
Submitted 24 October 2023
Accepted 12 February 2024
Published 14 March 2024

Corresponding author
Gangman Yi, gangman@dongguk.edu

Academic editor
Ivan Miguel Pires

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.1921

Copyright
2024 Bushra et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

AutoSCAN: automatic detection of
DBSCAN parameters and efficient
clustering of data in overlapping density
regions
Adil Abdu Bushra1, Dongyeon Kim2, Yejin Kan1 and Gangman Yi1,2,3

1Department of Multimedia Engineering, Dongguk University, Seoul, South Korea
2Department of Artificial Intelligence, Dongguk University, Seoul, South Korea
3Division of AI Software Convergence, Dongguk University, Seoul, South Korea

ABSTRACT
The density-based clustering method is considered a robust approach in unsupervised
clustering technique due to its ability to identify outliers, form clusters of irregular
shapes and automatically determine the number of clusters. These unique properties
helped its pioneering algorithm, the Density-based Spatial Clustering on Applications
with Noise (DBSCAN), become applicable in datasets where various number of clusters
of different shapes and sizes could be detected without much interference from
the user. However, the original algorithm exhibits limitations, especially towards its
sensitivity on its user input parameters minPts and ε. Additionally, the algorithm
assigned inconsistent cluster labels to data objects found in overlapping density
regions of separate clusters, hence lowering its accuracy. To alleviate these specific
problems and increase the clustering accuracy, we propose two methods that use the
statistical data from a given dataset’s k-nearest neighbor density distribution in order
to determine the optimal ε values. Our approach removes the burden on the users, and
automatically detects the clusters of a given dataset. Furthermore, a method to identify
the accurate border objects of separate clusters is proposed and implemented to solve the
unpredictability of the original algorithm. Finally, in our experiments, we show that our
efficient re-implementation of the original algorithm to automatically cluster datasets
and improve the clustering quality of adjoining cluster members provides increase in
clustering accuracy and faster running times when compared to earlier approaches.

Subjects Data Mining and Machine Learning, Data Science
Keywords DBSCAN, Density-based clustering, Unsupervised clustering, K-nearest neighbors

INTRODUCTION
Clustering is the process of partitioning the data into a groups that are similar as possible
given a set of data objects (Gan, Ma &Wu, 2020; Aggarwal & Reddy, 2014). For continuous
data, a distance-based approach can be applied to determine the similarity between data
objects. Distance functions such as Euclidean distance, (Saxena et al., 2017; Danielsson,
1980), cosine distance (Saxena et al., 2017; Nguyen, Chen & Chan, 2011) or Pearson
correlation measure (Pearson, 1896; Bravais, 1844; Arabie & Hubert, 1996) can serve as
a similarity measure between pairs of data objects. Closer data objects are more similar and

How to cite this article Bushra AA, Kim D, Kan Y, Yi G. 2024. AutoSCAN: automatic detection of DBSCAN parameters and efficient
clustering of data in overlapping density regions. PeerJ Comput. Sci. 10:e1921 http://doi.org/10.7717/peerj-cs.1921

https://peerj.com/computer-science
mailto:gangman@dongguk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1921
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1921

likely to be grouped in the same class compared with objects that are farther apart. Through
this mechanism, clustering algorithms are used as tools to partition a given dataset into
objects classes or ‘‘clusters’’ that have more in common with each other than with others.

Many clustering algorithms have been developed and can be classified into several
categories based on clustering strategies (Bushra & Yi, 2021). Partition-based methods
operate by organizing k partitions of a given dataset, where each partition corresponds to a
cluster. A partitioned group contains at least one object, and each data object belongs to only
one partition. The k-means (Jain, 2010;Hartigan & Wong, 1979;Reddy & Vinzamuri, 2013)
algorithm is the most representative clustering method, which assigns a partition’s centroid
as the average value of the objects in the partitioned group, and performs clustering by
identifying which partition’s centroid is closest to each object. Hierarchical-based methods
work by decomposing a given dataset into a hierarchical structure. They can be divided
into bottom-up approaches, which start each data object as a cluster and iteratively merge
them to form a hierarchy, and top-down approaches, which start the entire data set as
a single cluster and iteratively split it into smaller clusters (Saxena et al., 2017; Han, Pei
& Kamber, 2011; Cai et al., 2023; Neto et al., 2019). Grid-based methods, such as STING
and WaveCluster (Wang, Yang & Muntz, 1997; Sheikholeslami, Chatterjee & Zhang, 1998),
quantize the data space into cells to form a grid structure. Each of the cells is then subjected
to the clustering operations. This approach is both efficient and fast because grid-based
methods are not affected by the number of data objects. However, the clustering results
depend on how the cells of the grid get partitioned.

The density-based clustering method, and specifically the prominent DBSCAN
algorithm (Ester et al., 1996; Bhattacharjee & Mitra, 2021), is a type of clustering technique
which defines clusters in feature space as dense regions separated by regions of sparser
density. The density peak clustering is another type of density-based clustering method that
identifies peaks in the data and designates them as cluster centers. Density peak clustering
groups data points under the assumption that a data point and its closest high-density
neighbors are in the same cluster (Rodriguez & Laio, 2014; Yan et al., 2017; Chen et al.,
2020; Hou, Zhang & Qi, 2020). The DBSCAN and similar density-based methods exhibit
desirable properties when compared to other clustering methods such as the partitional
and hierarchical methods, such as the ability to detect and handle outliers (noise objects),
discover clusters of arbitrary and irregular shapes and independence from pre-existing
knowledge on the number of clusters present in the dataset.

For algorithms in the density-based clustering method, the core idea behind identifying
clusters is modularized into two operations. First, the algorithm devises a method to
estimate the region density for a given data object. Such operation helps the algorithm
understand whether the data object resides in a region of low density or high density.
This information is used as a basis for constructing a cluster in the second operation of
the algorithm by expanding to reachable data objects restricted to within the same dense
region and assigning a common cluster label to all objects.

The DBSCAN algorithm uses the concept of region density to determine whether a data
space consists of a cluster. It uses information from two user input parameters,minPts and
ε, to determine how dense the space is (‘‘neighborhood’’) around a given data object in the

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 2/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

dataset. It defines the neighborhood around a data object as dense if at leastminPts number
of data objects are present within the ε units of distance of that data object. The algorithm
employs a region querying mechanism on a given data object and determines if the region
consists of a cluster based on the density around the object’s neighborhood (Ester et al.,
1996; Bushra & Yi, 2021).

However, the DBSCAN exhibits some limitations. The algorithm is dependent on the
user-specified ε parameter (Bushra & Yi, 2021). Based on the value set for ε from the
user, the clusters found by the algorithm could vary widely. A higher value of ε tends to
inadvertently group a set of data objects into a single cluster that should otherwise have
been clustered separately. A lower value might misclassify a set of data objects that belong
in a cluster as noise if the density in the cluster’s region does not satisfy the preset value
of ε. When DBSCAN is applied on such a dataset with an inappropriate ε as the global
parameter, either multiple clusters join into one (a larger value of ε), or groups of data
objects with a local density less than ε are assigned as noise (a smaller value of ε) (Bushra &
Yi, 2021). This shows the high sensitivity of the DBSCAN algorithm on the user parameter
ε. For DBSCAN to return an accurate result of cluster labels, the optimal ε value needs to
be detected.

Another limitation the DBSCAN algorithm faces is during the clustering of intersecting
dense regions in the dataspace (Bushra & Yi, 2021; Tran, Drab & Daszykowski, 2013). As
the algorithm starts by choosing an arbitrary unlabeled object, its subsequent operation
of finding neighborhood core objects and performing expansions could result in different
outputs of cluster members where border objects of separate groups of objects are within
neighborhoods of each other.

In this article, we introduce a method to programmatically determine the ε parameter
for a given dataset, based on the distribution data gathered from its k-nearest neighbor
(kNN) (Bhatia, 2010; Fix & Hodges, 1989) computation. The kNN computation returns
information on the region density of the data objects in the dataset for a wide range of
ε distances. We build on the information gathered from the kNN and its distribution
to find the optimal ε value that returns the most relevant cut-off in terms of identifying
the existing clusters in a dataset. Our proposed approach also deals with the DBSCAN
algorithm’s unpredictable results where two separate clusters appear relatively close. In
such cases where the density region of border objects of one cluster overlaps the density
region of another cluster, the original DBSCAN returns different cluster labels for the
border objects on different runs of the algorithm. To alleviate this, we provide an efficient
re-implementation of the DBSCAN procedure that continuously updates the labels of the
border objects to find their appropriate cluster groups. Specifically, the contributions of
this article are as follows:

1. Determine the ε parameter for a given dataset programmatically so that
hyperparameter tuning can be omitted. Doing so removes the burden on the users of
the density-based clustering technique and enables the automatic detection of the clusters
of a given dataset.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 3/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

2. Improve upon the accuracy of the DBSCAN algorithm when clustering data found in
overlapping density regions by performing additional operations on border objects without
increasing the complexity.

3. Verify the reliability and stability of the ε parameter computed by the proposed
algorithm and demonstrate the superior performance and relatively fast execution time of
AutoSCAN through comparative experiments on several datasets.

The rest of this article is organized accordingly. ‘RelatedWorks’ investigates theDBSCAN
algorithm and its core idea, as well as other previously proposed density-based approaches.
‘Background’ focuses on our proposed algorithm, AutoSCAN, and its methodology.
‘Proposed Method’ provides an experiment section where validation tests for each of our
proposed methods have been conducted and a comparative analysis section to compare
our results against other works. Finally, ‘Experiments’ concludes the article by providing
an overview of the study.

