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ABSTRACT
While digital ocular fundus images are commonly used for diagnosing ocular tumors,
interpreting these images poses challenges due to their complexity and the subtle
features specific to tumors. Automated detection of ocular tumors is crucial for timely
diagnosis and effective treatment. This study investigates a robust deep learning system
designed for classifying ocular tumors. The article introduces a novel optimizer that
integrates the Caputo fractional gradient descent (CFGD) method with the cuckoo
search algorithm (CSA) to enhance accuracy and convergence speed, seeking optimal
solutions. The proposed optimizer’s performance is assessed by training well-known
Vgg16, AlexNet, andGoogLeNetmodels on 400 fundus images, equally divided between
benign and malignant classes. Results demonstrate the significant potential of the
proposed optimizer in improving classification accuracy and convergence speed. In par-
ticular, the mean accuracy attained by the proposed optimizer is 86.43%, 87.42%, and
87.62% for the Vgg16, AlexNet, and GoogLeNet models, respectively. The performance
of our optimizer is compared with existing approaches, namely stochastic gradient
descent with momentum (SGDM), adaptive momentum estimation (ADAM), the
original cuckoo search algorithm (CSA), Caputo fractional gradient descent (CFGD),
beetle antenna search with ADAM (BASADAM), and CSA with ADAM (CSA-ADAM).
Evaluation criteria encompass accuracy, robustness, consistency, and convergence
speed. Comparative results highlight significant enhancements across all metrics,
showcasing the potential of deep learning techniques with the proposed optimizer
for accurately identifying ocular tumors. This research contributes significantly to the
development of computer-aided diagnosis systems for ocular tumors, emphasizing the
benefits of the proposed optimizer in medical image classification domains.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Ocular tumor, Deep learning, Cuckoo search algorithm, Caputo fractional gradient
descent

INTRODUCTION
Ocular tumors refer to irregular growths that can develop in various parts of the eye. These
growths are categorized as either benign or malignant, reflecting the degree of potential
harm they can cause. Even though benign tumors may seem less harmful, timely attention
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is crucial, as they can still affect vision. Conversely, malignant tumors represent a more
serious threat since they have the potential to metastasize to other organs (Grishina, Kim
& Izotova, 2023), resulting in myriad health issues. Therefore, the detection and treatment
of ocular tumors are crucial in order to preserve vision and for the purpose of preventing
metastasis, thereby ensuring the avoidance of potential side effects.

Fundus imaging is a prevalent non-invasive technique in ophthalmology that is
predicated on symptom recognition for diagnosis. However, its effectiveness can be limited
by variations and individual awareness among ophthalmologists (Honavar, 2021; Pogosova,
2022). Specialized training and expertise are necessary for the accurate interpretation of
fundus images, a requirement that may be deficient in resource-limited settings (Ramírez-
Ortiz et al., 2017). Moreover, the diverse clinical features of these tumors pose a formidable
challenge (Neupane, Gaudana & Boddu, 2018; Liu et al., 2019), especially in the course
of identifying small or deep-seated tumors (Gündüz & Tetik, 2023; Moothedath, Seth &
Chawla, 2023; Manjandavida et al., 2019). As a matter of fact, locating these tumors can
prove challenging even for experienced medical professionals.

In recent times, machine and deep learning techniques have gained prominence in
medical diagnosis, involving the training of classification models on specific datasets to
identify a range of ophthalmic conditions, including various ocular diseases (Nawaz et al.,
2022; Akter et al., 2022; Atwany, Sahyoun & Yaqub, 2022; Das, Biswas & Bandyopadhyay,
2022; Kadry et al., 2022; Jin et al., 2022) and tumors (Goswami, 2021; Kaliki et al., 2023;
Kumar et al., 2023).

Nevertheless, the preferred technique in such tasks is transfer learning due to the
constrained size of medical datasets. This approach involves leveraging pre-trained models,
such as Vgg16 (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and
AlexNet (Russakovsky et al., 2015). The architecture of GoogLeNet introduced inception
modules, which facilitated efficient usage of computing resources (Bilal et al., 2022).
Vgg16’s deep architecture is beneficial for diverse image classification tasks, including
medical image classification (Albashish et al., 2021). In fundus image analysis, AlexNet
excels in learning robust features, contributing to enhanced overall performance (Deepika &
Shivakumar, 2021). These models undergo training on extensive datasets for the purpose of
diagnosing the targeted disease. This training process incorporates optimization techniques
like stochastic gradient descent with momentum (SGDM) and adaptive momentum
estimation (ADAM) to fine-tune the weights of specific layers in the pre-existing model.
This adaptation facilitates the transfer of knowledge acquired from prior tasks to effectively
address the new diagnostic task. Additionally, certain authors endeavor to enhance the
convergence rate through optimization methodologies grounded in fractional calculus (Pu
et al., 2013; Sheng et al., 2020; Taresh et al., 2022), which employ fractional derivatives
as a generalization for conventional derivatives. However, the diverse clinical features
of ocular tumors and limited data availability pose significant challenges, leading to
issues such as overfitting and hyperparameter sensitivity when using these optimization
algorithms (Sengupta et al., 2018). These impediments primarily stem from the gradient-
based nature of the optimization techniques, which can converge to local minima in highly
non-convex problems.
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In response to the limitations of gradient-based optimizers, researchers have investigated
the optimization of their classification models through global search techniques by using
meta-heuristics algorithms (Ólafsson, 2006; Gogna & Tayal, 2013;Nesmachnow, 2014). The
objective of these techniques is to discover global optimal solutions without depending
on gradient information. Meta-heuristic algorithms frequently work with populations,
commencing with a set of random solutions and progressively converging toward the
global optimum through diverse phenomena. Typically, their search process comprises
two phases: exploration, during which they randomly explore new solutions across the
entire search space, and exploitation, where the emphasis is on searching around the
best solution acquired thus far. Achieving an optimal balance between exploration and
exploitation is essential to avoid low accuracy and the risk of becoming trapped in local
optima.

