite the overhead of having
more pull-requests to review), but we found evidence of positive effects. We expect the
untangling of code changes to be minimal in terms of cognitive effort and time for the
author. This practice, in fact, is supported by answers Q8, Q10, Q12 to the questionnaire
and by comments written by reviewers in the control group (i.e., “Please make different
commit for these two features,” “I would prefer having two pull requests instead of one
if you are fixing two issues”).

CONCLUSION
The goal of the study presented in this paper is to investigate the effects of change
decomposition on MCR (Cohen, 2010), particularly in the context of the pull-based
development model (Gousios, Pinzger & Van Deursen, 2014).

We involved 28 subjects, who performed a review of pull request(s) pertaining to (1) a
refactoring and (2) the addition of a new feature in a Java system. The control group
received a single pull request with both changes tangled together, while the treatment
group received two pull requests (one per type of change). We compared control and
treatment groups in terms of effectiveness (number of defects found), number of false
positives (wrongly reported issues), number of suggested improvements, time to
complete the review(s), and level of understanding the rationale of the change. Our
investigation also involved a qualitative analysis of the review performed by subjects
involved in our study.

Our results suggests that untangled changes (treatment group) lead to:

1. Fewer reported false positives defects,

2. more suggested improvements for the changeset,

3. same time to review (despite the overhead of two different pull requests),

4. same level of understanding the rationale behind the change,

5. and more context-seeking patterns during review.

Our results support the case that committing changes belonging to different concepts
separately should be an adopted best practice in contemporary software engineering.
In fact, untangled changes not only reduce the noise for subsequent data analyses

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 21/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

(Herzig, Just & Zeller, 2016), but also support the tasks of the developers in charge of
reviewing the changes by increasing context-seeking patterns.

ACKNOWLEDGEMENTS
The authors would like to thank all participants of the experiment and the pilot.
We furthermore thank the fellow researchers who gave critical suggestion to help
strengthening the methodology of our study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No. 642954.
Alberto Bacchelli has received support from the Swiss National Science Foundation
through the SNF Project No. PP00P2_170529. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement: 642954.
Swiss National Science Foundation through the SNF Project: PP00P2_170529.

Competing Interests
Arie van Deursen is an Academic Editor for PeerJ Computer Science. Marco di Biase
and Magiel Bruntink are employed by Software Improvement Group.

Author Contributions
� Marco di Biase conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, performed the computation work,
authored or reviewed drafts of the paper, approved the final draft.

� Magiel Bruntink conceived and designed the experiments, authored or reviewed drafts of
the paper, approved the final draft.

� Arie van Deursen conceived and designed the experiments, authored or reviewed
drafts of the paper, approved the final draft.

� Alberto Bacchelli conceived and designed the experiments, authored or reviewed
drafts of the paper, approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving
body and any reference numbers):

The Human Subjects Committee of the Faculty of Economics, Business Administration
and Information Technology at the University of Zurich authorized the research described
in Alberto Bacchelli’s research proposal with IRB 2018-024.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 22/25

http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The raw data is available at: https://data.4tu.nl/repository/uuid:826f7051-35f6-4696-
b648-8e56d3ea5931

REFERENCES
Bacchelli A, Bird C. 2013. Expectations, outcomes, and challenges of modern code review. In:

Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13. Piscataway:
IEEE Press, 712–721.

Barnett M, Bird C, Brunet J, Lahiri S. 2015. Helping developers help themselves: automatic
decomposition of code review changesets. In: Proceedings of the 37th International Conference
on Software Engineering—Volume 1, ICSE ’15. Piscataway: IEEE Press, 134–144.

Baum T, Schneider K, Bacchelli A. 2017. On the optimal order of reading source code changes
for review. In: 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Piscataway: IEEE, 329–340.

Baum T, Schneider K, Bacchelli A. 2019. Associating working memory capacity and code change
ordering with code review performance. In: Empirical Software Engineering.New York: Springer
DOI 10.1007/s10664-018-9676-8.

Beller M, Gousios G, Panichella A, Zaidman A. 2015. When, how, and why developers (do not)
test in their ides. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, New York: ACM, 179–190.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological)
57(1):289–300 DOI 10.1111/j.2517-6161.1995.tb02031.x.

Binkley D, Davis M, Lawrie D, Maletic J, Morrell C, Sharif B. 2013. The impact of identifier
style on effort and comprehension. Empirical Software Engineering 18(2):219–276
DOI 10.1007/s10664-012-9201-4.

Bosu A, Greiler M, Bird C. 2015. Characteristics of useful code reviews: an empirical study at
microsoft. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories.
Piscataway: IEEE, 146–156.

Cliff N. 1993. Dominance statistics: ordinal analyses to answer ordinal questions. Psychological
Bulletin 114(3):494–509 DOI 10.1037/0033-2909.114.3.494.