RELATED WORKS
The varied density-based spatial clustering of applications with noise (VDBSCAN) (Liu,
Zhou & Wu, 2007) is a method that adopts the plotting mechanism of the objects in the
dataset in order to extract clusters with differing densities. Before operating the DBSCAN
algorithm, VDBSCAN proposes to compute the distance of the objects in the dataset to
their k-nearest neighbor. The objects are sorted by their kNN (k-dist) values and plotted
on a graph. The k-dist plot produces sharp changes at suitable values of ε. The DBSCAN
algorithm is computed for each corresponding values of ε. At each run of the algorithm,
objects detected in a cluster at εi, are marked as clustered at density level i. Marked objects
do not participate in further computation of DBSCAN. The two-step process of identifying
varied-density clusters based on k-dist is independent of ε as an input.

The VDBSCAN algorithm suggests extracting multiple epsilon values for a single dataset
to cluster the data objects at different levels of density. As such, it proposes examining
the k-nearest neighbor distances of the objects in the dataset to find the required epsilon
values. The algorithm, once the kNN values are calculated, sorts the values ascendingly
which results in a k-dist plot. The authors then propose identifying one or more regions of
the graph with sharp changes as the location for the suitable value of epsilon parameters.
Intuitively, a sharp change appearing on the graph suggests a significant population of
data objects in the dataset with a common ε value, hence a ‘‘dense region’’, which defines
a cluster in terms of density-based clustering methods (Liu, Zhou & Wu, 2007; Bushra &
Yi, 2021). However, this approach faces certain challenges. First, the method does not
propose a mechanism to programmatically detect such regions that hold a suitable epsilon
value. This means, user interference is still needed to correctly cluster a given dataset.
Furthermore, as more datasets are examined under this method, it is apparent that (a) the
method fails to return a distinct ‘‘sharp change’’ region for datasets with higher number of
instances; and (b) datasets that do not exhibit clusters with varying density distributions
do not always exhibit significant changes in the k-dist plot.

The study by Tran, Drab & Daszykowski (2013) tackles the limitation of DBSCAN
that returns unpredictable cluster labels for data objects in overlapping density regions.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

The algorithm focuses on the idea of density-reachable chains of objects as a solution.
From the definition of density-reachability, border objects could only be present in the
density-reachable sets of objects as the last element of the chain. Hence, border objects do
not participate in the expansion of clusters. Therefore, the authors propose a new concept,
the core-density-reachable objects, where the chains of objects are x1,...,xn for xi ∈D and
|Nε(xi)| ≥minPts, i≤ n (all the objects in the chain are core objects). The ExpandCluster
is then further revised in order to identify border objects for the corresponding expanded
clusters. Due to the implementation of core-density-reachability, the border objects would
remain unclassified during the ExpandCluster operation. Therefore, for each border object,
the closest core object is identified and clustered to the core-density-reachable chain in
which the core object belongs to Tran, Drab & Daszykowski (2013) and Bushra & Yi (2021).

An additional module is introduced to cluster the border objects which were unassigned
during the ExpandCluster process. This re-implementation however causes an increase in
complexity. For each of the unlabeled border objects, assigning its optimal cluster label
requires information about its neighborhood objects. As such, RegionQuery process is
run. This leads to an expensive addition to the original algorithm, as the re-introduced
RegionQuery procedure could lead to an additional O(n2) cost of execution.

In addition to the abovementioned two algorithms, many ideas have been suggested
to improve the parameter detection problem or the misclassification of some objects in
the overlapping regions of a cluster in the original DBSCAN algorithm (Bushra & Yi,
2021). Ordering points to identify clustering structures (OPTICS) (Ankerst et al., 1999) was
proposed to generate an ordering of a dataset that represents a density-based clustering
structure corresponding to a wide range of parameter values. The advantage of this
clusteringmethod is that the reachability plot is relatively insensitive to the input parameter
ε. However, OPTICS does not explicitly assign a cluster to each data object; instead, it
holds the information needed for extended DBSCAN to assign cluster relationships to all
data objects. Further, OPTICS is good at finding clusters in dense regions, but weak at
finding information about clusters in sparse datasets.

The hierarchical density-based spatial clustering (HDBSCAN) algorithm (McInnes,
Healy & Astels, 2017; Neto et al., 2019) solved the limitations of OPTICS by using
hierarchical clustering methods. This algorithm is based on the concept of OPTICS
and applies a mutual reachability graph. The clusters in the graph are the connected
components of the ε-core objects. HDBSCAN performs DBSCAN for a range of ε values
and integrates the results to find the clustering that provides the best stability over ε.

The density-linked subspace clustering (SUBCLU) algorithm (Kailing, Kriegel & Kröger,
2004) performs density-based clustering by using subspace clustering techniques. When
clustering high-dimensional datasets, the DBSCAN algorithm considers all dimensions of
each pair of objects to measure the distance and form clusters. By contrast, the SUBCLU
algorithm can detect arbitrarily shaped and positioned clusters in subspaces, and it uses
DBSCAN as its underlying clustering method. Information about these algorithms is
summarized in Table 1.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 5/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 1 Descriptions of the related algorithms.

Algorithm Time complexity Description

DBSCAN (Ester et al., 1996) Clusters data by distinguishing dense from sparse regions.
OPTICS (Ankerst et al., 1999) Orders dataset that represents a density-based clustering

structure for various parameter.
VDBSCAN (Liu, Zhou & Wu, 2007) Extracts varying values of ε based on k-dist plots and

identifies clusters of different densities.
Revised DBSCAN algorithm to cluster data with dense
adjacent clusters (Tran, Drab & Daszykowski, 2013)

Utilizes density-reachable chains to address labeling
inconsistencies in overlapping areas.

AutoSCAN

O(n2)

Determines the ε automatically, and efficiently clusters
border objects of overlapping density regions.

HDBSCAN (McInnes, Healy & Astels, 2017) O(dn2) Employs hierarchical clustering and mutual reachability
graphs to form density clusters.

SUBCLU (Kailing, Kriegel & Kröger, 2004) O(2dn2) Applies monotonicity of density-connectivity sets and
subspace information for high-dimensional data clustering.

BACKGROUND
In this section, we revise the concept of density-based clustering method (Kriegel et
al., 2011; Aggarwal & Reddy, 2014; Sun et al., 2022; Wang & Yang, 2021) and its pioneer
approach: the DBSCAN algorithm. Additionally, we mention two previously proposed
methods developed on top of the DBSCAN aimed to improve on its accuracy. We study the
definition of a ‘‘cluster’’ in terms of density-based method and give an overall description
on the building blocks of DBSCAN. Each limitation and disadvantages of these previous
methods have also been discussed.

The DBSCAN algorithm
The formal definitions of the clustering model and the DBSCAN algorithm were first
introduced together in 1996, on the Knowledge Discovery in Databases (KDD) data mining
conference publication (Ester et al., 1996; Schubert et al., 2017). The core idea behind the
density-based clusteringmethod assumes that a cluster is a region in a dataspace with a high
density of data objects. This clustering model brought unique features different from the
earlier mentioned implementations. It introduced the ability to form clusters of irregular
shapes, detect outliers in the dataspace, and identify clusters without prior knowledge of the
classes present in the dataset. It is a practical algorithm, and the DBSCAN, has been applied
in several fields of study such as civil engineering, chemistry, spectroscopy, social sciences,
medical diagnostics, remote sensing, computer vision, automatic identification systems
(AIS) and anomaly detection. Its successful implementation on real-world applications
has led it to receive the Special Interest Group on KDD test-of-time award (Schubert et al.,
2017).

The clustering notion of the DBSCAN algorithm is based on identifying densely
populated regions of data space separated by sparser regions and interpreting them as
clusters. In addition, DBSCAN uses two input parameters ε and minPts, to identify the
density estimation of a region surrounding a particular data object. The algorithm uses
these two parameters to estimate the density of a particular data object’s local region.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Moreover, ε refers to the radius of an object’s local region (neighborhood), whereasminPts
is the minimum number of data objects required within that radius in order to be a cluster.
Therefore, for a given dataset D, the DBSCAN algorithm calculates the local density of an
object xi, xi ∈D as the total number of objects in its ε-neighborhood (i.e., cardinality of
Nε(xi)) (Ester et al., 1996; Bushra & Yi, 2021), where

Nε (xi)=
{
xj ∈D : ∀j,dist

(
xi,xj

)
< ε

}
(1)

Each data object in a given dataset are classified as either a core object, border object or noise
depending on the denseness of the surrounding region (neighborhood) the object appears
in. Core objects are those where their ε-neighborhood contains at least minPts number of
objects (i.e., |Nε(xi)| ≥minPts, for some xi ∈D). These objects indicate that, for the given
values of ε andminPts, their neighborhood objects (along with the core objects themselves)
form a cluster. The number of objects in border objects’ ε-neighborhood is less than the
given minPts; however, for a border object xj , a core object xi exists where xj ∈Nε(xi). The
third type is noise objects. These objects do not have at least minPts number of objects
in their minPts-neighborhood and are not members of any core object’s neighborhood
(Ester et al., 1996; Bushra & Yi, 2021). The DBSCAN further makes definitions regarding
reachability of data objects in the dataset. The definitions are presented as follows.

A. Directly density reachability An object xi ∈D is directly density-reachable from an
object xj ∈D for a given ε and minPts if: (a) xi is a member of the ε-neighborhood of xj ,
and(b) xj is a core object (Ester et al., 1996; Bushra & Yi, 2021):

DirReach
(
xi,xj

)
⇔ xi ∈Nε

(
xj
)
∧
∣∣Nε

(
xj
)∣∣≥minPts. (2)

B. Density reachability An object xi ∈D is density-reachable from an object xj ∈D with
respect to a given ε and minPts if a series of objects o1,...,on, exists, where o1 = xj and
on= xi such that oi+1 is directly-density reachable from oi (Ester et al., 1996; Bushra & Yi,
2021):

Reach
(
xi,xj

)
⇔∃oi,...,on ∈D : o1= xj
∧ on= xi
∧ ∀i∈ {1...n−1}

: DirReach(oi,oi+1) (3)

By this definition (Ester et al., 1996; Bushra & Yi, 2021), two border objects that appear in
the same cluster might not be density reachable from each other due to the core object
constraints set for the series of objects o1,...,on. However, they are directly density-reachable
to a common core object. Density-connectivity defines this property.

