
Fast and exact fixed-radius neighbor search
based on sorting
Xinye Chen1 and Stefan Güttel2

1 Charles University Prague, Prague, Czech Republic
2 University of Manchester, Manchester, United Kingdom

ABSTRACT
Fixed-radius near neighbor search is a fundamental data operation that retrieves all
data points within a user-specified distance to a query point. There are efficient
algorithms that can provide fast approximate query responses, but they often have a
very compute-intensive indexing phase and require careful parameter tuning.
Therefore, exact brute force and tree-based search methods are still widely used. Here
we propose a new fixed-radius near neighbor search method, called SNN, that
significantly improves over brute force and tree-based methods in terms of index and
query time, provably returns exact results, and requires no parameter tuning. SNN
exploits a sorting of the data points by their first principal component to prune the
query search space. Further speedup is gained from an efficient implementation
using high-level basic linear algebra subprograms (BLAS). We provide theoretical
analysis of our method and demonstrate its practical performance when used stand-
alone and when applied within the DBSCAN clustering algorithm.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Data
Science, Databases, Neural Networks
Keywords Near neighbor search, Fixed-radius search

INTRODUCTION
This work is concerned with the retrieval of nearest neighbors, a fundamental data
operation. Given a data point, this operation aims at finding the most similar data points
using a predefined distance function. Nearest neighbor search has many applications in
computer science and machine learning, including object recognition (Philbin et al., 2007;
Nister & Stewenius, 2006), image descriptor matching (Silpa-Anan & Hartley, 2008), time
series indexing (Keogh & Ratanamahatana, 2005; Chakrabarti et al., 2002; Yagoubi et al.,
2020), clustering (Ester et al., 1996; Campello, Moulavi & Sander, 2013; Gallego et al., 2018;
Alshammari, Stavrakakis & Takatsuka, 2021; Gallego, Rico-Juan & Valero-Mas, 2022; Li
et al., 2020), particle simulations (Groß, Köster & Krüger, 2019), molecular modeling
(Galvelis & Sugita, 2017), pose estimation (Shakhnarovich, Viola & Darrell, 2003),
computational linguistics (Kaminska, Cornelis & Hoste, 2021), and information retrieval
(Geng et al., 2008; Wang et al., 2015).

There are two main types of nearest neighbor (NN) search: k-nearest neighbor and
fixed-radius near neighbor search. Fixed-radius NN search, also referred to as radius
query, aims at identifying all data points within a given distance from a query point; see
Bentley (1975b) for a historical review. The most straightforward way of finding nearest
neighbors is via a linear search through the whole database, also known as exhaustive or

How to cite this article Chen X, Güttel S. 2024. Fast and exact fixed-radius neighbor search based on sorting. PeerJ Comput. Sci. 10:e1929
DOI 10.7717/peerj-cs.1929

Submitted 12 December 2023
Accepted 15 February 2024
Published 29 March 2024

Corresponding author
Stefan Güttel,
stefan.guettel@manchester.ac.uk

Academic editor
Massimiliano Fasi

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1929

Copyright
2024 Chen and Güttel

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1929
mailto:stefan.�guettel@�manchester.�ac.�uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1929
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

brute force search. Though considered inelegant, it is still widely used, e.g., in combination
with GPU acceleration (Garcia, Debreuve & Barlaud, 2008).

Existing NN search approaches can be broadly divided into exact and approximate
methods. In many applications, approximate methods are an effective solution for
performing fast queries while allowing for a small loss. Well-established approximate NN
search techniques include randomized k-d trees (Silpa-Anan & Hartley, 2008), hierarchical
k-means (Nister & Stewenius, 2006), locality sensitive hashing (Indyk & Motwani, 1998),
HNSW (Malkov & Yashunin, 2020), and ScaNN (Guo et al., 2020). Considerable
drawbacks of most approximate NN search algorithms are their potentially long indexing
time and the need for the tuning of additional hyperparameters such as the trade-off
between recall vs index and query time. Furthermore, to the best of our knowledge, all
approximate NN methods for which open-source implementations (such as Guo et al.,
2020; Bernhardsson, 2023;Dong, Moses & Li, 2011;Malkov & Yashunin, 2020) are available
only address the k-nearest neighbor problem, not the fixed-radius problem discussed here.

In this article we introduce a new exact approach to fixed-radius NN search based on
sorting, referred to as SNN for short. Some of the appealing properties of SNN are

1. simplicity: SNN has no hyperparameters except for the necessary search radius

2. exactness: SNN is guaranteed to return all data points within the search radius

3. speed: SNN demonstrably outperforms other exact NN search algorithms like, e.g.,
methods based on tree structures

4. flexibility: the low indexing time of SNN makes it applicable in an online streaming
setting.

The rest of this article is organized as follows. In “Related Work”, we provide a brief
review of existing work on NN search. In “Sorting-Based NN Search”, we introduce our
sorting-based NN method, detailing its indexing and query phases. “Computational
Considerations” contains computational considerations regarding the efficient
implementation of SNN and its behavior in floating-point arithmetic. Theoretical
performance analysis is provided in “Theoretical Analysis”. “Experimental Evaluation”
contains performance comparisons of our algorithm to other state-of-the-art NNmethods,
as well as an application to DBSCAN clustering. We then conclude in “Conclusions”. (A
preprint of this work is available on arXiv (Chen & Güttel, 2023)).

RELATED WORK
NN search methods can broadly be classified into approximate or exact methods,
depending on whether they return exact or approximate answers to queries
(Cayton & Dasgupta, 2007). It is widely accepted that for high-dimensional data there are
no exact NN search methods which are asymptotically more efficient than exhaustive
search; see, e.g., (Muja, 2013, Chap. 3) and Francis-Landau & Durme (2019). Exact NN
methods based on k-d tree (Bentley, 1975a; Friedman, Bentley & Finkel, 1977), balltree
(Omohundro, 1989), VP-tree (Yianilos, 1993), cover tree (Beygelzimer, Kakade & Langford,
2006), and RP tree (Dasgupta & Sinha, 2013) only perform well on low-dimensional data.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 2/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

This shortcoming is often referred to as the curse of dimensionality (Indyk & Motwani,
1998). However, note that negative asymptotic results do not rule out the possibility of
algorithms and implementations that perform significantly (by orders of magnitude) faster
than brute force search in practice, even on real-world high-dimensional data sets.

To speedup NN search, modern approaches generally focus on two aspects, namely
indexing and sketching. The indexing aims to construct a data structure that prunes the
search space for a given query, hopefully resulting in fewer distance computations.
Sketching, on the other hand, aims at reducing the cost of each distance computation by
using a compressed approximate representation of the data.

The most widely used indexing strategy is space partitioning. Some of the earliest
approaches are based on tree structures such as k-d tree (Bentley, 1975a; Friedman, Bentley
& Finkel, 1977), balltree (Omohundro, 1989), VP-tree (Yianilos, 1993), and cover tree
(Beygelzimer, Kakade & Langford, 2006). The tree-based methods are known to become
inefficient for high-dimensional data. One of the remedies are randomization (e.g.,
Dasgupta & Sinha, 2013; Ram & Sinha, 2019) and ensembling (e.g., the FLANN nearest
neighbor search tool by Muja & Lowe (2009), which empirically shows competitive
performance against approximate NN methods). Another popular space partitioning
method is locality-sensitive hashing (LSH); see, e.g., Indyk & Motwani (1998). LSH
leverages a set of hash functions from the locality-sensitive hash family and it guarantees
that similar queries are hashed into the same buckets with higher probability than less
similar ones. This method was originally introduced for the binary Hamming space by
Indyk & Motwani (1998), and it was later extended to the Euclidean space (Datar et al.,
2004). In Bawa, Condie & Ganesan (2005) a self-tuning index for LSH based similarity
search was introduced. A partitioning approach based on neural networks and LSH was
proposed in Dong et al. (2020). Another interesting method is GriSPy (Chalela et al., 2021),
which performs fixed-radius NN search using regular grid search—to construct a regular
grid for the index—with the possibility of working with periodic boundary conditions.
This method, however, has high memory demand because the grid computations grow
exponentially with the space dimension.

