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ABSTRACT
Background. Cancer is positioned as a major disease, particularly for middle-aged
people, which remains a global concern that can develop in the form of abnormal
growth of body cells at any place in the human body. Cervical cancer, often known as
cervix cancer, is cancer present in the female cervix. In the area where the endocervix
(upper two-thirds of the cervix) and ectocervix (lower third of the cervix) meet, the
majority of cervical cancers begin. Despite an influx of people entering the healthcare
industry, the demand for machine learning (ML) specialists has recently outpaced the
supply. To close the gap, user-friendly applications, such as H2O, havemade significant
progress these days. However, traditional ML techniques handle each stage of the
process separately; whereas H2O AutoML can automate a major portion of the ML
workflow, such as automatic training and tuning of multiple models within a user-
defined timeframe.
Methods. Thus, novel H2O AutoML with local interpretable model-agnostic expla-
nations (LIME) techniques have been proposed in this research work that enhance
the predictability of an ML model in a user-defined timeframe. We herein collected
the cervical cancer dataset from the freely available Kaggle repository for our research
work. The Stacked Ensembles approach, on the other hand, will automatically train
H2O models to create a highly predictive ensemble model that will outperform the
AutoMLLeaderboard inmost instances. The novelty of this research is aimed at training
the best model using the AutoML technique that helps in reducing the human effort
over traditional ML techniques in less amount of time. Additionally, LIME has been
implemented over the H2O AutoML model, to uncover black boxes and to explain
every individual prediction in our model. We have evaluated our model performance
using the findprediction() function on three different idx values (i.e., 100, 120, and 150)
to find the prediction probabilities of two classes for each feature. These experiments
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have been done in Lenovo core i7 NVidia GeForce 860M GPU laptop in Windows 10
operating system using Python 3.8.3 software on Jupyter 6.4.3 platform.
Results. The proposed model resulted in the prediction probabilities depending on the
features as 87%, 95%, and 87% for class ‘0’ and 13%, 5%, and 13% for class ‘1’ when
idx_value=100, 120, and 150 for the first case; 100% for class ‘0’ and 0% for class ‘1’,
when idx_value= 10, 12, and 15 respectively. Additionally, a comparative analysis has
been drawn where our proposed model outperforms previous results found in cervical
cancer research.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision
Keywords AutoML, H2O.ai, LIME, Performance metrics, Cervical cancer dataset

INTRODUCTION
Cervical cancer is the fourth most prevalent cancer among women worldwide, and the
second most common cancer among women in developing countries. World Health
Organization (WHO) estimated 570,000 new cases globally in the year 2018. Low-
and middle- income countries (LMICs) accounted for over 90% of the 311,000 deaths
worldwide in 2018 (World Health Organization, 2024). Over 85% of these deaths took
place in low- and middle-income nations. Cervical cancer accounts for around 6–29% of
all malignancies in women in India. Cervical cancer incidence rates increase rapidly, with
the highest rate of 23.07/100,000 in Mizoram and the lowest rate of 4.91/100,000 in the
Dibrugarh district in India (Saleem & Bhattacharya, 2021). Cervical cancer is related to a
young age at marriage, several sexual partners, multiple pregnancies, poor genital hygiene,
malnutrition, the use of oral contraceptives, and a lack of awareness. Furthermore, India
has the highest (age-standardized) cervical cancer incidence rate in South Asia, with 22
cases per 100,000 women per year (estimations for 2012), compared to 19.2 in Bangladesh,
13 in Sri Lanka, and 2.8 in Iran.

Human papillomavirus (HPV) infection is responsible for nearly all occurrences of
cervical cancer (Yuan et al., 2021; Kjaer et al., 2021). There are around 100 different types
of HPV, with at least 14 of them causing cancer. HPV is a virus family that is one of the
main causes of sexually transmitted infections in both men and women without having
any clinical symptoms. Around the world, HPV having types 16 and 18 are responsible
for 70% of cervical malignancies and precancerous lesions. Cervical cancer is caused by
HPV infection acquired through sexual contact (Colombo et al., 2021; Bouvard et al., 2021;
Falcaro et al., 2021). Although, HPV affects the immune system of patients having HIV
increases the cervical cancer risk (Stelzle et al., 2021).

Due to a lack of resources, and qualified, and trained health workers in impoverished
and underdeveloped countries, the output of cervical cancer screening procedures is low.
In developed countries like Sub-Saharan Africa (SSA), pre-cancerous lesion prediction
and early-stage treatment efficient screening procedures over nearly 93,225 cases were
identified in 2012 (Black & Richmond, 2018). Infection with the human papillomavirus
is the major risk factor for cervical cancer. In low- and lower-middle-income nations,
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cancer-causing diseases such as hepatitis and HPV account for roughly 30% of cancer cases
(de Martel et al., 2020). The Papanicolaou (PAP) smear is the world’s most used cervical
cancer screening test. During the screening of each patient, the trained cytologists examine
hundreds of sub-images using a microscope to identify the abnormal cells. PAP smear
slide shows the cervical cell image, which comprises a mixture of red and white blood cells,
germs, and the cervical cell cluster (Lu et al., 2020).