C. Density connectivity An object xi ∈D is density-connected to an object xj ∈D with
respect to a given ε and minPts if there is another object o such that both xi and xj are
density-reachable from o with respect to ε and minPts (Ester et al., 1996; Bushra & Yi,
2021):

Connect
(
xi,xj

)
⇔∃o∈D :Reach(o,xi)∧Reach

(
o,xj

)
(4)

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 7/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Based on these notions, DBSCAN defines a cluster as a maximal set of density-connected
objects concerning density-reachability. That is, a cluster C with respect to ε and minPts
is a nonempty subset of D such that: a. ∀xi,xj : if xi ∈C and xj is density-reachable from xi
with respect to ε and minPts, then xj ∈C , and b. ∀xi,xj ∈C : xi is density-connected to xj
with respect to ε and minPts. Finally, noise objects are a set of objects in the dataset that
do not belong to any of its clusters.

The original DBSCAN algorithm was successful in identifying clusters with arbitrary
shapes. This feature is appreciated, especially in spatial databases where clusters can be
spherical or even straight, bending, and other shapes. The characteristics of DBSCAN to
identify regions with high density that are separated by sparser spaces allows its clusters’
shapes to be determined by the dataset under examination as opposed to other clustering
methods, such as the partitional clustering k-means, which always assumes a spherical
shape for its clusters. In addition, DBSCAN can identify isolated data objects and is able to
assign them as noise.

PROPOSED METHOD
The original density-based clustering method, DBSCAN, is a pioneering density-based
clustering algorithm capable of extracting clusters of irregular shape and identifying outlier
data objects that do not belong to any cluster. While this implementation provides good
results, especially in spatial datasets, it does however exhibit two important limitations.
First is DBSCAN’s reliance and sensitivity to its input parameters. The definition of a
cluster in DBSCAN requires the computation of density regions of the data objects present
in the dataset. This operation, performed by the RegionQuery module in the procedure, is
dependent upon the values set for the parameters ε andminPts. As such, an accurate tuning
of values is required to correctly identify the clusters present in the given dataset. However,
as the DBSCAN algorithm takes these parameters from its users, the final clustering output
can be varying. If a lower ε value is set, a mis-classification of data objects as outliers (noise
objects) is exhibited. While a higher ε value has the effect of merging data objects from
separate clusters into a single group. To alleviate this, we propose amethod to automatically
detect the ε parameter based on the density distribution of a given dataset.

The second limitation of the DBSCAN algorithm is demonstrated when clustering data
objects found in overlapping density regions of separate clusters. During the recursive
process of the ExpandCluster module, the DBSCAN finds all the density-connected data
objects from core objects found in the dataset. This operation terminates each iteration
when a border object is detected, and further density-connected data objects could not be
found. All the data objects collected during this phase (‘‘seeds’’) are subsequently assigned
similar cluster label. However, for border objects located in a dataspace where there are
overlapping density regions of separate clusters, the ExpandCluster does not guarantee a
correct label assignment. The ExpandCluster assigns cluster labels for the border objects
appearing in such regions the cluster label of the first core object it operates on. This leads
to unpredictable and inaccurate results as the first core object to find each border object is
not always its correct cluster member. Additionally, the unpredictability is presented when

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

1. PROPOSED ALGORITHM:
Automatically Identify the Optimal ɛ

Parameter to Cluster the Dataset
1. Build a -NN Graph of the dataset

2. Generate a frequency distribution

3. Interpolate a graph with B-Spline

4. Set a window size and iterate
through graph to find optimal region

ɛ

minPts and ɛ parameters generated
from Proposed Algorithm

4. PROPOSED ALGORITHM:
Efficient Method to Cluster Datasets

with Adjoining Clusters
1. Identify Density-Reachable Objects

2. Identify the BORDER objects

3. Calculate the BORDER object's
distance to CORE object

4. Store distance & Update label

In
st

an
ce

s
of

 th
e

da
ta

se
t (

si
ze

 n
) d1 d2 d3 ... dn

x1 0.343 0.5433 0.5321 0.2833
x2 0.5337 0.10299 0.74833 0.7954
x3 0.49222 1.2234 0.3844 2.3933
...

 xn. 0.2392 0.3922 0.3932 0.1093

Features
(Attributes)

2. Initiate
RegionQuery from a
random instance

1. Load the Dataset
with optimal ɛ

Identify all Reachable objects from
based on Density-Connectivity

Connect

3. Run ExpandCluster
operation on instance

5. Assign the reachable
points based on labels
generated from STEP 4

If all data objects have not been
visited, repeat process from

Step 2.

Dataset updated with
CLASS attribute

Final Clustering Result

d1 d2 d3 ... dn CLASS

x1 0.343 0.5433 0.5321 0.2833 0
x2 0.5337 0.10299 0.74833 0.7954 0
x3 0.49222 1.2234 0.3844 2.3933 1
...

 xn. 0.2392 0.3922 0.3932 0.1093 1

If
C

O
R

E
ob

je
ct

 is
 fo

un
d

Figure 1 Pipeline of our proposed algorithm AutoSCAN.Our first method is implemented as a prepro-
cessor before the recursive operation begins. It takes the dataset from the user and returns the computed
epsilon to the revised clustering algorithm. Our second method is implemented within the ExpandCluster
operation to compute border objects’ cluster label.

Full-size DOI: 10.7717/peerjcs.1921/fig-1

multiple iterations of the DBSCAN algorithm is performed with the data objects visited in
random order. This causes the cluster assignments of the objects in overlapping density
regions to alter on each run of the algorithm. Our method to accurately cluster data objects
in overlapping density regions solves this problem by introducing a new ClosestCore
concept within the ExpandCluster module that keeps track of the core objects visiting the
objects in overlapping density regions and iteratively updating their cluster label.

As discussed, the two proposed algorithms implement additional modules into the
original DBSCAN’s process. The overview of the proposed algorithms within the DBSCAN
operation is illustrated in Fig. 1. The first method proposed to automatically detect
epsilon value operates before the recursive process of the original DBSCAN algorithm
begins. This proposed method first takes the dataset and assigns the minPts required
for the clustering operation based on its feature size. Next it calculates the k-nearest
neighbors’ distances, calculate the frequency distribution, applies a curve-fitting function
and determines the optimal region for the dataset’s ε value from the output curve. After
this operation is completed, the computed parameters, the ε and minPts are passed onto
the clustering algorithm’s recursion to start its selection of random data object and perform

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 9/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1921/fig-1
http://dx.doi.org/10.7717/peerj-cs.1921

1. PROPOSED ALGORITHM:
Automatically Identify the Optimal ɛ

Parameter to Cluster the Dataset

1. Build a -NN Graph of the dataset

2. Generate a frequency distribution

3. Apply B-Spline as Curve-Fitting

4. Set a window size and iterate
through graph to find optimal region

2. Generate the Frequency
Distribution from the NN

5. Continue to DBSCAN module
with the new ɛ value

0. Load the Dataset

1. Compute the Nearest
Neighbor Distances

ɛ-range

[0.00 - 0.05] 0.5433

[0.05 - 0.10] 0.10299
[0.10 - 0.15] 1.2234

[0.25 - 0.30] 0.3922

3. Apply B-Spline
Curve-Fitting Function

Set based on feature size

U
se

 th
e

N
N

 F
re

qu
en

cy
 G

ra
ph

to

 G
en

er
at

e
B

-S
pl

in
e

C
ur

ve

4. Iterate through Graph to
Find Optimal ɛ Region

Set window size

Figure 2 Pipeline of our first proposed method.Our first method initiates by determining the k-nearest
neighbor distances for each data object in the dataset. Next it generates a B-spline curve from the fre-
quency distribution of the k NN values to identify the dataspace’s density distribution. The optimal ep-
silon is detected in the final iteration step through the curve fitting values.

Full-size DOI: 10.7717/peerjcs.1921/fig-2

the RegionQuery. The second efficient method proposed to cluster data in overlapping
regions is implemented within the recursive procedure. Specifically, in the ExpandCluster
operation, this method works by similarly collecting all the density-connected data objects
from a given core object. Next, it proceeds to compute the distance between the border
object within the seeds and the core object to determine their proximity. This additional
attribute introduced for the border objects is used to recursively update the cluster label
of each border object as a closer core object within their neighborhood is detected. When
the recursive process is completed, all the border objects will belong to their closest core
objects’ cluster labels.

Automatic detection of epsilon parameters
The first proposed method utilizes information from a dataset’s kNN distances and the
B-spline curve fitting function. Figure 2 shows the overview for the first proposed algorithm.

k-nearest neighbors
The k-nearest neighbor algorithm (Bhatia, 2010; Fix & Hodges, 1989), as a supervised
learning algorithm, can be used to solve both the classification and regression problem.
This assumes that similar things exist in proximity (i.e., similar things are near to each
other). This assumption resonates with the concept of density-based clustering, which
assigns data objects densely stacked together within a given radius of a dataspace data space
as a single cluster.

To perform the kNN, first initialize k to a specific number of neighbors. The value
of k set in the algorithm influences the frequency distribution, which affects the
number of resulting clusters. Therefore, we determine it based on the feature size of

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 10/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1921/fig-2
http://dx.doi.org/10.7717/peerj-cs.1921

the dataset (i.e., k = 2× d , d = featuresize) by referring to the other studies’ methods
(Ester et al., 1996). Next, for each data object in the dataset, compute their kth closest
object based on a distance similarity function. The Euclidean Measure is commonly used
as the function to compute distance similarity. Given that the minPts value is set to k, the
distance value to the kth-nearest neighbor computed by kNN for each individual object
corresponds to the minimum ε value required for that data object to be defined as a core
object. Thus, for the range [min,max] of a set whose elements are the distance values to the
kth-nearest neighbor for each object, ifmin≤ ε≤max is set as the cut-off ε value, any data
object x ∈D with kNN (x)≤ ε is considered a core object. Further, under the definition of
the DBSCAN clustering algorithm, any data object y ∈D with kNN (y)> ε is considered
a border object or noise, where kNN (·) represents the distance value to the kth-nearest
neighbor of the given object.