This article focuses on exact fixed-radius NN search. The implementations available in
the most widely used scientific computing environments are all based on tree structures,
including findNeighborsInRadius in MATLAB (The MathWorks Inc., 2022),
NearestNeighbors in scikit-learn (Pedregosa et al., 2011), and spatial in SciPy
(Virtanen et al., 2020). This is in contrast to our SNN method introduced below which
does not utilise any tree structures.

SORTING-BASED NN SEARCH
Suppose we have n data points p1; . . . ; pn 2 Rd (represented as column vectors) and
d � n. The fixed-radius NN problem consists of finding the subset of data points that is
closest to a given query point q 2 Rd (may be out-of-sample) with respect to some distance
metric. Throughout this article, the vector norm jj � jj ¼ jj � jj2 is the Euclidean one, though
it also possible to identify nearest neighbors with other distances such as

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 3/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

� cosine distance: assuming normalized data (with jjujj ¼ jjvjj ¼ 1), the cosine distance is

cdistðu; vÞ ¼ 1� cosðhÞ ¼ 1� uTv
jjujjjjvjj ¼ 1� uTv 2 ½0; 2�:

Hence, the cosine distance can be computed from the Euclidean distance via

2cdistðu; vÞ ¼ 2� 2uTv ¼ uTu� 2uTv þ vTv ¼ jju� vjj2:
� angular distance: the angular distance h 2 ½0;p� between two normalized vectors u; v
satisfies

h � a if and only if jju� vjj2 � 2� 2 cosðaÞ:
Therefore, closest angle neighbors can be identified via Euclidean distance.

� maximum inner product similarity (see, e.g., Bachrach et al., 2014): for not necessarily
normalized vectors we can consider the transformed data points

~pi ¼
ffi
n2 � jjpijj2

q
; pTi

� �T
with n :¼ maxijjpijj and the transformed query point

~q ¼ ½0; qT �T . Then
jj~pi � qjj2 ¼ jj~pijj2 þ jj~qjj2 � 2~pTi ~q ¼ n2 þ jjqjj2 � 2pTi q � 0:

Since n and q are independent of the index i, we have argminijj~pi � ~qjj2 ¼ argmaxipTi q.

� Manhattan distance: since jjpi � qjj2 � jjpi � qjj1, any points satisfying jjpi � qjj1.R
must necessarily satisfy jjpi � qjj2 .R. Hence, the sorting-based exclusion criterion
proposed in section 3.2 to prune the query search space can also be used for the
Manhattan distance.

Our algorithm, called SNN, will return the required indices of the nearest neighbors in
the Euclidean norm, and can also return the corresponding distances if needed. SNN uses
three essential ingredients to obtain its speed. First, a sorting-based exclusion criterion is
used to prune the search space for a given query. Second, pre-calculated dot products of the
data points allow for a reduction of arithmetic complexity. Third, a reformulation of the
distance criterion in terms of matrices (instead of vectors) allows for the use of high-level
basic linear algebra subprograms (BLAS, Blackford et al., 2002). In the following, we
explain these ingredients in more detail.

Indexing
Before sorting the data, all data points are centered by subtracting the empirical mean
value of each dimension:

xi :¼ pi �meanðfpjgÞ:

This operation will not affect the pairwise Euclidean distance between the data points
and can be performed in OðdnÞ operations, i.e., with linear complexity in n. We then
compute the first principal component v1 2 Rd, i.e., the vector along which the data fxig

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 4/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

exhibits largest empirical variance. This vector can be computed by a thin singular value
decomposition of the tall-skinny data matrix X :¼ ½x1; . . . ; xn�T 2 Rn	d,

X ¼ U�VT ; (1)

where U 2 Rn	d and V 2 Rd	d have orthonormal columns and � ¼ diagðr1; . . . ;rdÞ 2
Rd	d is a diagonal matrix such that r1 � r2 � � � � � rd � 0: The principal components
are given as the columns of V ¼ ½v1; . . . ; vd� and we require only the first column v1. The
score of a point xi along v1 is

ai :¼ xTi v1 ¼ ðeTi XÞv1 ¼ ðeTi U�VTÞv1 ¼ eTi u1r1;

where ei denotes the i-th canonical unit vector in Rn. In other words, the scores ai of all
points can be read off from the first column ofU ¼ ½u1; . . . ; ud� times r1. The computation
of the scores using a thin SVD requires Oðnd2Þ operations and is therefore linear in n.

The next (and most important) step is to order all data points xi by their ai scores; that
is,

ðxiÞ :¼ sortðfxigÞ
so that a1 � a2 � � � � � an with each ai ¼ xTi v1. This sorting will generally require a time
complexity of Oðn log nÞ independent of the data dimension d. We also precompute the
squared-and-halved norm of each data point, xi ¼ ðxTi xiÞ=2 for i ¼ 1; 2; . . . ; n. This is of
complexity OðndÞ, i.e., again linear in n.

All these computations are done exactly once in the indexing phase and only the scores
½ai�, the numbers ½xi�, and the single vector v1 need to be stored. See Algorithm 1 for a
summary.

Query
Given a query point q and user-specified search radius R, we want to retrieve all data points
pi satisfying jjpi � qjj � R. Figure 1 illustrates our approach. We first compute the mean-
centered query xq :¼ q�meanðfpjgÞ and the corresponding score aq :¼ xTq v1. By utilizing
the Cauchy–Schwarz inequality, we have

jai � aqj ¼ jvT1 xi � vT1 xqj � jjxi � xqjj: (2)

Since we have sorted the xi such that a1 � a2 � � � � � an, the following statements are
true:

if aq � aj1 .R for some j1; then jjxi�xqjj.R for all i � j1;

if aj2 � aq.R for some j2; then jjxi�xqjj.R for all i � j2:

As a consequence, we only need to consider candidates xi whose indices are in
J :¼ fj1 þ 1; j1 þ 2; . . . ; j2 � 1g and we can determine the smallest subset by finding the
largest j1 and smallest j2 satisfying the above statements, respectively. As the ai are sorted,
this can be achieved via binary search in Oðlog nÞ operations. Note that the indices in J are

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 5/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

continuous integers, and hence it is memory efficient to access XðJ; :Þ, the submatrix of X
whose row indices are in J. This will be important later.

Finally, we filter all data points in the reduced set XðJ; :Þ, retaining only those data
points whose distance to the query point xq is less or equal to R, i.e., points satisfying

jjxj � xqjj2 � R2. The query phase is summarized in Algorithm 2.

Algorithm 1 SNN index.

1: Input: Data matrix P ¼ ½p1; p2; . . . ; pn�T 2 Rn	d

2: Compute l :¼ meanðfpjgÞ
3: Compute the mean-centered matrix X with rows xi :¼ pi � l

4: Compute the singular value decomposition of X ¼ U�VT

5: Compute the sorting keys ai ¼ xTi v1 for i ¼ 1; 2; . . . ; n

6: Sort data points X such that a1 � a2 � � � � � an

7: Compute xi ¼ ðxTi xiÞ=2 for i ¼ 1; 2; . . . ; n

8: Return: μ, X, v1, ½ai�, ½xi�

first principal axis

Figure 1 Query with radius R. The data points in the shaded band have their first principal coordinate
within a distance R from the first principal coordinate of the query point, and hence are NN candidates.
All data points are sorted so that all candidates have continuous indices.