While meta-heuristics excel in various engineering and scientific problems, due to
the high nonlinearity and the vast size of the search space with numerous parameters,
their performance tends to be suboptimal in optimizing deep models. To surmount these
challenges, recent efforts have placed the emphasis on integrating ADAM into meta-
heuristic techniques such as cuckoo search (CSA) (Mohsin, Li & Abdalla, 2020) and beetle
antenna search (BAS) (Khan et al., 2020), to guide the search towards feasible regions.
While the combination of gradient-based methods with meta-heuristics has demonstrated
promising results, additional research is imperative to optimize their application across
diverse scenarios.

The objective of this article is to improve the performance of the (CSA) in optimizing
deep models by integrating a fractional gradient descent mechanism into the heuristic
search engine. The noteworthy aspect of fractional gradient descent lies in its capacity
to maintain a memory of past iterations and adapt its search direction accordingly. This
characteristic has the potential to result in a more efficient and resilient optimization
process. To achieve that goal, we employ the Caputo fractional gradient descent method
(CFGD) (Shin, Darbon & Karniadakis, 2021), which renowned for its provenmonotonicity
and convergence properties (Wang et al., 2017;Chen & Zhao, 2019;Taresh et al., 2022; Shin,
Darbon & Karniadakis, 2023).

Furthermore, our approach leverages the unique property of Caputo’s definition,
wherein the fractional differential of a constant function is consistently 0. This alignment
with the principles of integer-order calculus enhances the applicability of the Caputo
definition in engineering problem-solving. The incorporation of the Caputo formulation
enhances thememory-efficient capabilities of fractional gradient descent, particularly when
calculating fractional-order derivatives in our task. As a result, the overall effectiveness of
our optimization technique is heightened. Furthermore, the main reason behind choosing
CSA is its promising performance in medical image classification tasks (Goel, Gaur
& Jain, 2015; Guerrout et al., 2020; Mohsin, Li & Abdalla, 2020). Notably, the proposed
optimization technique is applied to well-established pre-trained models known for their
efficacy in fundus image classification (Shaik & Cherukuri, 2022; Velpula & Sharma, 2023;
Salma, Bustamam & Sarwinda, 2021), specifically Vgg16, AlexNet, and GoogLeNet. To the
best of our knowledge, this is the first work introducing the application of optimization
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technique to the ocular tumor classification using deep learning models. The significant
contributions made in this article are manifolded.

1. We propose a new optimizer based on integrating a Caputo fractional gradient descent
(CFGD) to CSA; hereafter referred to as CSA-CFGD. This integration enables a more
sophisticated exploration of the search space and an improved exploitation around the
most feasible region by considering the historical information of the objective function.

2. We propose a novel approach for ocular tumors classification by utilizing data
augmentation and training pre-trainedmodels, namely Vgg16, AlexNet, andGoogLeNet,
on a dataset of fundus images containing ocular tumors. The data augmentation
techniques include random rotation, horizontal and vertical shifts, shear transformation,
zoom, flips, and brightness adjustment. Through the application of data augmentation,
we substantially augment the diversity of the training data, leading to enhanced model
generalization and improved performance in real-world scenarios.

3. We carried out twenty independent runs of training of each pre-trained model,
comprehensively comparing the obtained models, offering valuable insights into their
performance in ocular tumor classification and their suitability for the task.

4. Using the pre-trained models employed in this study, we compared our proposed
optimization algorithm with existing algorithms in the literature. We conducted a
comprehensive investigation, including average case performance studies and statistical
hypothesis tests such as parametric (two sample t -test) and non-parametric (Wilcoxon
rank-sum test) analyses.

The rest of this article is structured as follows: ‘‘The New Optimizer’’ provides a
comprehensive outline of the optimizer that is being proposed. Next, the section titled
‘‘Ocular Tumor Classification Neural Network’’ elucidates the neural network that was
developed specifically for the classification of ocular tumors. The setup for the simulation
experiments is described in the ‘‘Simulation Experiments Setup’’ section. The ‘‘Results
and Discussion’’ section present and explicate the results as well as discussion of the
experiments. The section titled ‘‘Conclusion’’ provides a summary of our conclusions and
suggests possible directions for further investigation.

THE NEW OPTIMIZER
For a real-valued function f (x), x= [x0,x1,··· ,xd] ∈Rd , it is often required to find the
value of x that minimize f (x), i.e.,

min
x∈Rd

f (x). (1)

The conventional gradient decent method has the following iterative rule for x,

x(k+1)= x(k)−ηk ·∇xf
(
x(k)

)
, (2)

where k denotes the number of iteration and ηk is the learning rate at the kth iteration.
Such a method searches for an optimal solution by taking discrete steps in the direction of
steepest descent. This method often converges linearly to a stationary point provided that
the learning rates are appropriately chosen.
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Cuckoo search algorithm
The cuckoo search algorithm (CSA) is a meta-heuristic algorithm inspired by the brood
parasitism behavior of cuckoo species. It incorporates lévy flights in order to improve
its performance. In CSA, each cuckoo lays just one egg in a randomly selected nest,
and nests with high-quality eggs are retained for future generations. The host bird can
choose to either discard the egg or build a new nest, and it discovers cuckoo eggs with a
probability pa ∈ [0,1]. Unlike other meta-heuristic algorithms, the CSA method generates
two populations of potential solutions using lévy flight and random walk. The population
resulting from lévy flight exhibits exploration in the search space, with individuals being
notably diverse due to the lévy function’s stochastic nature. CSA employs the switching
parameter pa to combine global and local random walks. The global random walk uses lévy
flight operation Levy(λ)∼ u= k−λ, 1<λ≤ 3, to explore the search space, i.e.,

x(k+1)j = x(k)j +β⊗Levy(λ). (3)

In the local random walk, two solutions, xkp and xkq , are randomly selected through
permutation. The new position of the jth nest at the kth iteration is calculated using
Eq. (4), which involves the current position x(k)i , step size β, step scaling factor s, Heaviside
functionH (u), probability of discovering a cuckoo egg pa, element-wise product of vectors
⊗, and a random number drawn from a uniform distribution v .

x(k+1)j = x(k)j +βs⊗H (pa−v)⊗ (x(k)p −x(k)q ). (4)

The algorithm’s basic steps, including cuckoo selection, solution generation, evaluation,
nest replacement, abandonment, as well as update, are summarized in Algorithm 1. The
stochastic Eq. (4) represents a random walk, where the next location/state depends on the
current location and the transition probability. However, in CS, a significant portion of
new solutions should be generated through far-field randomization to ensure sufficient
exploration of the search space and to avoid getting trapped in local optima.