Literature review
Despite a spike in people entering the healthcare field, demand for machine learning
(ML) professionals has exceeded supply in recent years due to the availability of a larger
dataset. To close this gap, significant progress has been made in the development of
non-expert-friendly ML software. The development of simple, consistent interfaces to
a variety of machine learning algorithms was one of the first steps toward simplifying
machine learning (e.g., H2O). Moreover, H2O has made it simple for non-experts to
experiment with machine learning, Deep Neural Networks, in particular, have historically
been difficult for non-experts to configure appropriately. The H2O AutoML model might
be useful in predicting cervical cancer in less time as it provides a simple wrapper function
that performs a large number of modeling-related tasks over the complex image. After
evaluating the fivefold cross-validation technique over all datasets, it was found that
both ML and deep learning (DL) techniques provide comparatively good results, with
ResNet-50 achieving an accuracy of 0.9065 and much better performance. Besides that,
the conceptual methodologies in ML may have struggled to comprehend and learn these
complex diagnostic processes in cancer disorders. A traditional ML model would normally
require many lines of code, allowing the model to focus on other aspects of the task, such
as data preprocessing, feature engineering, and model deployment. A major drawback of
applying the ML process is the requirement of human interaction at each step, and it may
be impossible to accurately compare ML and DL models (Park et al., 2021; Prusty, Patnaik
& Dash, 2022).

The application of ML for medical image analysis has several advantages in terms of
disease diagnosis. Over convolutional neural networks (CNN), CNN with conditional
random field (CNN-CRF) provides a variety of applications for assessing the structure
and capturing a picture of the human interior body structure. The field of medical image
analysis has profited greatly from machine learning (Soni & Soni, 2021).

Cervical cancer is the fourth-highest rate of increase among female diseases. It is one of
the illnesses that is threatening the health of women all over the world, and it is difficult to
detect any symptoms in the early stages. However, due to several social-behavioral issues,
the cervical cancer screening procedure can be impeded. In the field of gynecology, there
are currently a limited number of studies focused on identifying cervical cancer based on
behavior and machine learning (Akter et al., 2021).

As a result of the COVID-19 outbreak, low-income women’s breast and cervical cancer
screening rates have decreased. Longer delays in screening owing to COVID-19 risk
increase cancer outcome disparities (Ginsburg et al., 2021; DeGroff et al., 2021; Feldman &
Haas, 2021; Castanon et al., 2021).
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Low-income women without health insurance can get cancer screenings under the
National Breast and Cervical Cancer Early Detection Program (NBCCEDP). Breast cancer
and cervical cancer screening, on the other hand, remained more than 50% below the
5-year average among women in rural areas (Ortiz et al., 2021).

Traditional machine learning/deep learning techniques necessitate specialist knowledge,
and so rely on human efficiency at the moment. Automated machine learning (AutoML)
has evolved as a solution for application domain problems such as anomaly detection as
well as unstructured constraints (Miller et al., 2021; Kancharla & Raghu Kishore, 2022).

Local interpretable model-agnostic explanations (LIME) is a common technique for
making black box ML algorithms more interpretable and explainable. LIME frequently
creates an explanation for a single ML model prediction by learning a smaller interpretable
model (e.g., linear classifier) around the prediction by randomly perturbing simulated data
around the instance and determining feature importance through feature selection (Shi et
al., 2021; Zafar & Khan, 2021).

TS-MULE is a time series-specific local surrogatemodel explanationmethod that extends
the LIME methodology. This enhanced LIME uses a variety of techniques to segment and
modify time series data (Schlegel et al., 2021).

Objectives
In general, in traditional ML techniques, each stage of the process is handled separately.
Although, theML process follows some basic steps while predicting healthcare datasets such
as data processing, feature engineering, feature selection, model selection, hyperparameters
optimization, model performance, analysis of the result, andmaking a prediction.Whereas,
AutoML, is an open-source library that automates each step in the ML process from
processing the raw dataset to deploying the ML model. AutoML identifies and employs
the most appropriate machine learning algorithm for a specific task. First, there is a neural
architecture search, which automates neural network design. This makes it easier for
AutoML models to find new architectures for situations that require it. The second is
transfer learning, in which previously trained models apply their knowledge to fresh data
sets. AutoML can use transfer learning to apply existing structures to new problems. The
three most basic steps that H2O AutoML follows are (a) Data Preprocessing, (b) Model
Generation, and (c) Ensembling, as shown in Fig. 1.
The H2O AutoML interface is designed to have as few parameters as possible, allowing