Full-size DOI: 10.7717/peerj-cs.1929/fig-1

Algorithm 2 SNN query.

1: Input: Query vector q; user-specified radius R; output from Algorithm 1

2: Compute xq :¼ q� l

3: Compute the sorting score of xq, i.e., aq :¼ xTq v1

4: Select candidate index range J so that jaj � aqj � R for all j 2 J

5: Compute d :¼ �xðJÞ � XðJ; :ÞTxq using the precomputed �x ¼ ½xi�
6: Return: Points xj with dj � ðR2 � xTq xqÞ=2 according to Eq. (4)

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 6/23

http://dx.doi.org/10.7717/peerj-cs.1929/fig-1
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

COMPUTATIONAL CONSIDERATIONS
The compute-intensive step of the query procedure is the computation of

jjxj � xqjj2 ¼ ðxj � xqÞTðxj � xqÞ (3)

for all vectors xj with indices j 2 J . Assuming that these vectors have d features, one
evaluation of Eq. (3) requires 3d � 1 floating point operations (flop): d flop for the
subtractions, d flop for the squaring, and d � 1 flop for the summation. In total, jJjð3d � 1Þ
flop are required to compute all |J| squared distances. We can equivalently rewrite (Eq. (3))
as jjxj � xqjj2 ¼ xTj xj þ xTq xq � 2xTj xq and instead verify the radius condition as

1
2
xTj xj � xTj xq �

R2 � xTq xq
2

: (4)

This form has the advantage that all the squared-and-halved norms xj ¼ ðxTj xjÞ=2
(i ¼ 1; 2; . . . ; n) have been precomputed during the indexing phase. Hence, in the query
phase, the left-hand side of Eq. (4) can be evaluated for all |J| points xj using only 2djJj flop:
ð2d � 1ÞjJj for the inner products and |J| subtractions.

Merely counting flop, Eq. (4) saves about 1/3 of arithmetic operations over (Eq. (3)). An
additional advantage results from the fact that all inner products in Eq. (4) can be
computed as XðJ; :ÞTxq using level-2 BLAS matrix-vector multiplication (gemv), resulting
in further speedup on modern computing architectures. If multiple query points are given,
say xð1Þq ; . . . ; xð‘Þq , a level-3 BLAS matrix-matrix multiplication (gemm) evaluates

XðJ; :ÞT ½xð1Þq ; . . . ; xð‘Þq � in one go, where J is the union of candidates for all ‘ query points.

One may be concerned that the computation using Eq. (4) incurs more rounding error
than the usual Formula (3). We now prove that this is not the case. First, note that division
or multiplication by 2 does not incur rounding error. Using the standard model of floating
point arithmetic, we have flða
 bÞ ¼ ða
 bÞð1� dÞ for any elementary operation

 2 fþ;�;	; =g, where 0 � d � u with the unit roundoff u (Higham, 2002, Chap. 1).
Suppose we have two vectors x and y where xi and yi denote their respective coordinates.
Then computing

sd :¼
Xd
i¼1

ðxi � yiÞ2 ¼ ðx � yÞTðx � yÞ

in floating point arithmetic amounts to evaluating

ŝ1 ¼ flððx1 � y1Þ2Þ ¼ flððx1 � y1ÞÞ2 � ð1� dÞ ¼ ðx1 � y1Þ2ð1� dÞ3;
ŝ2 ¼ flð̂s1 þ ðx2 � y2Þ2Þ ¼ ð̂s1 þ ðx2 � y2Þ2ð1� dÞ3Þ � ð1� dÞ
¼ ðx1 � y1Þ2ð1� dÞ4 þ ðx2 � y2Þ2ð1� dÞ4; and so on:

Continuing this recursion we arrive at

ŝd ¼ ðx1 � y1Þ2ð1� dÞdþ2 þ ðx2 � y2Þ2ð1� dÞdþ2 þ ðx3 � y3Þ2ð1� dÞdþ1

þ � � � þ ðxd � ydÞ2ð1� dÞ4:

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 7/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Assuming ju, 1 and using (Higham, 2002, Lemma 3.1) we have

ð1� dÞj ¼ 1þ hj; where jhjj � ju
1� ju

:¼ cj:

Hence,

jðx � yÞTðx � yÞ � flððx � yÞTðx � yÞÞj
� jhdþ2ðx1 � y1Þ2 þ h0dþ2ðx2 � y2Þ2 þ hdþ1ðx3 � y3Þ2þ
� � � þ h4ðxd � ydÞ2j
� jhdþ2jðx1 � y1Þ2 þ jh0dþ2jðx2 � y2Þ2 þ jhdþ1jðx3 � y3Þ2þ
. . .þ jh4jðxd � ydÞ2j
� cdþ2ðx � yÞTðx � yÞ;
showing that the left-hand side of Eq. (3) can be evaluated with high relative accuracy.

A very similar calculation can be done for the formula

xTx þ yTy � 2xTy ¼ sd;

the expression that is used to derive (Eq. (4)). Using the standard result for inner products
(Higham, 2002, eq. (3.2))

flðxTyÞ ¼ x1y1ð1� dÞd þ x2y2ð1� dÞd þ x3y3ð1� dÞd�1

þ � � � þ xdydð1� dÞ2;
one readily derives

jðx � yÞTðx � yÞ � flðxTx þ yTy � 2xTyÞj � cdþ2ðx � yÞTðx � yÞ;
the same bound on the relative accuracy of floating-point evaluation as obtained for (3).

THEORETICAL ANALYSIS
The efficiency of the SNN query in Algorithm 2 is dependent on the number of pairwise
distance computations that are performed in Step 5, depending on the size of the index set
|J|. If the index set J is the full f1; 2; . . . ; ng, then the algorithm reduces to exhaustive
search over the whole dataset fx1; x2; . . . ; xng, which is undesirable. For the algorithm to
be most efficient, |J| would exactly coincide with the indices of data points xi that satisfy
jjxi � xqjj � R. In practice, the index set J will be somewhere in between these two

extremes. Thus, it is natural to ask: How likely is it that jai � aqj � R, yet jjxi � xqjj.R?
First note that, using the singular value decomposition (Eq. (1)) of the data matrix X, we

can derive an upper bound on jjxi � xqjj that complements the lower bound (Eq. (2)).
Using that xTi ¼ eTi X ¼ eTi U�VT , where ei 2 Rn denotes the ith canonical unit vector, and
denoting the elements of U by uij, we have

jjxi � xqjj2 ¼ jai � aqj2 þ jj½ðui2 � uq2Þ; . . . ; ðuid � uqdÞ��̂jj2
� jai � aqj2 þ jjui � uqjj2 � jj�̂jj2
� jai � aqj2 þ 2r22

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 8/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

with �̂ ¼
r2

. .
.

rd

2
64

3
75: Therefore,

jai � aqj2 � jjxi � xqjj2 � jai � aqj2 þ 2r22 (5)

and the gap in these inequalities depends on r2, the second singular value of X. Indeed, if
r2 ¼ 0, then all data points xi lie on a straight line passing through the origin and their
distances correspond exactly to the difference in their first principal coordinates. This is a
best-case scenario for Algorithm 2 as all candidates xj, j 2 J , found in Step 4 are indeed also
nearest neighbors. If, on the other hand, r2 is relatively large compared to r1, the gap in the
inequalities (Eq. (5)) becomes large and jai � aqj may be a crude underestimation of the
distance jjxi � xqjj.