Algorithm 1 Cuckoo Search via Lvy Flights
begin
Objective function f (x),x= (x1,...,xd)T
Generate initial population of n host nests xj (j = 0,1,··· ,n)
while (k<MaxGeneration) or (stop criterion) do

Get a cuckoo randomly by Lvy flights using (3)
Evaluate its solution quality or objective value f (xj)
Choose a nest among n (say, l) randomly
if (f (xj)< f (xl)) then

Replace l by the new solution j
end if
A fraction (pa) of worse nests are abandoned
New nests/solutions are built using (4)
Keep best solutions (or nests with quality solutions)
Rank the solutions and find the current best
Update k← k+1

end while
Postprocess results and visualization
end

In CSA, the step size plays a pivotal role and necessitates vigilant monitoring to discern
the search area relevant to the practical problem. In our approach, we predefine these step
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size values, and they remain constant across generations. However, this fixed nature can
pose challenges, potentially causing the algorithm to become entrenched in local optima,
thereby complicating the task of discovering optimal solutions.

CSA utilizes the lévy flight strategy, enabling cuckoo nests to traverse via a combination
of short and sporadic long-distance cooperative random searches. It is due to this particular
mode that CSA exhibits a significant and unpredictable leap during the search process.
Consequently, the search in the surrounding area of each cuckoo nest is not sufficiently
robust, leading to a slow convergence speed and inadequate convergence accuracy for
CSA. The gradient direction, which represents the direction of maximum value change, is
indicated by a vector that comes from the xworst point and terminates at the xbest point.

For i= 1,...,d , we define the functions fi,x :R→R by fi,x(y)= f (x+ (y−xi)ei), where
ei represents the vector in Rd with a 1 in the i-th coordinate and 0’s elsewhere. For a vector
ck = [c0,c1,c2,...,cd] ∈Rd , we define the Caputo fractional gradient of f by

ck
C
∇
α
x f (x

(k))=
(
c1CaputoDαx f1,x(x1),...,

Caputo
cd Dαx fd,x(xd)

)
∈Rd . (5)

We can now introduce a Caputo fractional gradient descent method (CFGD) in the
following manner: Starting at an initial point x(0), the k-th iterated solution is updated by

x(k+1)= x(k)−ηk ·ck
C
∇
α
x f
(
x(k)

)
, k= 0,1,..., (6)

where α ∈ (0,1), x(k)= (xki ), c
k
= (xki ), γk ∈R and C

ck∇
α
x f (x

(k)) is expressed as:

diag
(
cki

CaputoDαx I (x
k
i )
)−1[

ckC∇
α
x f (x

(k))+γkdiag(|xki − c
k
i |)c

kC∇
α+1
x f (x(k))

]
.

Let f (x) be a real-valued sufficiently smooth function defined on Rd , where
cα = (1−α)2−(1−α), we have(
ck

C
∇
α
x f (x

(k))
)
i

(7)

= cαk

∫ 1

−1
f ′i,x(1

k
i (1+u)+ c

k
i )(1−u)

−αk du+ cαkγk |x
k
i − c

k
i |

∫ 1

−1
f ′′i,x(1

k
i (1+u)+ c

k
i )(1−u)

−αk du,

We observe that Eq. (7) involves integrals that can be accurately evaluated by the
Gauss-Jacobi quadrature. Let {(λm,um)}vm=1 be the Gauss-Jacobi quadrature rule of v
points. Then, ckC∇

α
x f
(
x(k)

)
can be approximated using the Gauss-Jacobi quadrature

formula as:(
ck

C
∇xαf

(
x(k)

))
i
=Cαk

M∑
m=0

λmf ′i (1
k
i (1+um)+ c

k
i ) +

Cαkγk
∣∣xki − cki ∣∣ M∑

m=0

λmf ′′i (1
k
i (1+um)+ c

k
i ). (8)

The steepest descent direction of a locally smoothed original objective function is the
generic CFGD. Incorporating information about the local gradient and curvature of the
objective function, this formula provides a local approximation of the Caputo fractional
gradient. The parameters α, γ , and the weights and nodes of the quadrature formula
(λm, um) collectively control the method’s behavior, thus achieving a balance between
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exploration and exploitation in the optimization process. To enhance exploration in
feasible regions, we incorporate the Caputo fractional gradient given in Eq. (8) into Eq. (3),
which yields

x(k+1)j = x(k)j +βk⊗Levy(λ)Cck∇xαf
(
x(k)best

)
, (9)

where ck is computed as the mean of the three solutions x1, x2 and x3, i.e.,

ck =
x1+x2+x3

3
, (10)

where x1,2,3 = xj − r1,2,3(xbest −xkj ), and r1,2,3 denote random numbers that uniformly
distributed over [0,2]. Such random numbers augment the exploration of the new regions
and help avoid local minima stagnation. Similarly, we incorporate the Caputo fractional
gradient descent given in Eq. (8) into Eq. (4) to improve the exploitation around the best
solution obtained so far, which yields

x(k+1)j = x(k)j +βs⊗H (pa−v)⊗C
ck∇

α
x f
(
x(k)best

)
, (11)

where ck is assigned to xworst .
The integration of CFGD into the cuckoo search algorithm (CSA) necessitates the

incorporation of CFGD components, particularly the Caputo fractional gradient, at
strategic points within the CSA algorithm. This integration aims to boost the overall
performance of the optimization process by leveraging the distinctive advantages offered
by both CSA and CFGD. Throughmeticulous design, the integration is tailored to capitalize
on these specific strengths. The primary objective is to achieve higher convergence andmore
efficient exploration of the solution space by combining CSA’s global search capabilities
with CFGD’s gradient-based method. The introduction of additional components, such
as random numbers and CFGD-specific rules, introduces new computational tasks that
could potentially impact the overall efficiency of the algorithm. While this integration is
designed to be modular and controllable, it is crucial to recognize that this diversity may
lead to additional computational expenses. The pseudocode for CSA-CFGD is provided
below in Algorithm 2.