the experts to simply point to their dataset, identify the response column, and optionally
specify a time limitation or amaximum number of models for training. Moreover, AutoML
makes it easy to provide faster and more accurate results in healthcare fields. H2O AutoML
assists in data preprocessing by determining which parameters to tweak and what ranges
will allow us to know when random sampling will occur. The advancement of the H2O
AutoML technique over the traditional ML process has been described as shown in Fig. 2.
In this work, the H2O AutoML has been proposed to predict cervical cancer incoming

section that automates the selection, composition, and parameterization of the ML model.
Even though it increases efficiency and processing power to generate results. The parts
of the ML process that apply the algorithm to real-world scenarios are automated in
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Figure 1 H2O AutoML process design.
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Figure 2 Differences between the traditional ML and H2O AutoML process.
Full-size DOI: 10.7717/peerjcs.1916/fig-2

this phase. A human executing this activity would require knowledge of the algorithm’s
internal logic as well as how it connects to real-world scenarios. It learns about learning
and makes decisions that would take too long or need too many resources for people to
perform efficiently at scale. Furthermore, H20 AutoML aids research and development
in the healthcare sector, as it can evaluate big data sets and derive insights from complex
data.

MATERIALS & METHODS
H2O.AI is an open-source program for analyzing large amounts of data. It allows users to
fit thousands of different models to tumour data to find patterns. The software includes a
module for creating AutoML models that can be used with programming languages such
as Java. Furthermore, AutoML is primarily concerned with data collecting and prediction.
The AutoML platform will abstract all of the steps that occur between these two phases.

Material
In this study, we have collected two separate cervical cancer datasets from the Kaggle
repository, which has been publicly available over the Internet. The first dataset contains
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858*36 dimensions of patient data, where 858 is defined as the number of patients and 36
as the total number of features (for example, hormonal contraceptives, smokes (year), Dx:
cancer, Dx: CIN, and so on). These features aremainly responsible for developing abnormal
tissues in the cervix area like possibilities of chlamydia to increase the chances of HPV
infection, unprotected sexual intercourse with more than one partner, smoking to produce
precancerous changes in the cervix to develop invasive CC, and so on. From these 36, we
have dropped two features (i.e., ‘time since first diagnosis’ and ‘time since last diagnosis’) as
we found more than 80% of missing values. Although, Dx: cancer produces uncertainties
about the validity of the prediction, removing it to maintain the integrity of the prediction.
Besides that, we also removed three other diagnosis techniques such as ‘Hinselmann’,
‘Schiller’, and ‘Citology’ as they only guide whether cancer is present or not but ‘Biopsy’
can make a definite diagnosis tool. That is why, we have gone with the ‘Biopsy’ test to
predict the cancer in this research. The second one contains 72 individual patient data and
20 features (for example, behavior_sexualRisk, behavior_eating, behavior_personalHygine,
perception_vulnerability, and many more). After all these processes, the dimension of our
dataset has been reduced to 858*30, which is undergone into the model for prediction
described in a further section.

Method
Despite the rise in experts in the healthcare field, demand formachine learning professionals
has recently exceeded supply. The initial efforts for improving ML were to make it quite
easy with the usage of H2O to fill this gap. However, H2O makes it simpler for beginners
to evaluate ML models. AutoML, on the other hand, can be useful for the proficient user,
freeing them up to concentrate on other areas like data-preprocessing, feature engineering,
and deploying models by offering an intuitive wrapper function, which performs a variety
of operations that usually involves hundreds of lines during coding. Combining both t H2O
and AutoML allows the user to simply point to their dataset, identify the response column,
and optionally specify a time constraint or a maximum number of models to train. Instead
of a specified time constraint, the user can utilize a performance metric-based termination
condition for the AutoML operation. Stacked Ensembles will be automatically trained on
a set of individual models to build a highly predictive ensemble model that will be the
best performer in the AutoML Leaderboard. The implementation of H2O with AutoML
can automate ML activities including automatic training and tuning of multiple models
in a user-defined timeframe. Model explainability methods are available in H2O for both
AutoML objects and individual models from the leaderboard. With a single function call,
a model explanation can be carried out automatically, giving a convenient interface after
implementing the LIME application.

The progress of AI in the healthcare industry necessitates that models be explainable to
both physicians and users. AI interpretability reveals what is going on inside these systems
and aids in the detection of potential problems including information leakage, model bias,
robustness, and causality. LIME provides a generic framework for uncovering black boxes
in machine learning models.
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Figure 3 We have designed a relationship between 29 features using Pearson correlation coefficient
(PCC).