Once the kNN distances of the data objects is calculated, the proposed method uses the
data to compute the frequency distribution of the distances. This determines the density
distribution of the dataset. By observing the kNN frequency distribution, it can be deduced
that peak areas of the distribution correspond to an ε value with large population of data
objects. Hence, such data objects should be regarded as core objects (i.e., the optimal ε

value is greater or equal to the ε value in such region). Whereas low population within
the distribution indicates minimal number of data objects with such density. Therefore,
for a given dataset, the optimal ε cut-off value corresponds to the region in the frequency
distribution in which the population of data objects decelerates from a peak area to a
‘‘valley’’ (low population of data objects). Additionally, as the frequency distribution of a
given dataset could possibly contain multi-modality in terms of peaks (ε value with large
population), our findings suggest that setting the cut-off region to the last deceleration point
returns the best clustering outcome. This is similar to density peak clustering (Rodriguez &
Laio, 2014; Yan et al., 2017; Chen et al., 2020; Hou, Zhang & Qi, 2020) in that it calculates
the kNN distance, but it differs in that it analyzes the entire frequency distribution to find
the optimal ε value, rather than calculating the density of each data point.

B-spline curve fitting
Curve fitting is the process of constructing a curve, or mathematical function, that has
the best fit to a series of data objects, possibly subject to constraints (Arlinghaus, 1994;
Kolb, 1984). Curve-fitting can either involve interpolation, where an exact fit to a data is
required, or smoothing, in which a ‘‘smooth’’ function is constructed that approximately
fits the data. For our purposes, we employed our series of frequency distribution data into
a smoothing function in order to iterate through the data and identify the appropriate ε

cut-off region.
The cubic B-spline curve function (Gordon & Riesenfeld, 1974) is used for curve-fitting

the series of data objects obtained from the frequency distribution of the kNNof the dataset.
A B-spline curve is defined as a linear combination of control points pi and B-spline basis
functions Ni,k(t) given by:

r(t)=
n∑

i=0

piNi,k(t),n≥ k−1,t ∈
[
tk−1,tn+1

]
(5)

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 11/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

In this context, the control points are called de-Boor points. The basis function Ni,k(t)
is defined on a knot vector:

T= (t0,t1,...,tk,tk+1,...,tn−1,tn,tn+1,...,tn+k), (6)

where there are n+k+1 elements, i.e., the number of control points n+1 plus the order of
the curve k (3 for cubic B-spline). Each knot span ti≤ t ≤ ti+1 is mapped onto a polynomial
curve between two successive joints r(ti) and r(ti+1).

Iterating through the density distribution
Given a window size w , the optimal ε region of the dataset is identified by moving through
the kNN graph computed in previous step to detect the curve or ‘‘valley’’ that corresponds
to best cluster result. In order to detect such region, initialize the window from the end of
the graph (i.e., start the window from the maximum ε value) and iterate backwards. At
each instance, calculate the mean function of ε values within w and keep iterating until
the mean starts increasing. ‘‘Window size’’ refers to a segment of plot points on the kNN
graph. By intuition, as the segment of w increases, the sensitivity in terms of ‘‘mean’’ value
decreases. The kNN B-spline curve is set to generate min(len(p)∗2,n) points, where n the
number of instances in the dataset; therefore, w moves through these points to calculate
the mean values of each window and determine a drop point. The optimal ε is determined
to be the computed mean of the curve region with the steepest incline. Hence, once the
optimal ε region is determined, the proposed algorithm sets the value of ε to the mean of
the values in the ε region.

Finally, the procedure moves on to the recursive DBSCAN procedure with the computed
ε and minPts calculated from the feature size as input.

Efficient clustering of data in overlapping density regions
The second proposed algorithm presented in this article devises an implementation
to accurately cluster data objects that lie in regions with overlapping neighborhoods
of core objects with different cluster labels. The procedure is implemented within the
ExpandCluster operation in the DBSCAN algorithm. The overall flow of this operation is
illustrated on Fig. 3.

ClosestCore computation
To accurately cluster each data object, the proposed algorithm introduces an additional
concept, the ClosestCoreObject. During the implementation of the original ExpandCluster,
all the density-connected objects from a single core object x ∈D are gathered and denoted
as ‘‘seeds’’. While the original DBSCAN algorithm assigns each object to the cluster label of
the core object x without further investigation, the proposed algorithm performs advance
computation to accurately cluster all the data objects. The proposed algorithm filters the
data objects y that are denoted as borders. For each border, DirectReach(x,y) computes
the distance between itself (y) and the core object x . This distance is denoted as the
ClosestCore Object for object y if the distance is lower or equal to the current ClosestCore
Object distance.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Algorithm 1 ExpandCluster
1: D← Dataset
2: x← Data Object to Expand i
3: clusterID← Current Cluster ID
4: procedure ExpandCluster(D,x,clusterID)
5: seeds= RegionQuery(D,x)
6: if seeds.size <minSamples then
7: x .type = NOISE
8: return false
9: else
10: x .type = CORE
11: for j in seeds do
12: x .label = clusterID
13: end for
14: while seeds.size > 0 do
15: xi= seeds.pop()
16: neighbors = RegionQuery(D,xi)
17: if neighbors.size ≥minSamples then
18: xi.type = CORE
19: for n in neighbors do
20: if n.type == UNCLASSIFIED then
21: n.label = clusterID
22: seeds.append(n)
23: end if
24: if n.type == BORDER then
25: n.ClosestCore = min(n.ClosestCore, dist(n, xi))
26: n.label = n.ClosestCore.label
27: end if
28: end for
29: else
30: xi.type = BORDER
31: xi.ClosestCore = dist(xi, x)
32: end if
33: end while
34: end if
35: end procedure

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 13/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Perform Euclidean Distance:
BORDER

4. Update ClosestCore(b)
distance and Set Cluster Label

ClosestCore(b)=

BORDER objects
assigned cluster label

based on ClosestCore

D
at

a
Sp

ac
e

fo
cu

se
d

on
D

en
si

ty
-R

ea
ch

ab
le

 o
bj

ec
ts

Final Density-
Reachable Objects

Compute ClosestCore
for all BORDER objects

Final Iteration

2. PROPOSED ALGORITHM:
Efficient Method to Cluster Datasets

with Adjoining Clusters

- Identify Density-Reachable Objects

- Identify the BORDER objects

- Calculate the BORDER object's
distance to CORE object

- Store distance & Update label

3. Calculate Distance from
BORDER object to CORE

 if ClosestCore(b)

is UNDEFINED

1. Identify all Density-
Reachable Objects
during iteration

2. Identify the
BORDER objects

BORDER objects
denoted as

BORDER object

Distance Computation
to closest CORE

Assign Updated
Cluster Labels

ClosestCore(b) ,

Figure 3 Pipeline of our second proposed method.Our second method is operated within the Expand-
Cluster module. The revised ExpandCluster computes the new ClosestCore value for the border objects it
detects. During the module’s iteration through core objects, the ClosestCore of each border object is up-
dated accordingly.

Full-size DOI: 10.7717/peerjcs.1921/fig-3

ClosestCore(y)=

{
dist (x,y), if ClosestCore(y) isUNDEFINED

min
(
ClosestCore(y),dist (x,y)

) . (7)

As the clustering algorithm is a recursive process, the ClosestCore distance continuously
updates depending on the proximity of each core object to the border object y . The cluster
label of the border object is finally determined from the cluster label for the core object
determined from the ClosestCore object. This ensures that the final label for all the border
objects in the dataset hold the cluster label of their ClosestCore object.

ExpandCluster re-implementation
The original structure of the ExpandCluster operation first starts by collecting a core object
x ∈D as a starting object and performs iterations of RegionQuery runs on x ’s neighborhood
data objects to identify further core objects. When core objects are identified, the module
repeats the process of RegionQuery calls on the neighborhood core objects. All the data
objects collected from such recursive procedure are then saved as ‘‘seeds’’ and assigned
similar cluster labels along with the core object x . This procedure helps the original
DBSCAN collect all the density-connected data objects from x . However, for a border
object y : y ∈D∧Connect (x,y) found during this operation, the original ExpandCluster
implementation does not perform further query beside assigning it the same cluster
label. If border object y exists in an overlapping density region of individual clusters, it
will likely be misclassified because it may be closer to a core object in another cluster.
Therefore, additional queries are required for efficient clustering. In this light, we propose
an algorithm to update the information of the core object closest to the border object.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 14/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1921/fig-3
http://dx.doi.org/10.7717/peerj-cs.1921

Our proposed algorithm computes a distance measurement between the border object y
and the density-connected core object x . This distance measurement is then stored as the
ClosestCore value of the border object y (i.e., y.ClosestCore = dist (x,y)). Furthermore,
during an ExpandCluster operation of another core object z , if border object y is detected
as a density-connected object to z , y ’s ClosestCore value is updated based on Eq. (7).
Finally, once all the ExpandCluster calls have been made, each border object would belong
to each of their corresponding core objects’ cluster labels. The pseudocode for the revised
ExpandCluster module is presented in Algorithm 1.

EXPERIMENTS
In this section, we discuss about the datasets used for the experiments, the evaluation
method for validation tests, the algorithms conducted and analyze the output of each
algorithm. Validation tests and comparative analysis are conducted for our proposed
algorithm. For the validation tests, we perform separate evaluations on our two proposed
methods to understand and analyze the output of each operation. In the validation
section, we run our proposed algorithms on synthetic datasets with pre-defined labels
and show that they return with expected outputs. Next, we perform comparative analysis
of our proposed algorithm against other relevant works in the literature; along with the
algorithms mentioned in Section ‘Related Works’.