THE PROPOSED OCULAR TUMORS CLASSIFICATION
NEURAL NETWORK
The proposed ocular tumor classification approach leverages pretrained convolutional
neural network (CNN) models, including Vgg16, AlexNet, and GoogLeNet, for feature
extraction. The feature extraction process is denoted as follows:

H(l)
= σ

N (l−1)∑
i=1

W(l)
i ∗H

(l−1)
i +b(l)

, (12)

where H(l) represents the feature map at layer l ,σ is the rectified linear unit (ReLU)
activation function, N(l−1) signifies the number of neurons or nodes in the input feature
map H(l−1) at layer (l−1) of the neural network, W(l)

i represents weights, H(l−1)
i is the
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Algorithm 2 CSA-CFGD
begin
Objective function f (x),x= (x1,...,xd)T
Generate initial population of n host nests xj (j = 0,1,··· ,n)
while (k <MaxGeneration) or (stop criterion) do

Get a cuckoo randomly by Lvy flights using (9)
Evaluate its solution quality or objective value f (xj)
Choose a nest among n (say, l) randomly
if (f (xj)< f (xl)) then

Replace l by the new solution j
end if
A fraction (pa) of worse nests are abandoned
New nests/solutions are built using (11)
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best
Update k← k+1

end while
Postprocess results and visualization
end

input feature map, and b(l) is the bias. The final feature map was flattened to input a fully
connected neural network classifier during training. We replaced the top layers in each
model with two fully connected layers, denoted as Hfc1 and Hfc2. These layers use ReLU
activation, which effectively improves the convergence and efficiency of neural networks,
especially in image classification. They are expressed as follows:

Hfc1= σ
(
Wfc1 ·H(L−1)

+bfc1
)
, (13)

Hfc2= σ
(
Wfc2 ·Hfc1+bfc2

)
, (14)

where L denotes the total number of layers, Wfc1, Wfc2 repesent the weights of the fully
connected layers, and bfc1,bfc2 signify the biases. Finally, the output layer employs a
sigmoid function for binary classification, denoted as Y, representing the predicted output
probabilities:

Y= σ
(
Wfc ·Hfc2+bfc

)
. (15)

Using ReLU in the hidden layers allows the network to efficiently learn complex
features. In addition, the use of sigmoid in the output layer provides a probability-like
output suitable for binary classification. In tasks where the output is binary (0 or 1),
the binary cross-entropy loss L, also known as log loss, is a standard choice for the loss
function. This loss function imposes penalties for misclassifications by quantifying the
disparity between predicted probabilities and actual labels, resulting in effective training
for binary classification scenarios. The formula for binary cross-entropy loss is:

L(y,ŷ)=−
1
N

N∑
i=1

[
yi · log(ŷi)+ (1−yi) · log(1− ŷi)

]
, (16)

where N denotes the number of samples yi is the true label for the i-th sample and ŷi is the
predicted probability for the i-th sample.

To optimize the neural network, we employed the CSA-CFGD as our optimization
algorithm, helping us obtain optimal weights and biases for the network. The optimization
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Figure 1 Outline of the proposed model. Image source credits: This image was originally published
in the Retina Image Bank® website. Alex P. Hunyor, MD. choroidal melanoma Retina Image Bank.
2013, 3101. © the American Society of Retina Specialists https://imagebank.asrs.org/file/3101/choroidal-
melanoma-case-4-partly-amelanotic. This image was originally published in the Retina Image Bank®

website. Jason S. Calhoun. choroidal hemangioma Retina Image Bank. 2013, 8214. © the American
Society of Retina Specialists https://imagebank.asrs.org/file/8214/cavernous-choroidal-hemangioma.

Full-size DOI: 10.7717/peerjcs.1923/fig-1

process can be represented as follows:

UpdateWfc1and bfc1using CSA-CFGD, (17)

UpdateWfc2and bfc2using CSA-CFGD. (18)

Figure 1 illustrates the architecture of our proposed CAS-CFGD based CNN for the
ocular tumor classification from fundus images. Compared to the existing optimization
algorithms in the literature, we expect to achieve superior results in ocular tumor
identification using the proposed optimizer.

SIMULATION EXPERIMENTS SETUP
In this section, we enunciate the setup as well as implementation details of the simulation
experiments conducted to evaluate the performance and effectiveness of ocular tumors
classification model using the CSA-CFGD. The experiments were performed using
MATLAB 9.0 on an Intel(R) Core(TM) i7-4510U CPU @ 2.6 GHz with 8 GB RAM.

To address the issue of overfitting, a 10-fold cross-validation approach is employed,
utilizing 70% of the entire dataset for training. The experimental data comprises two
classes, namely benign and malignant, with each class containing 200 patches, resulting
in a total of 400 patches. It is collected from the Retina Image Bank (American Society of
Retina Specialists , 2022) created by the American Society of Retina Specialists in It allows
ophthalmologists and photographers from all parts of the globe to come together and share
real-life patient cases online. Figure 2 displays image samples of benign and malignant of
the ocular using fundus image. Ophthalmologists with specialized expertise in the field
meticulously reviewed and verified the images to ensure their quality and accuracy. These
images were then utilized to deepen understanding and knowledge of retinal diseases.