Full-size DOI: 10.7717/peerjcs.1916/fig-3

Before moving forward to method implementation, it is necessary to analyze the dataset
such as identifying missing values, finding correlation between features, and many more.
For this implementation, the exploratory data analysis (EDA) technique has been used here,
which produces a report specifying the relationship between features in the CC dataset.
Thus, to define the degree of features dependent on each other, we performed correlation
between variables using the Pearson correlation coefficient (Fig. 3), Spearman (Fig. 4), and
KendallTau (Fig. 5) in this study.

Prepare H2O dataframes
Start and connect to the Local H2O cluster:

H2O is a set of Stata utilities for interacting with H2O. This can use these utilities
to start or connect to an H2O cluster and have access to H2O’s capabilities. The
H2O_cluster_version 3.34.0.7 has been connected with our
H2O_from_python_Lelin_scenxd cluster using the Python 3.8.8 application on the
Windows 10 operating system. This requires an internet browser i.e., Microsoft Edge
version 117.0.2045.60 (64-bit) to connect H2O web UI.

Importing Data into H2O:
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Figure 4 The relationship between features using Spearman correlation.
Full-size DOI: 10.7717/peerjcs.1916/fig-4

The import function is a parallelized reader that retrieves data from the server at
a client-specified location. This method of data reading is quick, scalable, and highly
optimized. H2O retrieves data from a data store and performs a read operation on it.

Convert pandas Dataframe into H2O data frame:
H2OFrame is identical to Pandas’ Dataframe, with the exception that the data is usually

not maintained in memory, but rather on a (potentially remote) H2O cluster, easy to
handle the data (Fig. 6).

Data transformation & exploration
The transformation of training data into numeric type can be done using the transform
parameter.

Split the H2O data frame into Training and Testing Sets:
The collection of predictors in this Cervical Cancer dataset is all columns, namely ‘x’,

except the Biopsy, which is ‘y’.

Train multiple H2O models
H2O AutoML is configured with max_models as a training parameter that takes the
maximum number of models and the validation_frame, which specifies the evaluation
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Figure 5 The relationship between features using KendallTau correlation.
Full-size DOI: 10.7717/peerjcs.1916/fig-5

process in H2OFram. However, in this study H2OAutoML () function takes ‘max-models
=20’, metrics as ‘ROC AUC’, and ‘StackedEnsemble’ parameters to train our model. The
performance score history to represent the timestamp, durations, training_loss, and so
on has been designed in Table 1. Rather than that, in this work, H2O AutoML trains
and cross-validates twenty models like GBM, default random forest (DRF), extremely
randomized forest (XRT), deep learning, XGBoost, and gradient linear machines (GLM).
Moreover, it trains stacked ensembles for all the models on the cervical cancer dataset.
Other than the twenty models, the GBM creates regression trees progressively according
to the dataset characteristics in a fully distributed manner, where each tree is generated in
parallel (Table 2). After that, the regression performance can be measured on trained data
and cross-validation data using performance metrics. The model’s performance can be
checked on the training and test set by using confusion_matrix as shown in Table 3.

H2O AutoML model leaderboard
The H2O Model Explainability interface fully supports AutoML objects. A large number
of multi-model comparisons and single-model graphs can be generated automatically with
a single call to h2o.explain The leaderboard displays useful and actionable data for each

Prusty et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1916 9/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1916/fig-5
http://dx.doi.org/10.7717/peerj-cs.1916


 

Figure 6 Connecting to H2O server using h2o.init().
Full-size DOI: 10.7717/peerjcs.1916/fig-6

Table 1 Training Score history using the H2OAutoML technique on first case.

Timestamp Duration number_of_trees training_logloss training_auc training_pr_auc training_lift training_
classification_
error

2023-10-07 11:29:47 4.663 s 0.0 1.373910 0.500000 0.501266 1.000000 0.498734
2023-10-07 11:29:47 4.703 s 5.0 1.293767 0.870937 0.862830 1.994949 0.197468
2023-10-07 11:29:47 4.728 s 10.0 1.198367 0.939511 0.935237 1.994949 0.124051
2023-10-07 11:29:47 4.754 s 15.0 1.116737 0.948414 0.944879 1.994949 0.112236
2023-10-07 11:29:47 4.779 s 20.0 1.041071 0.959716 0.956614 1.994949 0.095359
2023-10-07 11:29:47 4.811 s 25.0 0.963458 0.972699 0.970629 1.994949 0.080169
2023-10-07 11:29:47 4.839 s 30.0 0.902979 0.979586 0.978727 1.994949 0.064135
2023-10-07 11:29:47 4.856 s 32.0 0.883423 0.981902 0.980589 1.994949 0.056540
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Table 2 Performance metrics of twenty different models using H2OAutoML for first case.

model_id roc auc logloss aucpr mean_per_
class_error

mse training_
time_ms

predict_time_
per_row_ms

algorithm

GBM_grid_1_AutoML_1_20220110_123655_model_5 0.690086 0.244167 0.162172 0.33666 0.0629848 196 0.021187 GBM