In order to get a qualitative understanding of how the number of distance computations
in Algorithm 2 depends on the various parameters (dimension d, singular values of the
data matrix, query radius R, etc.), we consider the following model. Let fxigni¼1 be a large
sample of points whose d components are normally distributed with zero mean and
standard deviation ½1; s; . . . ; s�, s, 1, respectively. These points describe an elongated
“Gaussian blob” inRd, with the elongation controlled by s. In the large data limit ðn ! 1Þ
the singular values of the data matrix X ¼ ½x1; . . . ; xn�T approach

ffiffiffi
n

p
; s

ffiffiffi
n

p
; . . . ; s

ffiffiffi
n

p
and

the principal components approach the canonical unit vectors e1; e2; . . . ; ed. As a
consequence, the principal coordinates ai ¼ eT1 xi follow a standard normal distribution,
and hence for any c 2 R the probability that jai � cj � R is given as

P1 ¼ P1ðc;RÞ ¼ 1ffiffiffiffiffi
2p

p
Z cþR

c�R
e�r2=2dr:

On the other hand, the probability that jjxi � ½c; 0; . . . ; 0�T jj � R is given by

P2 ¼ P2ðc;R; s; dÞ

¼ 1ffiffiffiffiffi
2p

p
Z cþR

c�R
e�r2=2 � F R2 � ðr � cÞ2

s2
; d � 1

� �
dr;

(6)

where F denotes the v2 cumulative distribution function. In this model we can think of the
point xq :¼ ½c; 0; . . . ; 0�T as a query point, and our aim is to identify all data points xi
within a radius R of this query point.

Since jjxi � xqjj � R implies that jai � cj � R, we have P1 � P2. Hence, the quotient
P2=P1 can be interpreted as a conditional probability of a point xi satisfying jjxi � xqjj � R

given that jeT1 xi � cj � R, i.e.,

P ¼ Pðjjxi � xqjj � RjjeT1 xi � cj � RÞ ¼ P2=P1:

Ideally, we would like this quotient P ¼ P2=P1 be close to 1, and it is now easy to study
the dependence on the various parameters. First note that P1 does not depend on s nor d,
and hence the only effect these two parameters have on P is via the factor

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 9/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

F R2�ðr�cÞ2
s2 ; d � 1

� �
in the integrand of P2. This term corresponds to the probability that

the sum of squares of d � 1 independent Gaussian random variables with mean zero and
standard deviation s is less or equal to R2 � ðr � cÞ2. Hence, P2 and therefore P are
monotonically decreasing as s or d are increasing. This is consistent with intuition: as s
increases, the elongated point cloud fxig becomes more spherical and hence it gets more
difficult to find a direction in which to enumerate (sort) the points naturally. And this
problem gets more pronounced in higher dimensions d.

We now show that the “efficiency ratio” P converges to 1 as R increases. In other words,
the identification of candidate points xj, j 2 J , should become relatively more efficient as
the query radius R increases. (Here relative is meant in the sense that candidate points
become more likely to be fixed-radius nearest neighbors as R increases. Informally, as
R ! 1, all n data points are candidates and also nearest neighbors and so the efficiency
ratio must be 1.) First note that for an arbitrarily small e. 0 there exists a radius R1 . 1
such that P1ðc;R1 � 1Þ. 1� e. Further, there is a R2. 1 such that

F
R2
2 � ðr � cÞ2

s2
; d � 1

� �
. 1� e for all r 2 ½c� R2 þ 1; cþ R2 � 1�:

To see this, note that the cumulative distribution function F increases monotonically
from 0 to 1 as its first argument increases from 0 to 1. Hence there exists a value T for
which Fðt; d � 1Þ. 1� e for all t � T . Now we just need to find R2 such that

R2
2 � ðr � cÞ2

s2
� T for all r 2 ½c� R2 þ 1; cþ R2 � 1�:

The left-hand side is a quadratic function with roots at r ¼ c� R2, symmetric with
respect to the maximum at r ¼ c. Hence choosing R2 such that

R2
2 � ð½cþ R2 � 1� � cÞ2

s2
¼ T; i:e:; R2 ¼ Ts2 þ 1

2

� �1=2

;

or any value R2 larger than that, will be sufficient. Now, setting R ¼ maxfR1;R2g, we have

P2 � 1ffiffiffiffiffi
2p

p
Z cþR�1

c�Rþ1
e�r2=2 � F R2 � ðr � cÞ2

s2
; d � 1

� �
dr � ð1� eÞ2:

Hence, both P1 and P2 come arbitrarily close to 1 as R increases, and so does their
quotient P ¼ P2=P1.

EXPERIMENTAL EVALUATION
Our experiments are conducted on a compute server with two Intel Xeon Silver 4114 2.2G
processors, 1.5 TB RAM, with operating system Linux Debian 11. All algorithms are forced
to run in a single thread with the same settings for fair comparison. We only consider
algorithms for which stable Cython or Python implementation are freely available. Our
SNN algorithm is implemented in native Python (i.e., no Cython is used), while

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 10/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

scikit-learn’s (Pedregosa et al., 2011) k-d tree and balltree NN algorithms, and hence also
scikit-learn’s DBSCAN method, use Cython for some part of the computation. Numerical
values are reported to four significant digits. The code and data to reproduce the
experiments in this article can be downloaded from https://github.com/nla-group/snn.

Near neighbor query on synthetic data
We first compare k-d tree, balltree, and SNN on synthetically generated data to study their
dependence on the data size n and the data dimension d. We also include two brute force
methods, the one in scikit-learn (Pedregosa et al., 2011) (denoted as brute force 1) and
another one implemented by us (denoted as brute force 2) which exploits BLAS level-2
(One might say that brute force 2 is equivalent to SNN without index construction and
without search space pruning.). The leaf size for scikit-learn’s k-d tree and balltree is kept at
the default value 40. The n data points are obtained by sampling from the uniform
distribution on ½0; 1�d.

For the first test we vary the number of data points n (the index size) from 2,000 to
20,000 in increments of 2,000. The number of features is either d ¼ 2 or d ¼ 50. We then
query the nearest neighbors of each data point for varying radius R. The ratio of returned
data points relative to the overall number of points is listed in Table 1. As expected, this
ratio is approximately independent of n. We have chosen the radii R so that a good order-
of-magnitude variation in the ratio is obtained, in order to simulate queries with small to
large returns. The timings of the index and query phases of the various NN algorithms are
shown in Fig. 2 (left). Note that the brute force methods do not require the construction of

Table 1 The table shows the ratio of returned data points from the synthetic uniformly distributed dataset, relative to the overall number of
points n, as the query radius R and the dimension d is varied; The ratios confirm that our parameter choices lead to queries over a wide order-
in-magnitude variation of query return sizes.

n 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Varying n
(d ¼ 2)

R ¼ 0:02 0.1243% 0.1245% 0.1232% 0.1234% 0.1236% 0.1236% 0.1238% 0.1238% 0.1232% 0.1234%

R ¼ 0:05 0.755% 0.7561% 0.7506% 0.7522% 0.7532% 0.7508% 0.7531% 0.7534% 0.7511% 0.751%

R ¼ 0:08 1.852% 1.87% 1.879% 1.871% 1.882% 1.879% 1.879% 1.871% 1.881% 1.875%

R ¼ 0:11 3.434% 3.46% 3.433% 3.449% 3.44% 3.459% 3.454% 3.44% 3.452% 3.453%

R ¼ 0:14 5.487% 5.42% 5.443% 5.456% 5.438% 5.454% 5.442% 5.432% 5.449% 5.417%

Varying n
(d ¼ 50)