Numerous augmentation techniques are applied to the training data, encompassing
random rotation within −30 to 30 degrees, random horizontal and vertical shifts within

Habeb et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1923 9/24

https://peerj.com
https://imagebank.asrs.org/file/3101/choroidal-melanoma-case-4-partly-amelanotic
https://imagebank.asrs.org/file/3101/choroidal-melanoma-case-4-partly-amelanotic
https://imagebank.asrs.org/file/8214/cavernous-choroidal-hemangioma
https://doi.org/10.7717/peerjcs.1923/fig-1
http://dx.doi.org/10.7717/peerj-cs.1923


Figure 2 Displaying three benign ocular tumors in the first row and three malignant ocular tumors in
the second row. Image source credits: (A) This image was originally published in the Retina Image Bank®

website. Jason S. Calhoun. choroidal hemangioma Retina Image Bank. 2013, 8214. © the American
Society of Retina Specialists https://imagebank.asrs.org/file/8214/cavernous-choroidal-hemangioma. (B)
This image was originally published in the Retina Image Bank® website. Gregg T. Kokame, MD, MMM,
FASRS. choroidal-osteoma Retina Image Bank. 2020, 47685. © the American Society of Retina Specialists
https://imagebank.asrs.org/file/47685/choroidal-osteoma. (C) This image was originally published in the
Retina Image Bank® website. John S. King, MD. choroidal melanocytosis Retina Image Bank. 2019,
39310. © the American Society of Retina Specialists https://imagebank.asrs.org/file/39310/isolated-
choroidal-melanocytosis-montage. (D) This image was originally published in the Retina Image
Bank® website. Alex P. Hunyor, MD. choroidal melanoma Retina Image Bank. 2013, 3101. © the
American Society of Retina Specialists https://imagebank.asrs.org/file/3101/choroidal-melanoma-
case-4-partly-amelanotic. (E) This image was originally published in the Retina Image Bank®

website. Mallika Goyal, MD. Choroidal Lymphoma Retina Image Bank. 2012, 2154. © the American
Society of Retina Specialists https://imagebank.asrs.org/file/2154/choroidal-lymphoma. (F) This
image was originally published in the Retina Image Bank® website. Gary R. Cook, MD, FACS.
Retinoblastoma Retina Image Bank. 2019, 29815. © the American Society of Retina Specialists
https://imagebank.asrs.org/file/29815/bilateral-retinoblastoma.

Full-size DOI: 10.7717/peerjcs.1923/fig-2

−0.1 to 0.1, random shear transformation within −0.2 to 0.2, random zoom within 0.8
to 1.2, random horizontal and vertical flips, and random brightness adjustment within
0.8 to 1.2. The implementation of these augmentation techniques improves the diversity
of the data, which, in turn, enhances the generalization and performance of the model in
real-world situations. The carefully visualized augmented images in Fig. 3 demonstrate the
diverse transformations applied to the original images, thereby exemplifying the efficacy
of the data augmentation process in our research.

Meta-heuristic techniques rely on specific parameters that have a significant impact on
their performance. The choice of hyper-parameters significantly influences the model’s
performance. Table 1 provides an overview of the salient parameters employed in these
configurations. A population size of 50 is maintained throughout the experiments for all
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Figure 3 The resulted augmented image. Image source credit: This image was originally published in the
Retina Image Bank® website. Alex P. Hunyor, MD. choroidal melanoma Retina Image Bank. 2013, 3101.
© the American Society of Retina Specialists https://imagebank.asrs.org/file/3101/choroidal-melanoma-
case-4-partly-amelanotic.

Full-size DOI: 10.7717/peerjcs.1923/fig-3

Table 1 Hyper-parameters of CNNmodels used in this study.

Hyper-parameter Value

Learning rate (LR) 10−4

Epochs 6 (400 iterations in each epoch)
Batch size (BS) 32
Number of nodes 512
Activation function ReLU for theHfc layers and sigmoid for the output layer
Nodes 1024 forHfc1 and 512 forHfc2

Population size 50
Generations 100
The probability 0.25 (for CSA algoirthms)
Antennae length 10 (for BAS algorithm)

algorithms. A total of 100 generations are subsequently run. The CSA utilize a probability
of 0.25 for cuckoo egg laying. In the case of the beetle antennae search, the antennae length
is set to 10, inspired by Khan et al. (2020).

Moreover, neural network configurations play a pivotal role in ensuring the success of
deep learning experiments. The architecture of the neural network includes fully connected

Habeb et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1923 11/24

https://peerj.com
https://imagebank.asrs.org/file/3101/choroidal-melanoma-case-4-partly-amelanotic
https://imagebank.asrs.org/file/3101/choroidal-melanoma-case-4-partly-amelanotic
https://doi.org/10.7717/peerjcs.1923/fig-3
http://dx.doi.org/10.7717/peerj-cs.1923


layers, where the number of nodes plays a critical role in capturing complex patterns. To
ensure effective learning, we set the learning rate (LR) to 10−4, controlling the step size
during the optimization process. The training process was conducted over six epochs,
each encompassing 400 iterations. This framework allows the algorithm to progressively
refine its population, exploring and exploiting the solution space to uncover more optimal
solutions. A batch size (BS) of 32was employed, specifying the number of samples processed
in each iteration. Furthermore, the specific number of nodes in each hidden layer may
vary depending on the implementation. In our study, we chose 1,024 nodes for the first
hidden layer and 512 for the second, aligning with the size and complexity of the datasets
used in our experiments. This node configuration follows established practices in deep
learning, proving effective in capturing intricate patterns within the data. The input images
are resized to 224 × 224 for Vgg16 and GoogLeNet and 256 × 256 for AlexNet.

The performance of the proposed CSA-CFGD-based CNN isthen analyzed and
compared with existing methods to classify ocular tumors. Besides the original CSA,
we chose to compare our optimizer with well-known optimizers, including SGDM, and
ADAM, as well as the optimizers proposed in Sheng et al. (2020) for CFGD, Khan et al.
(2020) for BAS-ADAM, and Mohsin, Li & Abdalla (2020) for CSA-ADAM. In order to
conduct this comparison, we leveraged a dataset to train the selected pre-trained model
using these optimizers and subsequently compared the obtained results.