GBM_grid_1_AutoML_1_20220110_123655_model_2 0.669512 0.250431 0.146136 0.356368 0.0634068 20,164 0.033766 Deep Learning

GBM_grid_1_AutoML_1_20220110_123655_model_3 0.658091 0.253076 0.135011 0.377403 0.0637181 472 0.01396 GBM

DeepLearning_grid_2_AutoML_1_20220110_123655_model_1 0.654611 0.563843 0.163702 0.390344 0.072609 397 0.015602 GBM

GBM_grid_1_AutoML_1_20220110_123655_model_4 0.6519 0.253983 0.103104 0.330718 0.0657598 267 0.014876 GBM

GBM_1_AutoML_1_20220110_123655 0.650804 0.253299 0.103425 0.376058 0.0657407 275 0.009541 XGBoost

GBM_4_AutoML_1_20220110_123655 0.644401 0.291367 0.158755 0.372327 0.0641633 561 0.023304 DRF

GBM_grid_1_AutoML_1_20220110_123655_model_1 0.631711 0.249374 0.0874604 0.406764 0.0647613 275 0.009143 XGBoost

DeepLearning_grid_3_AutoML_1_20220110_123655_model_2 0.631403 1.13684 0.167609 0.393363 0.0868137 289 0.008156 XGBoost

GBM_3_AutoML_1_20220110_123655 0.625635 0.306683 0.149494 0.405207 0.0651245 303 0.014975 GBM

DeepLearning_grid_1_AutoML_1_20220110_123655_model_1 0.622289 0.606564 0.108121 0.400977 0.107165 455 0.023235 GBM

DRF_1_AutoML_1_20220110_123655 0.620635 0.553798 0.160526 0.442816 0.0653268 511 0.01651 DRF

DeepLearning_grid_3_AutoML_1_20220110_123655_model_1 0.605426 0.866563 0.100175 0.434106 0.0867275 326 0.013188 Deep Learning

GBM_2_AutoML_1_20220110_123655 0.605099 0.299854 0.151125 0.42903 0.0644403 289 0.015554 GBM

XRT_1_AutoML_1_20220110_123655 0.585352 0.278178 0.132334 0.446201 0.0659885 185 0.009838 GLM

GBM_5_AutoML_1_20220110_123655 0.558856 0.313753 0.111221 0.447412 0.0660184 15,714 0.020604 Deep Learning

DeepLearning_grid_2_AutoML_1_20220110_123655_model_2 0.549223 1.03666 0.104306 0.433626 0.0762662 23,706 0.01474 Deep Learning

GLM_1_AutoML_1_20220110_123655 0.54332 0.247843 0.11052 0.427453 0.0638368 302 0.00703 XGBoost

DeepLearning_grid_1_AutoML_1_20220110_123655_model_2 0.536168 1.6599 0.0980909 0.420185 0.0970303 189 0.006945 XGBoost

DeepLearning_1_AutoML_1_20220110_123655 0.531053 0.409423 0.079844 0.433376 0.0869002 85 0.006305 XGBoost
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Table 3 Confusionmatrix design (Actual vs predicted class) on two datasets.

First case/second case First case/second case

0 1 Error Rate

0 0 211.0/13.0 1.0/0.0 0.0047/0.0 (1.0/212.0)/(0.0/13.0)
1 1 9.0/4.0 2.0/2.0 0.8182/0.6667 (9.0/11.0)/(4.0/6.0)
2 Total 220.0/17.0 3.0/2.0 0.0448/0.2105 (11.0/223.0)/(4.0/19.0)

Table 4 Preview of the combined prediction results using H2O AutoML Leaderboard Exploration on
two cervical cancer test datasets.

First Case Second Case

Biopsy predict p0 p1 ca_cervix predict p0 p1

0 0 0.984997 0.0150032 1 0 3.81E−12 1
0 0 0.991045 0.00895493 1 0 1.63E−11 1
0 0 0.989133 0.0108669 1 1 6.08E−17 1
0 0 0.975303 0.0246971 1 1 3.50E−14 1
0 1 0.922194 0.0778059 1 1 5.99E−15 1
0 0 0.983873 0.0161273 1 1 3.65E−17 1
0 0 0.971292 0.0287078 0 0 0.001082576 0.998917424
0 1 0.890686 0.109314 0 0 0.999999999 1.18E−09
0 0 0.990004 0.00999598 0 0 0.999978515 2.15E−05
1 1 0.786601 0.213399 0 0 0.116430347 0.883569653

model built in the AutoML run, such as model performance, training time, and per-row
prediction speed, which is ordered according to user preferences.