R ¼ 2:0 0.01732% 0.01674% 0.01818% 0.01763% 0.01752% 0.01717% 0.01734% 0.01726% 0.0175% 0.0174%

R ¼ 2:1 0.07652% 0.07361% 0.07286% 0.07502% 0.07777% 0.07414% 0.07571% 0.07737% 0.07486% 0.07722%

R ¼ 2:2 0.2873% 0.2843% 0.2912% 0.2863% 0.2879% 0.2857% 0.2862% 0.2903% 0.2888% 0.2892%

R ¼ 2:3 0.9608% 0.9235% 0.9316% 0.9184% 0.9129% 0.929% 0.9065% 0.9195% 0.9166% 0.9303%

R ¼ 2:4 2.514% 2.624% 2.623% 2.544% 2.526% 2.511% 2.542% 2.558% 2.584% 2.562%

d 2 32 62 92 122 152 182 212 242 272

Varying d
(n ¼ 10,000)

R ¼ 0:5 48.11% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R ¼ 2:0 100.0% 11.08% 3.9e−05% 0% 0% 0% 0% 0% 0% 0%

R ¼ 3:5 100.0% 100.0% 88.78% 4.613% 0.001981% 0% 0% 0% 0% 0%

R ¼ 5:0 100.0% 100.0% 100.0% 100.0% 98.03% 45.5% 1.886% 0.005933% 2e−06% 0%

R ¼ 6:5 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 98.99% 74.06% 17.15%

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 11/23

https://github.com/nla-group/snn
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

an index. Among k-d tree, balltree, and SNN, our method has the shortest indexing phase.
The query time is obtained as an average over all queries, over the two considered
dimensions d 2 f2; 50g, and over all considered radii R.SNN performs best, with the
average query time being between 5 and 9.7 times faster than balltree (the fastest tree-based
method). We have verified that for all methods, when run on the same datasets with the
same radius parameter, the set of returned points coincide.

For the second test we fix the number of data points at n ¼ 10;000 and vary the
dimension d ¼ 2; 32; . . . ; 272. We perform queries for five selected radii as shown in
Table 1. The table confirms that we have a wide variation in the number of returned data

Figure 2 Comparing SNN to brute force search and tree-based methods. Total index time (A, B) and
average query time (C, D) for the synthetic uniformly distributed dataset, all in seconds, as the data size n
is varied (A, C) or the dimension d is varied (B, D). Brute force query methods do not require an index
construction, hence are omitted on the left. Our SNN method is the best performer in all cases, in some
cases 10 times faster than the best tree-based method (balltree).

Full-size DOI: 10.7717/peerj-cs.1929/fig-2

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 12/23

http://dx.doi.org/10.7717/peerj-cs.1929/fig-2
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

points relative to the overall number of points n, ranging from empty returns to returning
all data points. The indexing and query timings are shown in Fig. 2 (right). Again, among
k-d tree, balltree, and SNN, our method has the shortest indexing phase. The query time is
obtained as an average over all n query points and over all considered radii R. SNN
performs best, with the average query time being between 3.5 and 6 times faster than
balltree (the fastest tree-based method).

Comparison with GriSPy
GriSPy (Chalela et al., 2021), perhaps the most recent work on fixed-radius NN search, is
an exact search algorithm which claims to be superior over the tree-based algorithms in
SciPy. GriSPy indexes the data points into regular grids and creates a hash table in which
the keys are the cell coordinates, and the values are lists containing the indices of the points
within the corresponding cell. As there is an open-source implementation available, we can
easily compare GriSPy against SNN. However, GriSPy has a rather high memory demand
which forced us to perform a separate experiments with reduced data sizes and dimensions
as compared to the ones in the previous “Near Neighbor Query on Synthetic Data”.

Again we consider n uniformly distributed data points in ½0; 1�d , but now with (i)
varying data size from n ¼ 1;000 to 100;000 and averaging the runtime of five different
radius queries with R ¼ 0:05; 0:1; . . . ; 0:25, and (ii) varying dimension over d ¼ 2; 3; 4.
The precise parameters and the corresponding ratio of returned data points are listed in
Table 2. All queries are repeated 1,000 times and timings are averaged. Both experiments
(i) and (ii) use the same query size as the index size.

The index and query timings are illustrated in Fig. 3. We find that SNN indexing is
about an order of magnitude faster than GriSPy over all tested parameters. For the
experiment (i) where the data size is varied, we find that SNN is up to two orders of

Table 2 The table shows the ratio of returned data points from the synthetic uniformly distributed
dataset, relative to the overall number of points n, as the data volumn n, query radius R and the
dimension d is varied.

n 1,000 2,154 4,641 10,000 21,544 46,415 100,000

Varying n (d ¼ 3) R ¼ 0:05 0.05% 0.05% 0.048% 0.049% 0.05% 0.05% 0.049%

R ¼ 0:10 0.37% 0.37% 0.36% 0.38% 0.37% 0.37% 0.37%

R ¼ 0:15 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%

R ¼ 0:20 2.6% 2.6% 2.6% 2.7% 2.7% 2.6% 2.6%

R ¼ 0:25 4.8% 4.8% 4.8% 4.9% 4.9% 4.9% 4.7%

d 2 3 4

Varying d (n ¼ 10,000) R ¼ 0:05 0.75% 0.05% 0.0029%

R ¼ 0:10 2.9% 0.38% 0.042%

R ¼ 0:15 6.1% 1.2% 0.2%

R ¼ 0:20 10% 2.7% 0.59%

R ¼ 0:25 15% 4.9% 1.3%

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 13/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

magnitude faster than GriSPy. For experiment (ii), we see that the SNN query time is more
stable than GriSPy with respect to increasing data dimension.

Near neighbor query on real-world data
We now compare various fixed-radius NN search methods on datasets from the
benchmark collection by Aumüller, Bernhardsson & Faithfull (2020): Fashion-MNIST
(abbreviated as F-MNIST), SIFT, GIST, GloVe100, and DEEP1B. Each dataset has an
index set of n points and a separate out-of-sample query set with n0 , n points. See Table 3
for a summary of the data.

Table 4 lists the timings for the index construction of the tree-based methods and SNN.
For all datasets, SNN is least 5.9 times faster than balltree (the fasted tree-based method).

Figure 3 Comparing GriSPy and SNN. Total index time (A, B) and average query time (C, D) for on
uniformly distributed data, all in seconds, as the data size n is varied (A, C) or the dimension d is varied
(B, D). Our SNN method significantly outperforms GriSPy both in terms of indexing and query runtime.

Full-size DOI: 10.7717/peerj-cs.1929/fig-3

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 14/23

http://dx.doi.org/10.7717/peerj-cs.1929/fig-3
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Significant speedups are gained in particular for large datasets: for the largest dataset
DEEP1B, SNN creates its index more than 32 times faster than balltree.

The query times averaged over all n0 points from the query set are listed in Table 5. We
have included tests over different radii R in order to obtain a good order-of-magnitude
variation in the number of returned nearest neighbors relative to the index size n, assessing
the algorithms over a range of possible scenarios from small to large query returns. See the
return ratios �t listed in Table 5. Again, in all cases, SNN consistently performs the fastest
queries over all datasets and radii. SNN is between about 6 and 14 times faster than balltree
(the fastest tree-based method). For the datasets GloVe100 and DEEP1B, SNN displays the
lowest speedup of about 1.6 compared to our brute force 2 implementation, indicating that
for these datasets the sorting-based exclusion criterion does not significantly prune the
search space. (These are datasets for which the angular distance is used, i.e., all data points
are projected onto the unit sphere.) For the other datasets, SNN achieves significant
speedups between 2.6 and 5.6 compared to brute force 2, owing to effective search space
pruning.

An application to clustering
We now wish to demonstrate the performance gains that can be obtained with SNN using
the DBSCAN clustering method (Campello et al., 2015; Jang & Jiang, 2019) as an example.
To this end we replace the nearest neighbor search method in scikit-learn’s DBSCAN
implementation with SNN. To enure all variants perform the exact same NN queries, we

Table 4 Index time in milliseconds for fixed-radius NN search on the real-world datasets (rounded
to four significant digits).