For our experiments, we gathered four collections of datasets. We use the datasets
in Fundamental Clustering and Projection Suite (FCPS) (Thrun & Ultsch, 2020) to make
validation tests for our proposed algorithm.We also run our proposed algorithm alongwith
other target algorithms on real-world datasets to test the computational time required for
each method. We compare the accuracy and time complexity of our proposed algorithm
against the original DBSCAN algorithm as well as the algorithm discussed on Section
‘Related Works’. All experiments reported here were conducted on two Intel Xeon CPU
E5-2695 processors clocked at 2.10 GHz.

Datasets
Fundamental clustering and projection suite
The Fundamental Clustering and Projection Suite (FCPS) (Thrun & Ultsch, 2020) contains
10 synthetic datasets; namely ‘‘Atom,’’ ‘‘GolfBall,’’ ‘‘Hepta,’’ ‘‘Chainlink,’’ ‘‘EngyTime,’’
‘‘LSun,’’ ‘‘Target,’’ ‘‘Tetra,’’ ‘‘TwoDiamonds,’’ and ‘‘WingNut’’. Table 2 describes the
instances and dimensions of each of the datasets used for the experiment. Each one was
built to challenge clustering algorithms based on different criteria. Each dataset has specific
criteria such as the lack of linear separability, class spacing differences, outlier presence,
and others. Hence, the table also details these criteria and problems clustering algorithms
could face for each dataset in the FCPS.

The components of the FCPS each have cluster labels for their data objects. This
information was used to compare the data objects’ cluster labels to the labels generated by
the clustering algorithms during the experiment. The F-score and Adjusted Rand Index
(ARI) measure used the cluster labels to measure the agreement between the labels formed
by the clustering algorithms and the labels from the FCPS.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 15/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 2 Details of the datasets used in the fundamental clustering and projection suite datasets
(FCPS).

Name Instances Feature size Description

Atom 800 3 Different inner class distances
Chainlink 1,000 3 Linearly not separable
GolfBall 4,002 3 No cluster structure
Hepta 212 3 Different inner class distances
LSun 400 2 None
Target 770 2 Presence of outliers
Tetra 400 3 Small inter class distances
TwoDiamonds 800 2 Touching classes
WingNut 1,016 2 Density variation within classes

Table 3 Details of the datasets used from the scikit-learn clustering benchmark collection.

Name Instances Feature
size

Description

noisy_circles
noisy_moons

Linearly not separable

aniso Anisotropicly distributed data
blobs Density uniformly distributed
varied Blobs with varied variances
no_structure

1,500 2

Presents no cluster structure

scikit-learn synthetic datasets collection
The scikit-learn synthetic datasets (Pedregosa et al., 2011) are a set of six 2-dimensional
datasets, each with 1,500 data instances generated as benchmark datasets to test the
capability of various clustering algorithms. Like the FCPS, each dataset in this collection
exhibits special properties that emulates a real-world dataset, aimed to test a clustering
algorithm’s capacity in several manner. Each dataset is provided with a class label, which
is used in our experiment to test and compare the accuracy of ours and the various other
clustering algorithms. The features and properties of each dataset is presented in Table 3.

Geo-tagged twitter dataset
Junjun Yin from the National Center for Supercomputing Application (NCSA) collected
the real-world dataset for the experiments (Götz & Bodenstein, 2015). The dataset was
obtained through the free Twitter streaming API. The original collection contains exactly
1% of all geo-tagged tweets from the United Kingdom in June 2014 and has about 16.6
million tweets. The subset of the dataset used for the experiments was generated by filtering
the dataset to on the first week of June. This filtered dataset contains 3,704,351 instances.
Furthermore, in order to analyze how the proposed clustering algorithms perform as the
number of instances in the dataset increases, experiments on the dataset were run on several
partitions of the dataset, (i.e., at 1,000, 10,000, 50,000, 100,000, 1,000,000 and 2,000,000
instances). The full and filtered dataset can be found on B2SHARE.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 16/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 4 Description of the UCI real-world multi-dimensional datasets.

Name Instances Feature size Description

Iris 150 4 Types of iris plants
Travel Review 980 10 Reviews on destination areas
Wine 178 13 Chemical analysis of winescre-

ated in Italian regions
MFCC 7,195 22 Audio records of different
Anuran species calls
Ecoli 336 8
Yeast 1,484 8

Protein localization sites

Glass 214 10 Glass identification datain terms
of oxide content

WDBC 569 30 Breast cancer Wisconsin (diag-
nostic) dataset

Real-world multi-dimensional datasets
Furthermore, we have collected eight real-world datasets of varying feature sizes to better
understand the effect of dimensionality in terms of time performance. All eight of the
datasets have been collected from the UCI Machine Learning Repository and can be found
here Dua & Graff (2019). Table 4 presents the description, feature size and number of
instances of the datasets collected.

Validation tests
Automatic detection of ε parameters
To perform validation tests on our first proposed method to automatically determine ε

parameter, the FCPS collection of datasets was used. The pre-defined cluster labels available
from this synthetic collection of datawas regarded as the optimal cluster labels for the objects
in the datasets. Thus, the cluster labels were useful to analyze the accuracy obtained from
the proposed method. To show a quantitative analysis of the cluster accuracy, the Adjusted
Rand Index (ARI) (Rand, 1971; Hubert & Arabie, 1985) measure was implemented when
comparing the output of the algorithm against the cluster labels.

The Rand Index (RI) (Rand, 1971; Pedregosa et al., 2011) computes a similarity measure
between two clusterings by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and true clusterings:

RI =
number of agreeing pairs

number of pairs
. (8)

This raw RI is then adjusted for chance into the ARI score we used as our accuracy
measure using the following scheme:

ARI =
(RI−ExpectedRI)

(max(RI)−ExpectedRI)
. (9)

This measure of adjustment ensures the score has a value close to 0.0 for random labeling
independently of the number of clusters and samples and exactly 1.0 when the clusterings
are identical.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 17/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

To validate the results of our first proposed algorithms, ten ε values between [max,min]
range of the kNN were randomly generated for each of the datasets in the FCPS. We then
used the ε parameters to run the DBSCAN algorithm and measured the accuracy of each
value. Table 5 shows each of the ε value used for the datasets and the ARI accuracy score.
The values that returned the best DBSCAN cluster results have been highlighted.

From the results collected, our first proposedmethod was successfully able to identify the
ε value within each of the dataset’s optimal regions (i.e., the region where the ε parameters
return the highest clustering result.) While for seven of the datasets the algorithm was
successful in finding the ε value with a perfect clustering accuracy (ARI = 1.0), for the
‘‘Tetra’’ and ‘‘TwoDiamonds’’ datasets, lower accuracy is reported. However, this only
suggests that the original DBSCAN algorithm had limitations in perfectly clustering these
datasets. Upon closer inspection, the ‘‘Tetra’’ and ‘‘TwoDiamonds’’ datasets exhibited data
objects in overlapping density regions of separate clusters, and hence had misclassified
some data objects into different cluster labels.

Efficient clustering of data in overlapping density regions
To validate the results of our second proposed methods, we compare the results found
from our proposed algorithm with the results of the original DBSCAN algorithm. The
FCPS dataset is used with ARI as an accuracy measure. From our validation results
reported on Table 6, we are able to show our proposed method, at worst identifies the
same cluster labels as that of the original DBSCAN algorithm. Our proposed algorithm
producedmore accurate results with datasets containing data objects in overlapping density
regions, specifically the ‘‘Tetra’’ and ‘‘TwoDiamonds’’ datasets. The original DBSCAN
algorithm often misclassified these objects into different cluster labels. However, because
we performed additional operations on the border objects in these regions, we were able to
correct the misclassified data objects and improve the accuracy. Specifically, by using our
algorithm, all the data objects in the ‘‘TwoDiamonds’’ dataset could be clustered perfectly.
Further, our algorithm provides better clustering results for the ‘‘Tetra’’ dataset. The
difference in clustering results between the original DBSCAN algorithm and our proposed
algorithm on the ‘‘TwoDiamonds’’ dataset is shown in Fig. 4. In this dataset, individual
clusters are visually identifiable, and overlapping density regions exists; therefore, the
improvements can be identified visually and efficiently.

Comparative analysis
The comparative experimental results of our proposed algorithm against previous density-
based clustering algorithms is reported here. We perform accuracy tests using the FCPS
and scikit-learn dataset collection. For quantitative analysis of the algorithms’ accuracy, we
have implemented additional accuracy measure, the F-Score, to compare the output of the
algorithms against the cluster labels of the synthetic datasets.

The F-score, also called the F1-score, is the measure of a model’s accuracy on a dataset.
The F-score is a way of combining the precision and recall of the model, and it is defined as
the harmonic mean of the model’s precision and recall (Pedregosa et al., 2011). The value

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 18/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 5 Validation tests results of our first proposed method using the datasets from FCPS. The text in bold indicates the ε values that best cluster the respective
dataset (i.e., these ε values return the highest ARI score). The values in underline indicate the ε results automatically detected by our proposed method.

Atom Chainlink GolfBall Hepta Lsun Target Tetra TwoDiamonds WingNut

epsilon ARI epsilon ARI epsilon ARI epsilon ARI epsilon ARI epsilon ARI epsilon ARI epsilon ARI epsilon ARI

0.768 0.995 0.115 0.04 0.077 0 0.491 0.995 0.215 0.5 0.1534 0.578 0.584 0.068 0.158 0.512 0.215 0.965

0.796 0.995 0.127 0.06 0.085 0 0.512 0.995 0.227 0.839 0.1695 0.582 0.593 0.081 0.164 0.622 0.227 0.988

0.806 0.997 0.131 0.08 0.088 0 0.519 0.995 0.231 0.898 0.1750 0.598 0.596 0.087 0.166 0.779 0.231 1.0

0.856 1.0 0.163 0.667 0.109 0 0.5724 1.0 0.251 0.90 0.218 0.807 0.620 0.135 0.182 0.779 0.238 1.0

0.884 1.0 0.165 0.73 0.11 0 0.5744 1.0 0.265 1.0 0.2195 0.807 0.621 0.161 0.1817 0.779 0.265 1.0

0.922 1.0 0.181 0.992 0.121 0 0.5864 1.0 0.2808 1.0 0.241 1.0 0.633 0.665 0.1823 0.779 0.281 1.0

0.952 1.0 0.194 1.0 0.129 1.0 0.623 1.0 0.294 1.0 0.258 1.0 0.648 0.665 0.1903 0.779 0.294 1.0

1.0006 1.0 0.207 1.0 0.1375 1.0 0.658 1.0 0.315 1.0 0.2809 1.0 0.657 0.665 0.197 0.5 0.315 0

1.124 1.0 0.268 1.0 0.179 1.0 0.746 1.0 0.356 1.0 0.3567 1.0 0.696 0.665 0.207 0.5 0.368 0

1.175 1.0 0.289 1.0 0.193 1.0 0.782 1.0 0.369 1.0 0.39 1.0 0.712 0.389 0.234 0.5 0.389 0

B
ushra

etal.(2024),PeerJ
C
om

put.Sci.,D
O
I10.7717/peerj-cs.1921

19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 6 Validation results of our second proposed method showing accuracy improvements when
compared with DBSCAN algorithm.