The leaderboard displays the metrics for each model. The leaderboard displays 5-fold
cross-validated metrics by default (depending on the H2OAutoML parameters) when an
H2OAutoML object is provided; otherwise, metrics computed on the frame are displayed.
The predict () on the H2OAutoML predict Leaderboard using test scores. The combined
scores of prediction values on the test set have been represented in a single data frame
as previewed in Table 4 (contains ‘p0’ and ‘p1’ as prediction probabilities). From these
experiments, a total of 222 test values have been generated, where each biopsy contains a
prediction score value and a total of 18 test values have been generated, where each ca_cervix
contains a prediction score value In the model evaluation process, the ‘nfolds’ parameter is
used for changing the number of folds in the leaderboard (here default nfold = 5). During
the run, AutoML trains multiple Stacked Ensemble models (unless ensembles are disabled
using exclude_algos). We divided the AutoML model training into ‘‘model groups’’ with
various levels of priority. We train (maximum) two additional Stacked Ensembles using
the pre-existing models once each group is finished and at the final stage of the AutoML
cycle. Although, to rank, the models (the second column of the leaderboard), a default
metric has been implemented that is based on the problem category. However, ‘ROC AUC’
specifies the statistic for binary classification issues, and ‘mean_per_class_error’ shows the
metric for multiclass classification problems.
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H2O making prediction
In this study, AutoML employs leaderboard expansion and the five-fold cross-validation
approach on the CC dataset to produce precise models to predict with their metrics for
cervical cancer. When used with AutoML, the leaderboard_frame prospect specifies which
data frame will be used to assess and promote models on the leaderboard. With AutoML,
the predict () function provides predictions on the run’s leader model. Although some rows
fail, the results are arranged in the same order as the data was loaded. This graph depicts the
relationship between themodel’s predictions. The frequency of identical predictions is used
to classify the data. The similarity of all twenty models is sorted accordingly. Models that
can be interpreted, such as GAM, GLM, and RuleFit, are marked in red language in Fig. 7.
To investigate and further analyze, the H2O AutoML models use the model explainability
interface that will help to decide which model to choose for predicting cervical cancer in
advance. The model leader explains H2O models (a total of 20 models by default), and
from there the confusion matrix (CM) for GBM_grid_1_AutoML_1 has been described in
Table 3, where the output of both the predicted class and actual class.

H2O: LIME
LIME has a lot of benefits and is adaptable to a variety of ML models due to its faster
computation rate (Molnar, 2019). The effect of LIME explanation based on human
decision-making, where it first examined the outcomes for every cluster, which specifies
LIME might perform better in decision support. LIME uses a normal distribution to
approximate the original distribution of numerical features and an exponential kernel,
with a width corresponding to the square root of the number of features. Superpixels are
produced by LIME to classify images, as a result of over-segmenting an image. Superpixels
have greater alignment with image edges than rectangular image patches and can holdmore
data than pixels for the main prediction (Ahsan et al., 2021). A total of 10 observations
from the test set that had a prediction probability for both classes of more than 80% and an
explanation fit of 0.066 were chosen as the LIME assessment instances (Kumarakulasinghe
et al., 2020). LIME localizes the model as a logistic or linear model and repeats the process
hundreds of times. It outputs the most significant features for the local models. LIME
has been used to interpret complex models such as Neural Networks, Random Forests,
and Ensemble ML. However, an ML model is treated as a ‘‘black box’’ with raw data and
certain outputs by generalized explainable AI algorithms (Sumit, 2019). Instead of training
global intermediate models, LIME trains local simulated models on modified inputs to
identify the statistical relationship between variables and model prediction (Sumit, 2019).
It offers visualization as well as an explanation of an instance through a comprehensible
representation. The explanation is measured after evaluating a model behavior close to
an instance using local intermediary models, which can be either decision trees or linear
regressions as shown in Eq. (1).

explanation(x)= argmingεGL
(
f ,g ,πx

)
+�(g ) (1)
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 Figure 7 Depicting the relative correlation performance of 20 default models.
Full-size DOI: 10.7717/peerjcs.1916/fig-7

In this case, ‘x’ is explained on loss function ‘L’ using the maximum value of
(
f ,g ,πx

)
,

where �(g ) is model complexity, ‘f’ is the black-box model, and ‘G’ is the family of
explanations. ‘L’ defines how close the explanation result is to the model prediction.

LIME permutes the given observation to compute the distance of similarity between the
original and permuted data. In this case, features are passed in h20 frame format, which is
further converted into NumPy format for further processing. After that, an explain instance
function takes instances in NumPy format, prediction (), and a total number of features as
parameters. The findprediction () function creates a data frame object, and h2o frames for
the prediction object in a three-column format, where the first column is the prediction
class and the other two are their prediction probabilities. This process includes three basic
steps:

• First, disregard the training data and consider a black box model in which we provide
the input data. The predictions for the model are produced by the black box model. Our
goal is to comprehend the reasoning behind the ML model’s particular prediction.