Cohen J. 1992. Statistical power analysis. Current Directions in Psychological Science 1(3):98–101
DOI 10.1111/1467-8721.ep10768783.

Cohen J. 2010. Modern code review. In: Oram A, Wilson G, eds. Making Software. Chapter 18.
Sebastopol: O’Reilly, 329–338.

Cook TD, Campbell DT. 1979.Quasi-experimentation: design and analysis for field settings. Vol. 3.
Chicago: Rand McNally.

Cowan N. 1998. Attention and memory: an integrated framework. Vol. 26. Oxford: Oxford
University Press.

di Biase M, Bruntink M, Bacchelli A. 2016. A security perspective on code review: the case of
chromium. In: Proceedings of the 16th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2016, October 2-3, 2016. Piscataway: IEEE, 21–30.

di Biase M, Bruntink M, Van Deursen A, Bacchelli A. 2018. The effects of change decomposition
on code review—a controlled experiment—online appendix. Available at https://data.4tu.nl/
repository/uuid:826f7051-35f6-4696-b648-8e56d3ea5931.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 23/25

https://data.4tu.nl/repository/uuid:826f7051-35f6-4696-b648-8e56d3ea5931
https://data.4tu.nl/repository/uuid:826f7051-35f6-4696-b648-8e56d3ea5931
http://dx.doi.org/10.1007/s10664-018-9676-8
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1007/s10664-012-9201-4
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://dx.doi.org/10.1111/1467-8721.ep10768783
https://data.4tu.nl/repository/uuid:826f7051-35f6-4696-b648-8e56d3ea5931
https://data.4tu.nl/repository/uuid:826f7051-35f6-4696-b648-8e56d3ea5931
http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Dias M, Bacchelli A, Gousios G, Cassou D, Ducasse S. 2015. Untangling fine-grained code
changes. In: Proceedings of the 22nd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2015. Piscataway: IEEE Computer Society, 341–350.

Gousios G, Pinzger M, Van Deursen A. 2014. An exploratory study of the pull-based software
development model. In: Proceedings of the 36th International Conference on Software
Engineering—ICSE 2014, (May 2014). New York: ACM, 345–355.

Gousios G, Zaidman A, Storey M, Van Deursen A. 2015. Work practices and challenges in
pull-based development: the integrator’s perspective. In: Proceedings of the 37th International
Conference on Software Engineering—Volume 1, ICSE ’15. Piscataway: IEEE Press, 358–368.

Hellendoorn VJ, Devanbu PT, Bacchelli A. 2015. Will they like this? Evaluating code
contributions with language models. In: Proceedings of the 12th Working Conference on
Mining Software Repositories. Piscataway: IEEE Press, 157–167.

Herzig K, Just S, Zeller A. 2016. The impact of tangled code changes on defect prediction models.
Empirical Software Engineering 21(2):303–336 DOI 10.1007/s10664-015-9376-6.

Herzig K, Zeller A. 2013. The impact of tangled code changes. In: Mining Software Repositories
(MSR) ’13 Proceedings of the 10th IEEE Working Conference on Mining Software. Piscataway:
IEEE, 121–130.

James W. 2013. The principles of psychology. Redditch: Read Books Ltd.

Kirinuki H, Higo Y, Hotta K, Kusumoto S. 2014. Hey! are you committing tangled changes? In:
Proceedings of the 22nd International Conference on Program Comprehension, ICPC 2014.
New York: ACM, 262–265.

Ko A, LaToza T, Burnett M. 2015. A practical guide to controlled experiments of software
engineering tools with human participants. Empirical Software Engineering 20(1):110–141
DOI 10.1007/s10664-013-9279-3.

Mayring P. 2000. Qualitative content analysis. Forum: Qualitative Social Research 1(2):159–176
DOI DOI 10.17169/fqs-1.2.1089.

McIntosh S, Kamei Y, Adams B, Hassan A. 2014. The impact of code review coverage and
code review participation on software quality: a case study of the qt, vtk, and itk projects. In:
Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014.
New York: ACM, 192–201.

McIntosh S, Kamei Y, Adams B, Hassan AE. 2016. An empirical study of the impact of modern
code review practices on software quality. Empirical Software Engineering 21(5):2146–2189
DOI 10.1007/s10664-015-9381-9.

Morales R, McIntosh S, Khomh F. 2015. Do code review practices impact design quality? A case
study of the Qt, Vtk, and Itk projects. In: Proceedings of the 22nd International Conference
on Software Analysis, Evolution and Reengineering, SANER 2015. Piscataway: IEEE, 171–180.

Murphy-Hill E, Parnin C, Black A. 2012. How we refactor, and how we know it. IEEE
Transactions on Software Engineering 38(1):5–18 DOI 10.1109/tse.2011.41.

Oppenheim A. 2000. Questionnaire design, interviewing and attitude measurement. London:
Bloomsbury Publishing.