RESULT
This section provides a comprehensive analysis of the proposed optimizer and existing
optimization algorithms. In this study, the CSA algorithm is enhanced by integrating
CFGD. The error function gradient is calculated experimentally using various fractional
α-order derivatives, where 0<α≤ 1. Significant efforts have been invested in determining
the optimal value for the order at which the algorithm demonstrates rapid convergence. It is
noteworthy that when α= 1, it denotes the use of traditional optimizers without integrating
CFGD, thus serving as the standard CSA configuration for our proposed optimizers and
the baseline for CFGD optimizer. Performance evaluation entails carrying out 20 runs for
each pre-trained model with varying α values, and average accuracy is computed to create
curves, as shown in Fig. 4. Evidently, the average accuracies gradually increased with rising
fractional orders and peaked when α equaled 0.7. Thereafter, the curves exhibited a swift
decline.

Table 2 displays the highest accuracy (Acc) achieved by each model when employing
different optimization algorithms in this study to classify ocular tumors. It also encompasses
their respective average computation times.

The CSA-CFGD algorithm consistently demonstrates the highest accuracy for all three
pre-trained models. In particular, for Vgg16, it achieves an accuracy of 88.25% with a
computation time of 2,973 seconds. AlexNet attains a high accuracy of 90.75% with a
computation time of 798 seconds. On the other hand, with an accuracy of 91.75% and a
computation time of 1,022 seconds, GoogLeNet outperforms other algorithms. Conversely,
some alternative algorithms, such as ADAM and CSA, exhibit lower accuracies. These
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Figure 4 The average accuracy for (A) CFGD and (B) CSA-CFGDwith different values of α.
Full-size DOI: 10.7717/peerjcs.1923/fig-4

Table 2 Performance metrics of CNNmodels with different optimizers.

Optimizer Vgg16 AlexNet GoogLeNet

Acc. Tavg Acc. Tavg Acc. Tavg

SGDM 86.25 2,420 83.75 373 83.75 677
ADAM 78.5 2,442 72.5 444 82.5 728
CSA 77.26 2,382 79.55 324 82.81 618
CFGD 78.75 3,493 80.25 1,212 83.75 1,352
BAS-ADAM 80.5 3,098 89.25 935 85.5 1102
CSA-ADAM 87.25 3,062 87.5 940 88.75 1,094
CSA-CFGD 88.25 2,973 90.75 798 91.75 1,022

findings underscore the efficacy of the CSA-CFGD algorithm in attaining superior accuracy
while maintaining reasonable computational efficiency for ocular tumor classification tasks
using pre-trained models.

In Fig. 5, the comparison of optimization algorithms shows that the CSA-CFGD
algorithm stands out with a higher level of stability and consistent superior performance
with regard to accuracy. It impressively converges to better solutions, which then leads
to the highest accuracy among all the tested algorithms. Meanwhile, the performance of
ADAM exhibited constant improvement during the experiment, but it could not attain
the level of accuracy achieved by CSA-CFGD. This, in turn, suggests that the CSA-CFGD
algorithm possesses exceptional optimization capabilities, which enables it to deliver better
results and outshine other algorithms in this specific ocular tumors classification task.

We performed 20 repetitions for each algorithm and evaluated various performance
metrics to ensure the accuracy and comparability of our experiment. These metrics, such
as the mean, best, worst, and standard deviation (Std) were recorded and summarized in
Table 3.

The mean values provide insights into the average performance achieved by each
algorithm over the repetitions. The best and worst values represent the highest and lowest
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Figure 5 The average accuracy of each optimizer for (A) Vgg16, (B) AlexNet, and (C) GoogLeNet.
Full-size DOI: 10.7717/peerjcs.1923/fig-5

Table 3 The average performance metrics of CNNmodels using different optimizers.

Optimizer Vgg16 Alex Google

SGDM best 86.25 83.75 83.75
worst 52.50 72.50 70.00
mean 74.38 77.07 78.00
Std 7.31 3.59 3.70

ADAM best 78.50 72.50 82.50
worst 38.75 51.25 60.00
mean 70.22 66.94 76.98
Std 10.77 5.00 5.41

CSA best 77.26 79.55 82.81
worst 68.75 70.20 78.26
mean 73.89 76.86 80.34
Std 2.81 2.13 2.76

CFGD best 78.75 80.25 83.75
worst 73.50 72.00 75.00
mean 76.29 77.51 79.83
Std 1.58 2.26 2.64

BAS-ADAM best 80.50 89.25 85.50
worst 74.50 78.75 80.00
mean 78.15 84.31 82.81
Std 2.02 3.66 1.56

CSA-ADAM best 87.25 87.50 88.75
worst 78.75 79.00 80.25
mean 82.79 82.96 85.36
Std 2.59 2.81 2.56

CSA-CFGD best 88.25 90.75 91.75
worst 84.50 84.00 83.75
mean 86.43 87.47 87.62
Std 1.23 1.86 2.27

Habeb et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1923 14/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1923/fig-5
http://dx.doi.org/10.7717/peerj-cs.1923


performance observed among the 20 runs, respectively. Moreover, Std provides useful
information about the extent of variability in the results obtained, giving us a measure of
the algorithm’s consistency.

The obtained results in Table 3 provide insights into the performance of different
optimization algorithms on Vgg16, AlexNet, and GoogLeNet models. For the SGDM
algorithm, the average accuracy was 74.38% for Vgg16, 77.07% for AlexNet, and 78% for
GoogLeNet, accompanied by relatively high standard deviation values of 7.31, 3.59, and
3.70, respectively. In contrast, the ADAM algorithm yielded lower average accuracy values
of 70.22% for Vgg16, 66.94% for AlexNet, and 76.98% for GoogLeNet, with standard
deviation values of 10.77, 5.00, and 5.41, respectively. Similarly, the CSA algorithm resulted
in lower average accuracy values of 73.89% for Vgg16, 76.86% for AlexNet, and 80.34% for
GoogLeNet, accompanied by standard deviation values of 2.81, 2.31, and 2.76, respectively.