Datasets Parameters Accuracy score (ARI)

Name Instances minPts ε DBSCAN Proposed (B)*

Atom 800 6 0.86 1 1
Chainlink 1,000 6 0.207 1 1
GolfBall 4,002 6 0.138 1 1
Hepta 212 6 0.5864 1 1
LSun 400 4 0.356 1 1
Target 770 4 0.28 1 1
Tetra 400 6 0.648 0.665 0.914
TwoDiamonds 800 4 0.1903 0.779 1
WingNut 1,016 4 0.238 1 1

Misclassified objects in
overlapping density regions

Correctly classified objects in
overlapping density regions

Figure 4 Comparative results of the TwoDiamonds dataset between the original DBSCAN algorithm
(A) and our proposed AutoSCAN algorithm (B). From the results of the DBSCAN algorithm (A), we can
see a misclassification of data objects around the border regions of the left ‘‘diamond’’. This occurs due to
overlapping of density regions of the border objects in the left ‘‘diamond’’ with the density regions of the
objects in the right ‘‘diamond’’. The figure on the right (B), a result generated from our proposed algo-
rithm, solves this problem.

Full-size DOI: 10.7717/peerjcs.1921/fig-4

of F-score ranges from 0 to 1, with a perfect model registering an F-score of 1.

F1=
2

1
recall ×

1
precision

= 2×
(precision × recall)
precision + recall

=
tp

tp+ 1
2(fp+ fn)

. (10)

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 20/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1921/fig-4
http://dx.doi.org/10.7717/peerj-cs.1921

The time performance tests in this section are conducted using the real-world geo-tagged
and multi-dimensional collections of datasets. We report and analyze the running times
of the algorithms in seconds (sec.). The algorithms used during time performance tests
were written in C++ and executed through the GNU GCC compiler. In the next section,
we discuss about the various target algorithms we for comparison against our proposed
method.

Target algorithms
In total we have collected seven clustering algorithms to compare against our proposed
method. Along with the original DBSCAN algorithm, six of the methods are density-based,
while we also include experimental results from the k-means clustering algorithm to
analyze our results against a partitioning-based clustering method. To analyze the results
of our automatic ε detection method, we chose the OPTICS, HDBSCAN and VDBSCAN
algorithms as target methods. The VDBSCAN method which uses the k-dist plot as a
measure for users to find an ε value has also been discussed on Table 1. OPTICS (Ankerst et
al., 1999) and HDBSCAN (McInnes, Healy & Astels, 2017) algorithms were chosen due to
their ability to detect density-based clusters without requiring the users help to determine
the density structure of a given dataset. For OPTICS, we use the xi-clustering algorithm
introduced in their original study. Additionally, the clustering method introduced by
Tran, Drab & Daszykowski (2013) is used during our experimental analysis as it proposes a
method to cluster data with dense adjacent clusters. During our experimental analysis we
show that their improved method comes at a time performance cost while our proposed
method provides an efficient approach instead. The SUBCLU (Kailing, Kriegel & Kröger,
2004) algorithm previously proposed as a density-connected subspace clustering for
high-dimensional data is used primarily in our time performance analysis experiments.
We analyze the results of SUBCLU against our proposed method when using the multi-
dimensional collection of real-world datasets.

Accuracy results
For the accuracy tests we show experimental results of AutoSCAN (our proposed
algorithm), the original DBSCAN, the method proposed by Tran, Drab & Daszykowski
(2013) OPTICS, HDBSCAN, SUBCLU, VDBSCAN and k-Means. We ran the experiments
using the FCPS and scikit-learn synthetic datasets. Meanwhile, for time performance tests,
the original DBSCAN, OPTICS, SUBCLU and the method by Tran, Drab & Daszykowski
(2013) were used to compare against AutoSCAN. The results are reported in the next
sections. Tables 7 and 8 show the accuracy results of the algorithms. We used both F-score
and ARI as measurements; additionally, the number of clusters and coverage percentage
are reported. To clarify the performance comparison, the scores of the algorithm with the
best accuracy for each dataset are highlighted in bold. From the experiments, our proposed
method, AutoSCAN, reported the superior clustering results in terms of coverage and
accuracy measures (both ARI and F-Score). The HDBSCAN, VDBSCAN, and SUBCLU
algorithms had lower accuracy for relatively large numbers of datasets compared to other
density-based clustering algorithms. While the original DBSCAN algorithm and OPTICS
and Tran, Drab & Daszykowski (2013) also reported a considerably high accuracy tests,

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 21/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 7 Accuracy tests of AutoSCAN algorithm against clustering algorithms proposed to improve the clustering quality of DBSCAN. The
scores of the algorithm with the best accuracy for each dataset are highlighted in bold.

Algorithms Datasets Clusters
found

Coverage % Accuracy

Name Size Feature F-1 Score ARI

Atom 800 3 2 100 1 1
Chainlink 1,000 3 2 100 1 1
GolfBall 4,000 3 1 100 1 1
Hepta 212 3 7 100 1 1
LSun 400 2 3 100 1 1
Target 770 2 2 98.44 1 1
Tetra 400 3 4 94 0.939 0.914
TwoDiamonds 800 2 2 100 1 1
WingNut 1,016 2 2 100 1 1
noisy_circles 2 2 100 1 1
noisy_moons 2 2 100 1 1
varied 2 3 95.87 0.97 0.94
aniso 2 3 99.07 0.99 0.98
blobs 2 3 100 1 1

Automatic Detection of Epsilon
Parameters and Efficient Clus-
tering of Data in Overlapping
Density Regions (AutoSCAN)

no_structure

1,500

2 1 100 1 1
Atom 800 3 2 98.875 0.988 0.978
Chainlink 1,000 3 2 100 1 1
GolfBall 4,000 3 1 100 1 1
Hepta 212 3 7 100 1 1
LSun 400 2 3 100 1 1
Target 770 2 2 98.44 1 1
Tetra 400 3 4 94.75 0.925 0.8766
TwoDiamonds 800 2 2 100 0.941 0.779
WingNut 1016 2 2 100 1 1
noisy_circles 2 2 100 1 1
noisy_moons 2 2 100 1 1
varied 2 3 80.6 0.8 0.71
aniso 2 3 96.4 0.96 0.94
blobs 2 3 100 1 1

Ordering Points to Identify the
Clustering Structure (OPTICS)

no_structure

1,500

2 1 100 1 1
Atom 800 3 2 100 1 1
Chainlink 1000 3 2 100 1 1
GolfBall 4000 3 3 100 – –
Hepta 212 3 7 100 1 1
LSun 400 2 3 100 1 1
Target 770 2 3 100 1 1

(continued on next page)

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 22/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 7 (continued)

Algorithms Datasets Clusters
found

Coverage % Accuracy

Name Size Feature F-1 Score ARI

Tetra 400 3 4 91.7 0.925 0.8766
TwoDiamonds 800 2 3 98 0.99 0.9603
WingNut 1,016 2 4 99.8 0.99 0.996
noisy_circles 2 2 100 1 1
noisy_moons 2 2 100 1 1
varied 2 3 89.8 0.88 0.85
aniso 2 3 96.67 0.97 0.98
blobs 2 3 100 1 1

Hierarchical Density Based Clus-
tering (HDBSCAN)

no_structure

1,500

2 1 100 – –
Atom 800 3 2 100 1 1
Chainlink 1,000 3 2 100 1 1
GolfBall 4000 3 1 100 1 1
Hepta 212 3 7 60.38 0.604 0.3746
LSun 400 2 3 99.8 0.9975 0.9973
Target 770 2 2 98.44 1 1
Tetra 400 3 4 93 0.7629 0.8022
TwoDiamonds 800 2 1 100 0.5 –
WingNut 1,016 2 2 97.83 0.978 0.957
noisy_circles 2 2 99.73 0.99 0.995
noisy_moons 2 2 99.6 0.99 0.992
varied 2 3 95.6 0.724 0.55
aniso 2 2 99.34 0.66 0.567
blobs 2 3 100 1 1

Varied Density Based Spatial
Clustering of Applications with
Noise(VDBSCAN)

no_structure

1,500

2 1 100 1 1

the AutoSCAN algorithm was able, in its worst cases, match their results. Specifically, for
the ‘‘Tetra’’ and ‘‘TwoDiamonds’’ datasets and the ‘‘varied’’ and ‘‘aniso’’ datasets, our
proposed algorithm provided increased clustering quality. These datasets are similar in
that they contain many data objects in regions of overlapping density between individual
clusters; we find that our second proposed algorithm can efficiently cluster these objects.
Tran, Drab & Daszykowski (2013) also reported the same accuracy as that of AutoSCAN
for the four datasets; however, they also found that some data objects were misclassified
as noise in datasets such as ‘‘Atom’’ and ‘‘Hepta’’. K-means was the only algorithm that
perfectly clustered the ‘‘Tetra’’ dataset. This is because a large number of data objects are
present in the overlapping density regions between individual clusters in this dataset, as a
result of which the density-based clustering algorithm is relatively more likely to misclassify
them. However, the k-means algorithm had a 100% coverage rate across all dataset runs,
and it failed to find irregularly shaped clusters and identify noise objects.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 8 Accuracy tests of AutoSCAN algorithm against clustering algorithms proposed to improve the clustering quality of DBSCAN. The
scores of the algorithm with the best accuracy for each dataset are highlighted in bold.