Prusty et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1916 14/29

https://peerj.com
https://doi.org/10.7717/peerjcs.1916/fig-7
http://dx.doi.org/10.7717/peerj-cs.1916


Table 5 ModelMetricsBinomial using H2OAutoML.

Metrics Train data Cross-validation data

First case Second case First case Second case

MSE 0.344 4.47e−21 0.637 0.181
LogLoss 0.941 1.36e−11 0.253 0.999
Mean per class Error 0.071 0.0 0.350 0.929
ROC AUC 0.974 1.0 0.658 0.975
AUCPR 0.973 1.0 0.135 0.94
Gini 0.949 1.0 0.316 0.95

Test Data
First Case Second case

MCC 0.85 0.93
F1 score 0.923 0.997
accuracy 0.978 1.0
Sensitivity 0.927 0.939
Specificity 0.975 0.987
Precision 0.985 0.946
NPV 0.842 0.897

• LIME is now put into practice. It investigates the changes that occur to the results when
we alter the data that an ML model is supplied.
• LIME creates a new dataset made up of permuted data and appropriate black box model
predictions. This subsequently trains a comprehensible model on this new dataset.

In this study, we have mainly focused on prediction probabilities. Additionally, we have
experimented with our model with three different instance values for our research inside
the ‘test_numpy’ parameter (i.e., ‘IDX’ values as 100, 120, and 150). These successfully
predict the probabilities of class either ‘0’ or ‘1’ in three different HTML files as shown in
Figs. 8, 9 and 10. Furthermore, the ML model is applied to predict the outcome of that
permuted cancer data. After that, it fits the best appropriate model on the permuted data
to explain the outcome, by applying the weights to the original observation. And finally,
the feature weights have been used on the cervical cancer dataset that emerged to explain
local behavior.

Performance metrics
H2O AutoML includes several measures for evaluating both supervised and unsupervised
models. Only supervised learning models are covered by the metrics in this article, which
change depending on the model type. The performance score of both training and cross-
validation data for our model has been designed using some common metrics as followed
in Table 5. Furthermore, Table 5 contains the performance results on the test set using
well-known classification metrics ((for example: MCC, accuracy, precision, specificity, and
many more) for two cervical cancer datasets. The result shows that our proposed H2O
AutoML model gives significant scores.
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Feature Value 

Age 19.00 

Number Of Sexual Partners 1.00 

First Sexual Intercourse 18.00 

Number Of Pregnancies 1.00 

Smokes 0.00 

Smokes (Years) 0.00 

Smokes (Packs/Year) 0.00 

Hormonal Contraceptives 1.00 

Hormonal Contraceptives (Years) 1.00 

IUD 0.00 

IUD (Years) 0.00 

STDS 0.00 

STDS (Number) 0.00 

STDS: Condylomatosis 0.00 

STDS: Cervical Condylomatosis 0.00 

STDS: Vaginal Condylomatosis 0.00 

STDS: Vulvo-Perineal Condylomatosis 0.00 

STDS: Syphilis 0.00 

STDS: Pelvic Inflammatory Disease 0.00 

STDS: Genital Herpes 0.00 

STDS: Molluscum Contagiosum 0.00 

STDS: Aids 0.00 

STDS: HIV 0.00 

STDS: Hepatitis B 0.00 

STDS: HPV 0.00 

STDS: Number Of Diagnoses 0.00 

DX: CIN 0.00 

DX: HPV 1.00 

DX 1.00 

Figure 8 Based on the H2O AutoML-LIMEmodel prediction probabilities on 29 features for both
class ‘0’ and ‘1’ when IDX= 100 in the second case, it appears that there is a higher likelihood of be-
longing to class ‘1’.

Full-size DOI: 10.7717/peerjcs.1916/fig-8

Mean-squared error
The mean-squared error (MSE) measure determines the average of the squared errors or
deviations. To eliminate any negative signals, MSE squares the distances between the points
and the regression line. MSE takes into account the predictor’s variation as well as its bias.

MSE =
∑N

i=1
(
ŷi−yi

)2
N

(2)

Where, N - Total number of rows. y - Actual class value. ŷi - Predicted class value
(ŷi= 1

1+e−z ,as Sigmoid function).