Dataset k-d tree Balltree SNN

F-MNIST 9,035 7,882 1,335

SIFT10K 720.5 662.1 79.1

SIFT1M 3,292 2,921 179

GIST 319,400 297,900 29,140

GloVe100 41,210 39,800 1,549

DEEP1B 446,000 464,100 14,730

Note:
Lower is better and the best values are highlighted in bold.

Table 3 Summary of the real-world datasets.

Dataset Dimension d Distance Index size n Query size n0 Related reference

F-MNIST 784 Euclidean 25,000 10,000 Xiao, Rasul & Vollgraf (2017)

SIFT10K 128 Euclidean 25,000 100 Lowe (2004)

SIFT1M 128 Euclidean 100,000 10,000 Lowe (2004)

GIST 960 Euclidean 1,000,000 1,000 Oliva & Torralba (2004)

GloVe100 100 Angular 1,183,514 10,000 Pennington, Socher & Manning (2014)

DEEP1B 96 Angular 9,990,000 10,000 Yandex & Lempitsky (2016)

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 15/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

rewrite all batch NN queries into loops of single queries and force all computations to run
in a single threat. Except these modifications, DBSCAN remains unchanged and in all case
returns exactly the same result when called on the same data and with the same
hyperparameters (eps and min_sample).

We select datasets from the UCI Machine Learning Repository (Dua & Graff, 2017); see
Table 6. All datasets are pre-processed by z-score standardization (i.e., we shift each feature
to zero mean and scale it to unit variance). We cluster the data for various choices of
DBSCAN’s eps parameter and list the measured total runtime in Table 7. The parameter

Table 5 Query time per data point in milliseconds for real-world data, averaged over n0 out-of-
sample queries.

Dataset R �t Brute force 1 Brute force 2 k-d tree Balltree SNN

F-MNIST 800 0.01524% 302.8 43.99 146.3 110.3 7.765

900 0.04008% 244.4 43.96 152.2 110.7 8.602

1,000 0.09283% 218.5 44.1 157.2 111.2 9.413

1,100 0.1960% 217.3 44.28 160.5 111.5 10.21

1,200 0.3818% 216.2 44.32 163.3 110.8 11.18

SIFT10K 210 0.02296% 19.04 4.187 15.88 12.55 1.112

230 0.04892% 21.56 4.153 18.58 13.75 1.170

250 0.1147% 21.24 4.546 18.35 13.15 1.458

270 0.2718% 22.97 4.279 19.91 14.73 1.128

290 0.5958% 22.06 4.276 19.86 15.33 1.093

SIFT1M 210 0.02661% 75.82 16.10 45.71 35.11 4.525

230 0.05671% 78.24 16.15 46.86 38.37 4.557

250 0.1231% 86.03 16.29 50.30 40.75 4.598

270 0.2663% 80.13 16.17 54.13 42.76 4.660

290 0.5608% 69.77 16.17 58.80 44.55 4.727

GIST 0.80 0.1430% 3,955 862.2 3,144 2,160 281.5

0.85 0.1977% 3,966 861.4 3,182 2,164 293.9

0.90 0.2723% 3,941 861.6 3,206 2,171 305.8

0.95 0.3762% 3,817 861.7 3,223 2,178 316.8

1.00 0.5234% 3,759 861.4 3,237 2,183 326.8

GloVe100 0.30p 0.04506% 516.9 127.3 671.5 567.5 78.38

0.31p 0.07888% 514.1 126.9 673.2 561.8 79.47

0.32p 0.1438% 514.7 126.8 670.6 564.9 76.83

0.33p 0.2755% 520.1 126.5 674.9 561.0 77.27

0.34p 0.5507% 522.0 127.8 674.6 562.2 77.00

DEEP1B 0.22p 0.04495% 4,281 1,079 5,711 4,731 803.0

0.24p 0.09332% 4,229 1,065 5,677 4,704 704.8

0.26p 0.1891% 4,202 1,082 5,732 4,683 719.9

0.28p 0.3761% 4,230 1,080 5,765 4,755 734.3

0.30p 0.7341% 4,274 1,084 5,644 4,810 723.1

Note:
The search radius is R and �t is the average ratio of returned data points relative to the overall number of data points n.
Lower is better and the best values are highlighted in bold.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 16/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

eps has the same interpretation as SNN’s radius parameter R. In all cases, we have fixed
DBSCAN’s second hyperparameter min_sample at 5. The normalized mutual
information (NMI) (Cover & Thomas, 2006) of the obtained clusterings is also listed in
Table 7.

Table 6 Clustering datasets in the UCI machine learning repository.

Dataset Size n Dimension d #Labels Related references

Banknote 1,372 4 2 Dua & Graff (2017)

Dermatology 366 34 6 Dua & Graff (2017), Güvenir, Demiröz & Ilter (1998)

Ecoli 336 7 8 Dua & Graff (2017), Nakai & Kanehisa (1991, 1992)

Phoneme 4,509 256 5 Hastie, Tibshirani & Friedman (2009)

Wine 178 13 3 Forina et al. (1998)

Table 7 Total DBSCAN runtime in milliseconds when different NN search algorithms are used.

Dataset eps NMI Brute force k-d tree Balltree SNN

Banknote 0.1 0.05326 1,914 463.9 431.9 30.20

0.2 0.2198 1,739 454.5 434.3 48.67

0.3 0.3372 1,968 452.0 438.8 50.61

0.4 0.5510 1,759 457.5 442.4 51.21

0.5 0.08732 1,752 477.2 449.8 53.01

Dermatology 5.0 0.5568 706.8 138.8 124.3 86.81

5.1 0.5714 654.0 142.2 127.8 64.62

5.2 0.5733 651.8 139.2 123.2 63.74

5.3 0.5796 650.7 138.2 121.5 60.75

5.4 0.4495 638.6 138.4 121.2 58.17

Ecoli 0.5 0.1251 506.9 116.0 104.9 7.674

0.6 0.2820 491.9 116.0 105.2 8.105

0.7 0.3609 496.0 116.5 107.2 9.263

0.8 0.4374 500.9 116.7 105.1 10.97

0.9 0.1563 499.8 116.3 105.0 11.39

Phoneme 8.5 0.5142 3,497 17,290 7,685 926.9

8.6 0.5516 3,511 17,480 7,738 954.1

8.7 0.5836 3,300 17,490 7,727 937.9

8.8 0.6028 3,257 17,600 7,768 975.2

8.9 0.5011 3,499 17,570 7,734 1,065

Wine 2.2 0.4191 73.37 64.02 56.70 5.753

2.3 0.4764 64.65 63.84 56.29 5.703

2.4 0.5271 66.91 63.26 55.74 5.612

2.5 0.08443 67.29 63.11 56.34 6.106

2.6 0.07886 67.12 63.45 56.25 6.094

Note:
The DBSCAN radius parameter is eps and the achieved normalized mutual information is NMI. Best runtimes are
highlighted in bold.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 17/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

The runtimes in Table 7 show that DBSCAN with SNN is a very promising
combination, consistently outperforming the other combinations. When compared to
using non-batched and non-parallelized DBSCAN with balltree, DBSCAN with SNN
performs between 3.5 and 16 times faster while returning precisely the same clustering
results.

CONCLUSIONS
We presented a fixed-radius nearest neighbor (NN) search method called SNN. Compared
to other exact NN search methods based on k-d tree or balltree data structures, SNN is
trivial to implement and exhibits faster index and query time. We also demonstrated that
SNN outperforms different implementations of brute force search. Just like brute force
search, SNN requires no parameter tuning and is straightforward to use. We believe that
SNN could become a valuable tool in applications such as the MultiDark Simulation
(Klypin et al., 2016) or the Millennium Simulation (Boylan-Kolchin et al., 2009). We also
demonstrated that SNN can lead to significant performance gains when used for nearest
neighbor search within the DBSCAN clustering method.