The CFGD and BAS-ADAM algorithms showed higher mean accuracy of 76.29%
and 78.15% for Vgg16, 77.51% and 84.31% for AlexNet, and 79.83% and 82.81% for
GoogLeNet, respectively, with Std values ranging from 1.58 to 2.64. The CSA-ADAM
algorithm exhibited better mean accuracy of 82.79% for Vgg16, 82.96% for AlexNet, and
85.36% for GoogLeNet, with relatively Std values of 2.59,2.81, and 2.56, respectively. The
CSA-CFGD algorithm demonstrated the highest mean accuracy values of 86.43% for
Vgg16, 87.47% for AlexNet, and 87.62% for GoogLeNet, with relatively lower Std values
of 1.23, 1.86, and 2.27. In summary, the CSA-CFGD algorithm demonstrated the most
consistent and superior performance, featuring higher average accuracy and lower standard
deviation across all three models.

Furthermore, the results show CSA-CFGD achieving the highest accuracy and ADAM
showing the worst accuracy for Vgg16, AlexNet, and GoogLeNet. In particular, Vgg16
reaches its peak accuracy of 88.25% with CSA-CFGD and the worst accuracy of 38.75%
with ADAM. In a similar vein, AlexNet attains its highest accuracy of 90.75% with CSA-
CFGD and the worst accuracy of 51.25% with ADAM. GoogLeNet also demonstrates the
highest accuracy of 91.75% with CSA-CFGD, whereas ADAM displays the worst accuracy
of 60%.

Considering the pace at which each algorithm and model reaches convergence assumes
significance. As shown in Fig. 6, CSA-CFGD stands out not only for reaching the minimum
value, all the while doing so at a faster pace in comparison to the other optimization
algorithms. While CSA-ADAM and BAS-ADAM come close to the lowest value, they fall
just short of reaching it. CSA shows better performance when compared with SGDM and
ADAM; however, it falls slightly short of reaching the lowest value as well. Conversely,
SGDM, ADAM and CFGD are noticeably far from the lowest value. CSA-CFGD really
shines among these approaches, achieving the lowest valuewith fewer iterations. In contrast,
CSA-ADAM and BAS-ADAM require more iterations to get there.

Furthermore, the comparison of algorithmic performance often involves statistical
hypothesis tests, such as the Wilcoxon rank-sum test. In our study, we applied this test
to pairwise combinations of SGDM, ADAM, CSA, CFGD, BAS-ADAM, CSA-ADAM,
and CSA-CFGD. The null hypothesis (H0) assumes no significant difference in accuracy
between the benchmark algorithm and CSA-CFGD for the proposed model. Rejection of
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Figure 6 Convergence profiles for an arbitrary epoch.
Full-size DOI: 10.7717/peerjcs.1923/fig-6

(H0) at a significance level (a) indicates a substantial difference in accuracy between the
two populations, with a confidence level (CL= (1−a)×100%). The populations’ sizes are
denoted by n1 and n2, and their sum of ranks byW1 andW2, respectively. By comparingW1

and W2 to critical values from Wilcoxon rank-sum tables (Montgomery & Runger, 2010),
we determined the rejection or acceptance of the null hypothesis. The results in Table 4
consistently reject the null hypothesis, affirming CSA-CFGD’s superiority in ocular tumor
classification.

Beside, the calculated t -value is compared to critical t-values for the chosen confidence
level (CL). The null hypothesis assumes no significant group difference and is rejected if the
t -value falls within the critical region, indicating significance. Conversely, acceptance of
the null hypothesis occurs if the t -value falls outside the critical region. The t -test calculates
the t -value using the formula:

t =
W1−µ

SE
, (19)

where W1 is the sum of ranks for the first group, µ is the expected value of the sum of
ranks under the null hypothesis (n1 ∗ (n1+n2+1)/2), and SE is the standard error of the
ranks, given by:

SE =

√
n1n2(n1+n2+1)

12
. (20)

To determine critical t -values for a given CL, we refer to the t-distribution table or use
statistical software. Concerning a two-tailed test, we divide the chosen significance level
(a) by 2. For example, if CL= 0.05, a= 0.025 for each tail. We find the critical t -value
corresponding to a= 0.025 and degrees of freedom (df = n1+n2−2). In a similar vein, for
CL= 0.01, a= 0.005 for each tail; we find the corresponding critical t -value. By comparing
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Table 4 Statistical analysis of CNNmodels with respect to each optimizer.

Model Optimizer Two-sample t -test Wilcoxon rank-sum test

t -value Accept/reject
null
hypothesis

CL n1 n2 Critical value W1 W2 Accept/reject
null
hypothesis

CL

0.05 0.01

Vgg16 SGDM 5.37E−07 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

ADAM 1.63E−11 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CSA 1.30E−12 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CFGD 2.75E−15 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

BAS-ADAM 9.52E−13 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CSA-ADAM 2.25E−05 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

AlexNet SGDM 1.36E−08 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

ADAM 9.47E−13 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CSA 4.28E−09 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CFGD 3.41E−13 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

BAS-ADAM 0.0055 reject 99% 7 10 42 37 43 110 accept
6 8 29 25 32 73 accept
5 9 22 18 28 77 accept

CSA-ADAM 6.98E−06 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

(continued on next page)
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Table 4 (continued)

Model Optimizer Two-sample t -test Wilcoxon rank-sum test

t -value Accept/reject
null
hypothesis

CL n1 n2 Critical value W1 W2 Accept/reject
null
hypothesis

CL

0.05 0.01

GoogLeNet SGDM 1.46E−10 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

ADAM 6.30E−07 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CSA 3.31E−11 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

CFGD 8.78E−09 reject 99% 7 10 42 37 28 125 reject 99%
6 8 29 25 21 84 reject 99%
5 9 22 18 15 90 reject 99%

BAS-ADAM 1.20E−08 reject 99% 7 10 42 37 29 124 reject 99%
6 8 29 25 22 83 reject 99%
5 9 22 18 16 89 reject 99%

CSA-ADAM 9.85E−05 reject 99% 7 10 42 37 43 110 accept
6 8 29 25 35 70 accept
5 9 22 18 29 76 accept

the calculated t -value with critical t -values at the chosen CL, we determine whether the
null hypothesis can be accepted or rejected.