Parkinson CN, Osborn RC. 1957. Parkinson’s law, and other studies in administration. Vol. 24.
Boston: Houghton Mifflin.

Perneger TV. 1998. What’s wrong with bonferroni adjustments. British Medical Journal
316(7139):1236–1238 DOI 10.1136/bmj.316.7139.1236.

Prechelt L, Tichy W. 1998. A controlled experiment to assess the benefits of procedure argument
type checking. IEEE Transactions on Software Engineering 24(4):302–312 DOI 10.1109/32.677186.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 24/25

http://dx.doi.org/10.1007/s10664-015-9376-6
http://dx.doi.org/10.1007/s10664-013-9279-3
http://dx.doi.org/10.17169/fqs-1.2.1089
http://dx.doi.org/10.1007/s10664-015-9381-9
http://dx.doi.org/10.1109/tse.2011.41
http://dx.doi.org/10.1136/bmj.316.7139.1236
http://dx.doi.org/10.1109/32.677186
http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

Ram A, Sawant AA, Castelluccio M, Bacchelli A. 2018. What makes a code change easier to
review: an empirical investigation on code change reviewability. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018). New York, NY: ACM, 201–202
DOI 10.1145/3236024.3236080.

Rigby PC, Bird C. 2013. Convergent contemporary software peer review practices. In: Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013.
New York: ACM, 202–212.

Rigby P, Cleary B, Painchaud F, Storey M, German D. 2012. Contemporary peer review in action:
lessons from open source development. IEEE Software 29(6):56–61 DOI 10.1109/ms.2012.24.

Rigby P, German D, Cowen L, Storey M. 2014. Peer review on open-source software projects.
ACM Transactions on Software Engineering and Methodology 23(4):1–33.

Romano J, Kromrey J, Coraggio J, Skowronek J. 2006. Appropriate statistics for ordinal level
data: should we really be using t-test and cohen’sd for evaluating group differences on the nsse and
other surveys. In: Annual Meeting of the Florida Association of Institutional Research, 1–33.

Sadowski C, Söderberg E, Church L, Sipko M, Bacchelli A. 2018. Modern code review: a case
study at google. In: Proceedings of the 40th International Conference on Software Engineering
Software Engineering: in Practice (ICSE-SEIP '18). New York, NY: ACM, 181–190
DOI 10.1145/3183519.3183525.

Schreier M. 2013. Qualitative content analysis. In: Flick U, ed. The SAGE Handbook of Qualitative
Data Analysis. London: SAGE, 170–183.

Sharif B, Falcone M, Maletic JI. 2012. An eye-tracking study on the role of scan time in finding
source code defects. In: Proceedings of the Symposium on Eye Tracking Research and
Applications. New York: ACM, 381–384.

Shiffrin RM. 1988. Attention. In: Atkinson RC, Herrnstein RJ, Lindzey G, Luce RD, eds.
Stevens’ Handbook of Experimental Psychology: Perception and Motivation; Learning and
Cognition. Vol. 2. Oxford: John Wiley & Sons, 739–811.

Sillito J, Murphy G, De Volder K. 2006. Questions programmers ask during software evolution
tasks. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. New York: ACM, 23–34.

Slavin R. 1987. Mastery learning reconsidered. Review of Educational Research 57(2):175–213
DOI 10.3102/00346543057002175.

Tao Y, Dang Y, Xie T, Zhang D, Kim S. 2012. How do software engineers understand code
changes? An exploratory study in industry. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New York: ACM,
1–11.

Tao Y, Kim S. 2015. Partitioning composite code changes to facilitate code review. In: Proceedings
of the 12th Working Conference on Mining Software Repositories. Piscataway: IEEE, 180–190.

Thongtanunam P, McIntosh S, Hassan AE, Iida H. 2017. Review participation in modern
code review. Empirical Software Engineering 22(2):768–817 DOI 10.1007/s10664-016-9452-6.

Uwano H, Nakamura M, Monden A, Matsumoto K. 2006. Analyzing individual performance
of source code review using reviewers’ eye movement. In: Proceedings of the 2006 Symposium
on Eye Tracking Research & Applications. New York: ACM, 133–140.

Wickens CD. 1991. Processing resources and attention. Multiple-Task Performance. London:
Taylor & Francis, 3–34.

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A. 2012. Experimentation
in software engineering. Berlin/Heidelberg: Springer Science & Business Media.

di Biase et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.193 25/25

http://dx.doi.org/10.1145/3236024.3236080
http://dx.doi.org/10.1109/ms.2012.24
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.3102/00346543057002175
http://dx.doi.org/10.1007/s10664-016-9452-6
http://dx.doi.org/10.7717/peerj-cs.193
https://peerj.com/computer-science/

	The effects of change decomposition on code review-a controlled experiment
	Introduction
	Related Work
	Motivation and Research Objectives
	Experimental Design and Method
	Threats to Validity and Limitations
	Results
	Discussion
	Conclusion
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