While we have demonstrated SNN speedups in single-threaded computations on a
CPU, we believe that the method’s reliance on high-level BLAS operations makes it
suitable for parallel GPU computations. A careful CUDA implementation of SNN and
extensive testing will be subject of future work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Stefan Güttel’s work was supported by a Royal Society Industry Fellowship IF/R1/231032.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Royal Society Industry Fellowship: IF/R1/231032.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Xinye Chen conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Stefan Güttel conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 18/23

http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available at Figshare: Güttel, Stefan; Chen, Xinye (2023).
snn_exp. figshare. Dataset. https://doi.org/10.6084/m9.figshare.24781473.v1.

The code is available at GitHub and Zenodo:
- https://github.com/nla-group/snn/.
- the null & Stefan Güttel. (2023). nla-group/snn: v1.0. Zenodo. https://doi.org/10.5281/

zenodo.10275014.

REFERENCES
Alshammari M, Stavrakakis J, Takatsuka M. 2021. Refining a k-nearest neighbor graph for a

computationally efficient spectral clustering. Pattern Recognition 114:107869
DOI 10.1016/j.patcog.2021.107869.

Aumüller M, Bernhardsson E, Faithfull A. 2020. ANN-benchmarks: a benchmarking tool for
approximate nearest neighbor algorithms. Information Systems 87:101374
DOI 10.1016/j.is.2019.02.006.

Bachrach Y, Finkelstein Y, Gilad-Bachrach R, Katzir L, Koenigstein N, Nice N, Paquet U. 2014.
Speeding up the Xbox recommender system using a Euclidean transformation for inner-product
spaces. In: Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14. New
York: ACM, 257–264.

Bawa M, Condie T, Ganesan P. 2005. LSH Forest: self-tuning indexes for similarity search. In:
Proceedings of the 14th International Conference on World Wide Web, WWW ’05. New York:
ACM, 651–660.

Bentley JL. 1975a. Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9):509–517 DOI 10.1145/361002.361007.

Bentley JL. 1975b. A survey of techniques for fixed radius near neighbor searching. Technical
Report, Stanford University.

Bernhardsson E. 2023. Annoy (version 1.17.3). Available at https://github.com/spotify/annoy.

Beygelzimer A, Kakade S, Langford J. 2006. Cover trees for nearest neighbor. In: Proceedings of
the 23rd International Conference on Machine Learning, ICML ’06. New York: ACM, 97–104.

Blackford L, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L,
Lumsdaine A, Petitet A, Pozo R, Remington K,Whaley R. 2002. An updated set of basic linear
algebra subprograms (BLAS). ACM Transactions on Mathematical Software 28(2):135–151
DOI 10.1145/567806.567807.

Boylan-Kolchin M, Springel V, White SDM, Jenkins A, Lemson G. 2009. Resolving cosmic
structure formation with the Millennium-II simulation. Monthly Notices of the Royal
Astronomical Society 398(3):1150–1164 DOI 10.1111/j.1365-2966.2009.15191.x.

Campello RJGB, Moulavi D, Sander J. 2013. Density-based clustering based on hierarchical
density estimates. In: Advances in Knowledge Discovery and Data Mining. Cham: Springer, 160–
172.

Campello RJGB, Moulavi D, Zimek A, Sander J. 2015. Hierarchical density estimates for data
clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from
Data 10(1):1–51 DOI 10.1145/2733381.

Cayton L, Dasgupta S. 2007. A learning framework for nearest neighbor search. In: Advances in
Neural Information Processing SystemsVol. 20: New York: Curran Associates, Inc.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 19/23

https://doi.org/10.6084/m9.figshare.24781473.v1
https://github.com/nla-group/snn/
https://doi.org/10.5281/zenodo.10275014
https://doi.org/10.5281/zenodo.10275014
http://dx.doi.org/10.1016/j.patcog.2021.107869
http://dx.doi.org/10.1016/j.is.2019.02.006
http://dx.doi.org/10.1145/361002.361007
https://github.com/spotify/annoy
http://dx.doi.org/10.1145/567806.567807
http://dx.doi.org/10.1111/j.1365-2966.2009.15191.x
http://dx.doi.org/10.1145/2733381
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Chakrabarti K, Keogh E, Mehrotra S, Pazzani M. 2002. Locally adaptive dimensionality reduction
for indexing large time series databases. ACM Transactions on Database Systems 27(2):188–228
DOI 10.1145/568518.568520.

Chalela M, Sillero E, Pereyra L, Garcia M, Cabral J, Lares M, MerchánM. 2021.GriSPy: a Python
package for fixed-radius nearest neighbors search. Astronomy and Computing 34(1):100443
DOI 10.1016/j.ascom.2020.100443.

Chen X, Güttel S. 2023. Fast and exact fixed-radius neighbor search based on sorting. ArXiv
DOI 10.48550/arXiv.2212.07679.

Cover TM, Thomas JA. 2006. Elements of information theory (Wiley series in telecommunications
and signal processing). Hoboken: Wiley.

Dasgupta S, Sinha K. 2013. Randomized partition trees for exact nearest neighbor search. In:
Proceedings of the 26th Annual Conference on Learning Theory, Proceedings of Machine Learning
Research. Vol. 30. PMLR, 317–337.

Datar M, Immorlica N, Indyk P, Mirrokni VS. 2004. Locality-sensitive hashing scheme based on
P-stable distributions. In: Proceedings of the 20th Annual Symposium on Computational
Geometry, SCG ’04. New York: ACM, 253–262.

Dong Y, Indyk P, Razenshteyn I, Wagner T. 2020. Learning space partitions for nearest neighbor
search. In: International Conference on Learning Representations.

Dong W, Moses C, Li K. 2011. Efficient k-nearest neighbor graph construction for generic
similarity measures. In: Proceedings of the 20th International Conference on World Wide Web.
577–586.

Dua D, Graff C. 2017. UCI machine learning repository. Available at https://archive.ics.uci.edu/.

Ester M, Kriegel H-P, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, KDD’96. Washington, D.C.: AAAI Press, 226–231.

Forina M, Leardi R, Armanino C, Lanteri S. 1998. PARVUS: an extendable package of programs
for data exploration, classification and correlation. Journal of Chemometrics 4:191–193
DOI 10.1002/cem.1180040210.

Francis-Landau M, Durme BV. 2019. Exact and/or fast nearest neighbors. ArXiv
DOI 10.48550/arXiv.1910.02478.

Friedman JH, Bentley JL, Finkel RA. 1977. An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software 3(3):209–226
DOI 10.1145/355744.355745.

Gallego A-J, Calvo-Zaragoza J, Valero-Mas JJ, Rico-Juan JR. 2018. Clustering-based k-nearest
neighbor classification for large-scale data with neural codes representation. Pattern Recognition
74:531–543 DOI 10.1016/j.patcog.2017.09.038.

Gallego AJ, Rico-Juan JR, Valero-Mas JJ. 2022. Efficient k-nearest neighbor search based on
clustering and adaptive k values. Pattern Recognition 122:108356
DOI 10.1016/j.patcog.2021.108356.

Galvelis R, Sugita Y. 2017. Neural network and nearest neighbor algorithms for enhancing
sampling of molecular dynamics. Journal of Chemical Theory and Computation 13(6):2489–
2500 DOI 10.1021/acs.jctc.7b00188.