The outcomes presented in Table 4 indicate that CSA-CFGD is the most accurate
optimization tool for the proposed model, especially concerning magnitude responses.This
underscores its effectiveness in optimizing the model’s performance.

DISCUSSION
In this section, we emphasize the key insights drawn from our findings. Our experiments
facilitated the examination of various evaluation metrics, revealing that the CSA-CFGD
algorithm consistently outperformed competing methods in terms of both mean accuracy
and stability across each model. Particularly noteworthy is the exceptional performance of
the CSA-CFGD algorithmwhen paired with the GoogLeNetmodel, achieving an impressive
mean accuracy of 87.62%. In contrast, rival algorithms in this model exhibited mean
accuracies ranging from 66.94% to 87.47%. Despite the higher standard deviation (Std)
of GoogLeNet with CSA-CFGD compared to GoogLeNet with BAS-ADAM, its accuracy
remains superior to that of BAS-ADAM. This suggests that GoogLeNet with CSA-CFGD
may exhibit variability across different runs compared to BAS-ADAM, highlighting its
unique performance characteristics.

For each pre-trained model, Fig. 6 depicts an outstanding convergence between the
results of CSA-CFGD and BAS-ADAM, which, in turn, indicates that both optimization
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algorithms reach similar solutions and corresponding levels of accuracy during the training.
BothCSA-CFGDandBAS-ADAMare shown to be efficient at improving the trainedmodels
and achieving high classification accuracies for ocular tumor images. However, CSA-CFGD
is more steady and stable in reaching the optimal solution. The convergence shown in Fig. 6
deepens our comprehension of the optimization process as a whole and offers vital insights
into how well-suited these algorithms are to the specific task at hand.

The statistical evidence provides strong confidence in the reliability of the findings, thus
reinforcing the argument to adopt CSA-CFGD as the preferred optimization algorithm
for such tasks. The hypothesis test results shown in Table 4 consistently reject the null
hypothesis in the majority of cases. CSA-CFGD outperforms SGDM, ADAM, CSA, CFGD,
BAS-ADAM and CSA-ADAM in ocular tumor classification, indicating its superiority.

The suggested approach investigates the incorporation of fractional calculus principles
into the CSA to enhance the optimization strategy using CFGD. This research suggests that
while this method achieves rapid convergence, it demands extended training durations.
However, leveraging historical information through memory retention could enhance
robustness, enabling the algorithm to navigate noisy or challenging optimization scenarios
more effectively. The integration offers adaptability and robustness, yet these advantages
pose challenges in terms of implementation, scalability, and generalizability across diverse
optimization scenarios, requiring further exploration. Furthermore, a reliance on CFGD
in later stages occasionally yields non-optimal solutions, impacting exploration strategies
and the method’s consistency in reaching optimal solutions.

Our proposed method has limitations that span various facets, such as computational
overhead stemming from the intricate nature of the approach, algorithmic complexity
resulting from the integration of multiple techniques, and the potential for domain-specific
efficacy, which may limit its applicability to specific problem domains. It is imperative to
address these limitations to enhance themethod’s performance and broaden its applicability
across diverse optimization landscapes.

CONCLUSION
In this article, we proposed a hybrid approach integrating Caputo fractional gradient
descent with cuckoo search so as to create an efficient optimization algorithm. This hybrid
method is applied to train pre-trainedmodels (Vgg16, AlexNet, and GoogLeNet) for ocular
tumor diagnosis. Our proposed optimizer is compared with various existing optimizers in
the literature, including SGDM, ADAM, CSA, CFGD, BAS-ADAM and CSA-ADAM. The
outcomes illustrate the substantial potential of our optimizer in enhancing classification
accuracy and accelerating convergence speed. Notably, AlexNet achieved the swiftest
training time at 798 seconds compared to unconventional optimization approaches (CFGD,
BAS-ADAM, and CSA-ADAM), while GoogLeNet demonstrated the highest accuracy of
87.62%across 20multiple rounds.Our proposed algorithmconsistently attained the highest
accuracy across all three models and exhibited lower standard deviations, indicating stable
performance. Remarkably, the mean accuracy reached by the proposed optimizer was
86.43%, 87.42%, and 87.62% for the Vgg16, AlexNet, and GoogLeNet models, respectively.
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Furthermore, statistical hypothesis tests consistently affirmed the performance superiority
of our algorithm over other alternatives. These results underscore the efficacy of our
optimization algorithm in enhancing the performance of pre-trained models for ocular
tumor diagnosis.

In future research endeavors, this work could be further enhanced by incorporating
feature selection methods to identify pertinent features, employing image enhancement
techniques to enhance image quality, and exploring hybrid algorithms that amalgamate
the strengths of various optimization approaches. Additionally, expanding the dataset to
encompass a broader range of ocular tumor cases could facilitate a more comprehensive
evaluation of performance, contributing to more accurate and efficient diagnoses in real-
world clinical settings. Furthermore, the consideration of training the models from scratch
using the proposed optimizer should be explored, given its potential impact on achieving
superior performance. This would involve carrying out comprehensive experiments to
determine the optimal configuration of the α-order parameter by considering factors such
as the efficiency and rapid convergence observed during the training process. Furthermore,
investigating the behavior of the algorithm in comparison to existing optimization
techniques can yield valuable insights into its effectiveness across various applications
and datasets.
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