Algorithms Datasets Clusters
found

Coverage % Accuracy

Name Size Feature F-1 score ARI

Atom 800 3 2 98.875 0.988 0.978
Chainlink 1,000 3 2 100 1 1
GolfBall 4,000 3 1 100 1 1
Hepta 212 3 7 99.53 0.995 0.9942
LSun 400 2 3 100 1 1
Target 770 2 2 98.44 1 1
Tetra 400 3 4 94 0.832 0.665
TwoDiamonds 800 2 2 100 0.941 0.779
WingNut 1,016 2 2 100 1 1
noisy_circles 2 2 100 1 1
noisy_moons 2 2 100 1 1
varied 2 3 95.87 0.96 0.89
aniso 2 3 96.4 0.96 0.94
blobs 2 3 100 1 1

Density-based Spatial Clustering
on Applications with Noise (DB-
SCAN)

no_structure

1,500

2 1 100 1 1
Atom 800 3 2 98.875 0.988 0.9978
Chainlink 1,000 3 2 100 1 1
GolfBall 4,000 3 1 100 1 1
Hepta 212 3 7 99.53 0.995 0.9942
LSun 400 2 3 100 1 1
Target 770 2 2 98.44 1 1
Tetra 400 3 4 94 0.939 0.914
TwoDiamonds 800 2 2 100 1 1
WingNut 1,016 2 2 100 1 1
noisy_circles 2 2 100 1 1
noisy_moons 2 2 100 1 1
varied 2 3 95.87 0.97 0.94
aniso 2 3 99.07 0.99 0.98
blobs 2 3 100 1 1

Revised DBSCAN Algorithm to
Cluster Data with Dense Adja-
cent Clusters (Tran, T.N. et al)

no_structure

1,500

2 1 100 1 1
Atom 800 3 2 98.875 0.988 0.978
Chainlink 1,000 3 3 96.8 0.6911 0.7207
GolfBall 4,000 3 3 84.89 0.43 –
Hepta 212 3 5 77.91 0.49 –
LSun 400 2 3 1 1 1
Target 770 2 2 98.44 1 1

(continued on next page)

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 24/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 8 (continued)

Algorithms Datasets Clusters
found

Coverage % Accuracy

Name Size Feature F-1 score ARI

Tetra 400 3 4 58.25 0.59 0.36
TwoDiamonds 800 2 2 100 0.941 0.779
WingNut 1,016 2 2 100 1 1
noisy_circles 2 2 100 1 1
noisy_moons 2 2 100 1 1
varied 2 3 95.87 0.96 0.89
aniso 2 3 96.4 0.96 0.94
blobs 2 3 100 1 1

Density-Connected Subspace
Clustering for High-
Dimensional Data (SUBCLU)

no_structure

1,500

2 1 100 1 1
Atom 800 3 2 0.29 0.18
Chainlink 1,000 3 2 0.493 –
GolfBall 4,000 3 1 1 1
Hepta 212 3 7 1 1
LSun 400 2 3 0.28 0.24
Target 770 2 2 0.266 0.2
Tetra 400 3 4 1 1
TwoDiamonds 800 2 2 1 1
WingNut 1,016 2 2

100

0.89 0.67
noisy_circles 2 2 0.49 –
noisy_moons 2 2 0.85 0.49
varied 2 3 – 0.81
aniso 2 3 0.83 0.61
blobs 2 3 1 1

k-Means

no_structure

1,500

2 1

100

1 1

Time performance tests
In our time performance analysis, we compare the time spent in seconds for the several
clustering algorithms to complete execution for each dataset run. We use the original
DBSCAN algorithm’s running time as the base value in to understand how our proposed
algorithm scales compared to the other target algorithms.

The traditional DBSCAN algorithm exhibits a time complexity where the RegionQuery
module is O(n), leading to an overall complexity of O(n2) (Ester et al., 1996; Bushra &
Yi, 2021). However, the use of structures like the R*-tree can reduce this to O(nlogn).
The proposed algorithm merely introduces an additional condition for searching the
ClosestCore within the original DBSCAN (Algorithm 1), thus not altering the complexity
which remains at O(n2) or O(nlogn). However, due to the inclusion of the ClosestCore
search condition, experimental results indicate a marginal linear increase in time compared
to DBSCAN. Tran, Drab & Daszykowski (2013) is O(n2) in the worst case, similar to
DBSCAN, but performs additional computations to separate clusters of dense regions.
OPTICS is also O(n2) in the worst case, but performs additional operations to align
the objects (Ankerst et al., 1999). These additional computational tasks mean that both

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 25/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Table 9 Time performance results for the twitter dataset instances and the real-world multi-dimensional dataset collection.

Datasets Algorithms
DBSCAN AutoSCAN Tran, T. N. et al OPTICS SUBCLU

Name Size Feature Time elapsed (s) Time elapsed (s) Time elapsed (s) Time elapsed (s) Time elapsed (s)

1000 0.063914 0.83378 0.077539 0.7465 0.492

10,000 3.48978 4.93034 4.3934 11.37043 103.11

50,000 87.467 233.714 109.711 163.2778 3002.34

100,000 353.202 372.509 462.188 517.211 24672.01

1000,000 34847.4 39113.74 51018.3 61955.6 349034

Geo-Tagged
Twitter Dataset

2000,000

2

138276 148543 199842 254701 –
Iris 150 4 0.019372 0.027221 0.026467 0.07911 0.10344

TAE 980 10 0.019735 0.02633451 0.020618 0.07789 0.93302

Wine 178 13 0.0319 0.041023 0.0405 0.08694 0.31046

MFCC 7,195 22 39.4394 11.9374186 57.7131 62.10119 175.0385

Ecoli 336 8 0.06271 0.0742318 0.079497 0.14022 0.302291

Yeast 1,484 8 1.13692 1.1818285 1.4967 1.5002 2.129

Glass 214 10 0.04331 0.046507 0.047 0.10462 0.3991

WDBC 569 30 0.29935 0.4260416 0.31669 0.3925 5.3945

algorithms require more computational resources than DBSCAN, and as the data size
grows, experimental results show a linear increase in time compared to DBSCAN. Finally,
for SUBCLU, it operates clustering within subspaces, and the number of subspaces
can increase exponentially with the number of dimensions (Kailing, Kriegel & Kröger,
2004). Consequently, in the worst-case scenario, it presents a complexity of O(2dn2). It is
observable that with the increase in the number of data points and dimensions, the time
taken by this algorithm is longer in comparison to other algorithms. The time performance
results are reported on Table 9. Figure 5 shows a graphical representation of the runtime
of the algorithms for a better visualization of how each algorithm scales up together with
the size of the geo-tagged twitter dataset instances.

From the geo-tagged twitter instance dataset results, the experimental results show
that AutoSCAN performs faster than other previously proposed clustering algorithms.
Furthermore, we can see how linearly our method scales as the instances of the twitter
datasets grow logarithmically when compare to Tran, Drab & Daszykowski (2013) and the
OPTICS approach. Even though the AutoSCAN does run slightly slower than the original
DBSCAN algorithm, we have shown that the increase in clustering quality makes up for this
additional runtime. Meanwhile, the results collected from running the multi-dimensional
datasets suggest our algorithm’s complexity is not significantly affected by the feature size
of a dataspace. The same cannot be said for the subspace clustering algorithm SUBCLU as
it shows a considerable increase in runtime in cases like the ‘‘MFCC’’ dataset that exhibit
22 feature size in the dataspace.

In our experiment section, we were able to validate our two proposed methods by
running accuracy tests on multiple benchmark datasets, each with their own specific
challenges, designed to test the overall capacity of a clustering algorithm. We show that
our first proposed algorithm can accurately determine the ε parameter of the DBSCAN

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 26/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Figure 5 Time performance comparisons. Time performance comparisons of our proposed algorithm,
AutoSCAN, the DBSCAN, Tran, Drab & Daszykowski (2013) algorithm, and the OPTICS algortihm. As
the instance of the geo-tagged twitter dataset grows, AutoSCAN the least increase from the original DB-
SCAN implementation.

Full-size DOI: 10.7717/peerjcs.1921/fig-5

algorithm in a range that yields optimal performance. We also demonstrated that our
second proposed algorithm improves the clustering accuracy by identifying appropriate
cluster labels through additional operations on boundary objects that appear in overlapping
density regions. In the comparative analysis section, six previously proposed density-based
clustering algorithms including the original DBSCAN were used to compare the accuracy
and time performance results. From these tests, the AutoSCAN was able to identify the best
clustering quality on the FCPS and scikit-learn benchmark datasets. The time performance
results show that while AutoSCAN scales faster than the previously proposed density-based
clustering algorithms, it computes at a slightly slower rate than the original DBSCAN.
However, this increase in computation of AutoSCAN compared to DBSCAN is made up
by its better accuracy.