Garcia V, Debreuve E, Barlaud M. 2008. Fast k nearest neighbor search using GPU. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
Piscataway: IEEE, 1–6.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 20/23

http://dx.doi.org/10.1145/568518.568520
http://dx.doi.org/10.1016/j.ascom.2020.100443
http://dx.doi.org/10.48550/arXiv.2212.07679
https://archive.ics.uci.edu/
http://dx.doi.org/10.1002/cem.1180040210
http://dx.doi.org/10.48550/arXiv.1910.02478
http://dx.doi.org/10.1145/355744.355745
http://dx.doi.org/10.1016/j.patcog.2017.09.038
http://dx.doi.org/10.1016/j.patcog.2021.108356
http://dx.doi.org/10.1021/acs.jctc.7b00188
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Geng X, Liu T-Y, Qin T, Arnold A, Li H, Shum H-Y. 2008. Query dependent ranking using k-
nearest neighbor. In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’08. New York: ACM, 115–122.

Groß J, Köster M, Krüger A. 2019. Fast and efficient nearest neighbor search for particle
simulations. In: Computer Graphics & Visual Computing.

Guo R, Sun P, Lindgren E, Geng Q, Simcha D, Chern F, Kumar S. 2020. Accelerating large-scale
inference with anisotropic vector quantization. In: Proceedings of the 37th International
Conference on Machine Learning, Proceedings of Machine Learning Research. Vol. 119. PMLR,
3887–3896.

Güvenir HA, Demiröz G, Ilter N. 1998. Learning differential diagnosis of erythemato-squamous
diseases using voting feature intervals. Artificial Intelligence in Medicine 13(3):147–165
DOI 10.1016/s0933-3657(98)00028-1.

Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: data mining,
inference, and prediction. Second Edition. Cham: Springer.

Higham NJ. 2002. Accuracy and stability of numerical algorithms. Second Edition. Philadelphia:
SIAM.

Indyk P, Motwani R. 1998. Approximate nearest neighbors: towards removing the curse of
dimensionality. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
STOC ’98. New York: ACM, 604–613.

Jang J, Jiang H. 2019. DBSCAN++: towards fast and scalable density clustering. In: Proceedings of
the 36th International Conference on Machine Learning, Proceedings of Machine Learning
Research. Vol. 97. PMLR, 3019–3029.

Kaminska O, Cornelis C, Hoste V. 2021. Nearest neighbour approaches for emotion detection in
tweets. In: Proceedings of the 11th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis. Association for Computational Linguistics, 203–212.

Keogh E, Ratanamahatana CA. 2005. Exact indexing of dynamic time warping. Knowledge and
Information Systems 7(3):358–386 DOI 10.1007/s10115-004-0154-9.

Klypin A, Yepes G, Gottlöber S, Prada F, Heß S. 2016. MultiDark simulations: the story of dark
matter halo concentrations and density profiles. Monthly Notices of the Royal Astronomical
Society 457(4):4340–4359 DOI 10.1093/mnras/stw248.

Li H, Liu X, Li T, Gan R. 2020. A novel density-based clustering algorithm using nearest neighbor
graph. Pattern Recognition 102:107206 DOI 10.1016/j.patcog.2020.107206.

Lowe DG. 2004. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision 60(2):91–110 DOI 10.1023/B:VISI.0000029664.99615.94.

Malkov YA, Yashunin DA. 2020. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence 42(4):824–836 DOI 10.1109/TPAMI.2018.2889473.

Muja M. 2013. Scalable nearest neighbour methods for high dimensional data. PhD Thesis,
University of British Columbia.

Muja M, Lowe DG. 2009. FLANN, fast library for approximate nearest neighbors. In: International
Conference on Computer Vision Theory and Applications, VISAPP’09. Vol. 31–21.

Nakai K, Kanehisa M. 1991. Expert system for predicting protein localization sites in gram-
negative bacteria. Proteins 11(2):95–110 DOI 10.1002/prot.340110203.

Nakai K, Kanehisa M. 1992. A knowledge base for predicting protein localization sites in
eukaryotic cells. Genomics 14(4):897–911 DOI 10.1016/S0888-7543(05)80111-9.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 21/23

http://dx.doi.org/10.1016/s0933-3657(98)00028-1
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1093/mnras/stw248
http://dx.doi.org/10.1016/j.patcog.2020.107206
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TPAMI.2018.2889473
http://dx.doi.org/10.1002/prot.340110203
http://dx.doi.org/10.1016/S0888-7543(05)80111-9
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Nister D, Stewenius H. 2006. Scalable recognition with a vocabulary tree. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’06). Piscataway: IEEE,
2161–2168.

Oliva A, Torralba A. 2004.Modeling the shape of the scene: a holistic representation of the spatial
envelope. International Journal of Computer Vision 42(3):145–175
DOI 10.1023/A:1011139631724.

Omohundro SM. 1989. Five balltree construction algorithms. Technical Report, International
Computer Science Institute.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.

Pennington J, Socher R, Manning CD. 2014. GloVe: global vectors for word representation. In:
Empirical Methods in Natural Language Processing. 1532–1543.

Philbin J, Chum O, Isard M, Sivic J, Zisserman A. 2007. Object retrieval with large vocabularies
and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE, 1–8.

Ram P, Sinha K. 2019. Revisiting KD-tree for nearest neighbor search. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19. New
York: ACM, 1378–1388.

Shakhnarovich, Viola, Darrell. 2003. Fast pose estimation with parameter-sensitive hashing. In:
Proceedings 9th IEEE International Conference on Computer Vision. Vol. 2: Piscataway: IEEE,
750–757.

Silpa-Anan C, Hartley R. 2008. Optimised KD-trees for fast image descriptor matching. In: IEEE
Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1–8.

The MathWorks Inc. 2022.MatLab version: 9.13.0 (r2022b). Available at https://mathworks.com/.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P,WeckesserW, Bright J, van derWalt SJ, Brett M,Wilson J, Millman KJ, Mayorov
N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas
J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM,
Ribeiro AH, Pedregosa F, van Mulbregt P, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A,
Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C,
Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F,
Wilhelm F, Young G, Price GA, Ingold G-L, Allen GE, Lee GR, Audren Hé, Probst I, Dietrich
JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de
Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J,
Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ,
Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R,
Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ,
Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko
YO, Vázquez-Baeza Y. 2020. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nature Methods 17(3):261–272 DOI 10.1038/s41592-019-0686-2.

Wang H, Liu A, Wang J, Ziebart BD, Yu CT, Shen W. 2015. Context retrieval for web tables. In:
Proceedings of the 2015 International Conference on the Theory of Information Retrieval, ICTIR
’15. New York: ACM, 251–260.

Xiao H, Rasul K, Vollgraf R. 2017. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. ArXiv DOI 10.48550/arXiv.1708.07747.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 22/23

http://dx.doi.org/10.1023/A:1011139631724
https://mathworks.com/
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.48550/arXiv.1708.07747
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

Yagoubi D-E, Akbarinia R, Masseglia F, Palpanas T. 2020. Massively distributed time series
indexing and querying. IEEE Transactions on Knowledge and Data Engineering 32(1):108–120
DOI 10.1109/TKDE.2018.2880215.

Yandex AB, Lempitsky V. 2016. Efficient indexing of billion-scale datasets of deep descriptors.
In: IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,
2055–2063.

Yianilos PN. 1993. Data structures and algorithms for nearest neighbor search in general metric
spaces. In: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’93. New York: SIAM, 311–321.

Chen and Güttel (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1929 23/23

http://dx.doi.org/10.1109/TKDE.2018.2880215
http://dx.doi.org/10.7717/peerj-cs.1929
https://peerj.com/computer-science/

	Fast and exact fixed-radius neighbor search based on sorting
	Introduction
	Related work
	Sorting-based nn search
	Computational considerations
	Theoretical analysis
	Experimental evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