CONCLUSION
In this article, we propose an unsupervised method to determine the optimal DBSCAN
parameters from its density distribution. We show that by extracting a dataset’s k-nearest
neighbor information, and calculate its population distribution, we were able to identify the
appropriate cut-off region that best fits the definition of a cluster in terms of the DBSCAN
algorithm. We employ a cubic B-spline curve-fitting function on the density distribution
to iterate through the possible ε values and generate the optimal value. Additionally, an

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 27/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1921/fig-5
http://dx.doi.org/10.7717/peerj-cs.1921

efficient method to cluster data in overlapping density regions is discussed that uses the
implementation from the original ExpandCluster module and identifies the correct border
objects for each groups of data without additional complexity. Finally, the experimental
analysis demonstrates that AutoSCAN can determine the optimal parameter ε and that
it improves the clustering quality compared to that of the original DBSCAN algorithm
through the accurate clustering of border objects. It also shows a higher accuracy and lower
running time than other density-based clustering algorithms.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. NRF-2022R1F1A1074228), and was
also supported by Institute of Information & communications Technology Planning
& Evaluation (IITP) under the Artificial Intelligence Convergence Innovation Human
Resources Development (IITP-2023-RS-2023-00254592) grant funded by the Korean
government (MSIT) and the Dongguk University Research Fund of 2023. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
TheNational Research Foundation of Korea (NRF) grant funded by theKorean government
(MSIT): NRF-2022R1F1A1074228.
Institute of Information & communications Technology Planning & Evaluation (IITP)
under the Artificial Intelligence Convergence Innovation Human Resources Development:
IITP-2023-RS-2023-00254592.
The Korean government (MSIT) and the Dongguk University Research Fund of 2023.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Adil Abdu Bushra conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Dongyeon Kim performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
• Yejin Kan conceived and designed the experiments, prepared figures and/or tables, and
approved the final draft.
• Gangman Yi conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, advising and fund, and approved the final draft.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 28/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921

Data Availability
The following information was supplied regarding data availability:

The source code is available in the Supplemental File.
The data is available as follows:
- Clustering and Projection Suite (FCPS) Thrun, M. C. and Ultsch, A. (2020). Clustering

benchmark datasets exploiting the fundamental clustering problems. Data in Brief, page
105501

https://data.mendeley.com/datasets/vsxvgc4rwy/1
- The scikit-learn synthetic datasets by Pedregosa, F., Varoquaux, G., Gramfort, A.,

Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et
al. (2011). Scikit-learn: Machine learning in python. Journal of machine learning research,
12(Oct):2825–2830.

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
- The National Center for Supercomputing Application (NCSA) collected the real-world

dataset at https://b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e
- UCI Machine Learning Repository: http://archive.ics.uci.edu/ml.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1921#supplemental-information.

REFERENCES
Aggarwal CC, Reddy CK. 2014.Data clustering: algorithms and applications. 1st edition.

Chapman and Hall/CRC DOI 10.1201/9781315373515.
Ankerst M, Breunig MM, Kriegel H-P, Sander J. 1999. OPTICS: ordering points to

identify the clustering structure. ACM Sigmod Record 28(2):49–60.
Arabie P, Hubert L. 1996. Advances in cluster analysis relevant to marketing research.

In: From data to knowledge. Berlin, Heidelberg: Springer, 3–19.
Arlinghaus S. 1994. Practical handbook of curve fitting. Boca Raton: CRC press.
Bhatia N. 2010. Survey of nearest neighbor techniques. ArXiv arXiv:1007.0085.
Bhattacharjee P, Mitra P. 2021. A survey of density based clustering algorithms. Frontiers

of Computer Science 15:1–27.
Bravais A. 1844. Analyse mathématique sur les probabilités des erreurs de situation d’un

point. Paris: Impr. Royale.
Bushra AA, Yi G. 2021. Comparative analysis review of pioneering DBSCAN and

successive density-based clustering algorithms. IEEE Access 9:87918–87935
DOI 10.1109/ACCESS.2021.3089036.

Cai J, Hao J, Yang H, Zhao X, Yang Y. 2023. A review on semi-supervised clustering.
Information Sciences 632:164–200.

Chen Y, Hu X, FanW, Shen L, Zhang Z, Liu X, Du J, Li H, Chen Y, Li H. 2020. Fast
density peak clustering for large scale data based on kNN. Knowledge-Based Systems
187:104824 DOI 10.1016/j.knosys.2019.06.032.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 29/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1921#supplemental-information
https://data.mendeley.com/datasets/vsxvgc4rwy/1
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.7717/peerj-cs.1921#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1921#supplemental-information
http://dx.doi.org/10.1201/9781315373515
http://arXiv.org/abs/1007.0085
http://dx.doi.org/10.1109/ACCESS.2021.3089036
http://dx.doi.org/10.1016/j.knosys.2019.06.032
http://dx.doi.org/10.7717/peerj-cs.1921

Danielsson P-E. 1980. Euclidean distance mapping. Computer Graphics and Image
Processing 14(3):227–248 DOI 10.1016/0146-664X(80)90054-4.

Dua D, Graff C. 2019. UCI machine learning repository, 2017. Available at https://archive.
ics.uci.edu/.

Ester M, Kriegel H-P, Sander J, Xu X. 1996. Density-based spatial clustering of applica-
tions with noise. In: Int. Conf. Knowledge discovery and data mining, volume 240. 6.

Fix E, Hodges JL. 1989. Discriminatory analysis. nonparametric discrimination: consis-
tency properties. International Statistical Review/Revue Internationale de Statistique
57(3):238–247.

Gan G, Ma C,Wu J. 2020.Data clustering: theory, algorithms, and applications. SIAM.
GordonWJ, Riesenfeld RF. 1974. B-spline curves and surfaces. In: Computer aided

geometric design. 95–126.
GötzM, Bodenstein C. 2015.HPDBSCAN Benchmark test files. Available at https:

//b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e.
Han J, Pei J, KamberM. 2011.Data mining: concepts and techniques. Burlington: Morgan

Kaufmann Publishers.
Hartigan JA,WongMA. 1979. Algorithm AS 136: a k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics) 28(1):100–108.
Hou J, Zhang A, Qi N. 2020. Density peak clustering based on relative density relation-

ship. Pattern Recognition 108:107554 DOI 10.1016/j.patcog.2020.107554.
Hubert L, Arabie P. 1985. Comparing partitions. Journal of Classification 2(1):193–218

DOI 10.1007/BF01908075.
Jain AK. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters

31(8):651–666 DOI 10.1016/j.patrec.2009.09.011.
Kailing K, Kriegel H-P, Kröger P. 2004. Density-connected subspace clustering for high-

dimensional data. In: Proceedings of the 2004 SIAM international conference on data
mining. SIAM, 246–256.

KolbWM. 1984. Curve fitting for programmable calculators. Imtec, Bowie, Md.
Kriegel H-P, Kröger P, Sander J, Zimek A. 2011. Density-based clustering.Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(3):231–240.
Liu P, Zhou D,WuN. 2007. VDBSCAN: varied density based spatial clustering of

applications with noise. In: 2007 International conference on service systems and service
management. Piscataway: IEEE, 1–4.

McInnes L, Healy J, Astels S. 2017. hdbscan: hierarchical density based clustering.
Journal of Open Source Software 2(11):205 DOI 10.21105/joss.00205.

Neto ACA, Sander J, Campello RJ, NascimentoMA. 2019. Efficient computation and
visualization of multiple density-based clustering hierarchies. IEEE Transactions on
Knowledge and Data Engineering 33(8):3075–3089.

Nguyen DT, Chen L, Chan CK. 2011. Clustering with multiviewpoint-based similarity
measure. IEEE Transactions on Knowledge and Data Engineering 24(6):988–1001.

Pearson K. 1896. VII. Mathematical contributions to the theory of evolution.—III.
Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Character 253–318.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 30/31

https://peerj.com
http://dx.doi.org/10.1016/0146-664X(80)90054-4
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e
https://b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e
http://dx.doi.org/10.1016/j.patcog.2020.107554
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.7717/peerj-cs.1921

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: machine learning in
Python. Journal of Machine Learning Research 12(Oct):2825–2830.

RandWM. 1971. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66(336):846–850
DOI 10.1080/01621459.1971.10482356.

Reddy CK, Vinzamuri B. 2018. A survey of partitional and hierarchical clustering
algorithms. In: Data clustering: algorithms and applications. 87–110.

Rodriguez A, Laio A. 2014. Clustering by fast search and find of density peaks. Science
344(6191):1492–1496 DOI 10.1126/science.1242072.

Saxena A, PrasadM, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, DingW, Lin C-
T. 2017. A review of clustering techniques and developments. Neurocomputing
267:664–681 DOI 10.1016/j.neucom.2017.06.053.

Schubert E, Sander J, Ester M, Kriegel HP, Xu X. 2017. DBSCAN revisited, revisited:
why and how you should (still) use DBSCAN. ACM Transactions on Database
Systems (TODS) 42(3):1–21.

Sheikholeslami G, Chatterjee S, Zhang A. 1998.Wavecluster: a multi-resolution
clustering approach for very large spatial databases. In: International conference on
very large data bases. 428–439.

Sun L, Qin X, DingW, Xu J. 2022. Nearest neighbors-based adaptive density peaks
clustering with optimized allocation strategy. Neurocomputing 473:159–181
DOI 10.1016/j.neucom.2021.12.019.

ThrunMC, Ultsch A. 2020. Clustering benchmark datasets exploiting the fundamental
clustering problems. Data in Brief 30:105501.

Tran TN, Drab K, Daszykowski M. 2013. Revised DBSCAN algorithm to cluster data
with dense adjacent clusters. Chemometrics and Intelligent Laboratory Systems
120:92–96 DOI 10.1016/j.chemolab.2012.11.006.

WangW, Yang J, Muntz R. 1997. STING: a statistical information grid approach to
spatial data mining. In: International conference on very large data bases. 186–195.

Wang Y, Yang Y. 2021. Relative density-based clustering algorithm for identifying diverse
density clusters effectively. Neural Computing and Applications 33:10141–10157
DOI 10.1007/s00521-021-05777-2.

Yan X, Homaifar A, Nazmi S, Razeghi-JahromiM. 2017. A novel clustering algorithm
based on fitness proportionate sharing. In: 2017 IEEE International conference on
systems, man, and cybernetics (SMC). Piscataway: IEEE, 1960–1965.

Bushra et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1921 31/31

https://peerj.com
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1126/science.1242072
http://dx.doi.org/10.1016/j.neucom.2017.06.053
http://dx.doi.org/10.1016/j.neucom.2021.12.019
http://dx.doi.org/10.1016/j.chemolab.2012.11.006
http://dx.doi.org/10.1007/s00521-021-05777-2
http://dx.doi.org/10.7717/peerj-cs.1921