Log loss
A binomial or multinomial classifier’s performance can be evaluated using the logarithmic
loss metric. Unlike ROC AUC, which assesses a model’s ability to categorize a binary target,
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Feature Value 

Dx: HPV 0.00 

STDs: HIV 0.00 

Smokes (packs/year) 0.00 

Hormonal Contraceptives (years) 0.00 

STDs: Number of diagnoses 0.00 

Dx 0.00 

STDs (number) 0.00 

STDs: HPV 0.00 

STDs: Hepatitis B 0.00 

STDs 0.00 

IUD (years) 0.00 

STDs: pelvic inflammatory disease 0.00 

First sexual intercourse 18.00 

Smokes 0.00 

Age 20.00 

Smokes (years) 0.00 

Number of sexual partners 3.00 

STDs:condylomatosis 0.00 

Dx: CIN 0.00 

Num of pregnancies 2.00 

STDs: syphilis 0.00 

IUD 0.00 

STDs: vaginal condylomatosis 0.00 

STDs:vulvo-perineal condylomatosis 0.00 

Hormonal Contraceptives 0.00 

STDs: genital herpes 0.00 

STDs:molluscum contagiosum 0.00 

STDs: AIDS 0.00 

STDs: cervical condylomatosis 0.00 

Figure 9 Based on the H2O AutoML-LIMEmodel prediction probabilities on 29 features for both
class ‘0’ and ‘1’ when idx= 120 in the second case, it appears that there is a higher likelihood of belong-
ing to class ‘1’.

Full-size DOI: 10.7717/peerjcs.1916/fig-9

Log loss assesses how near a model’s predicted values are to the actual target value.

log loss=−
1
N

N∑
i=1

(log (pi)),where pi= prediction values(i.e., p0 and p1) (3)

Here,log (pi), defines the probability of a true class (where,(pi) = probability of class ‘1’
and 1- (pi) = probability of class ‘0’).

Area under the ROC curve
This model metric is used to assess how well a binary classification model can differentiate
between true and false positives within a graph. Although, this helps to evaluate how well
our model decides on actual and predicted values. A perfect classifier has an area under
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Feature Value 

Dx: HPV 1.00 

STDs: Hepatitis B 0.00 

STDs: HIV 0.00 

Hormonal Contraceptives (years) 1.00 

STDs: Number of diagnoses 0.00 

Smokes (packs/year) 0.00 

Dx 1.00 

STDs: genital herpes 0.00 

STDs: pelvic inflammatory disease 0.00 

STDs:vulvo-perineal condylomatosis 0.00 

Smokes (years) 0.00 

IUD (years) 0.00 

STDs 0.00 

STDs: vaginal condylomatosis 0.00 

First sexual intercourse 18.00 

Age 19.00 

STDs: HPV 0.00 

STDs:molluscum contagiosum 0.00 

Num of pregnancies 1.00 

STDs: syphilis 0.00 

STDs (number) 0.00 

STDs:condylomatosis 0.00 

Dx: CIN 0.00 

Number of sexual partners 1.00 

Smokes 0.00 

IUD 0.00 

Hormonal Contraceptives 1.00 

STDs: cervical condylomatosis 0.00 

STDs: AIDS 0.00 

Figure 10 Based on the H2O AutoML-LIMEmodel prediction probabilities on 29 features for both
class ‘0’ and ‘1’ when IDX= 150 in the second case, it appears that there is a higher likelihood of be-
longing to class ‘1’.

Full-size DOI: 10.7717/peerjcs.1916/fig-10

the ROC curve (ROC AUC) of ‘1’, while a mediocre classifier has an ROC AUC of ‘0.5’.
H2O approximates the area under the ROC curve using the trapezoidal rule. Because a
high proportion of True Negatives can lead the ROC AUC to appear inflated, area under
the precision-recall curve (ROC AUCPR) can be utilized for an imbalanced binary target
in this case. So, ROC-ROC AUC can be mathematically represented as:

P
(
y1> y0

)
= P(y1−y0> 0) (4)

Where, y1= positive samples and y0= negative samples
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Area under the precision-recall curve
This model measure assesses a binary classification model’s ability to distinguish between
precision–recall pairs of points. Different thresholds on a probabilistic or other continuous-
output classifier are used to achieve these values. ROC AUC calculates the area under the
ROC curve, while ROC AUCPR calculates the area under the Precision-Recall curve. The
precision is used to identify the total number of correct predictions where Recall finds
correct predictions from all predictions that occurred during the testing phase.

Gini coefficient
This statistic is frequently used to compare and evaluate the quality of different models
and their prediction potential. Gini is the ratio of the area of the ROC curve to the area of
the diagonal line and the area of the triangle.

Gini= 2∗ (AUC−1). (5)

RESULTS
As described, H2O AutoML helps the user, to be more accessible and to extract useful
insights from raw data without the need for deploying ML models. This leaderboard
demonstrates that the best accuracy comes from a stacked ensemble model. This
leaderboard demonstrates that the best accuracy comes from a stacked ensemble
model. Moreover, the leaderboard shows the models (default is 20) with metrics, when
H2OAutoML is attached with 5-fold cross-validation as described in Table 2. This cervical
cancer dataset has not been pre-processed or subjected to any feature engineering. The
performance for combined prediction results using H2OAutoML Leaderboard Exploration
has been performed on two separate cervical cancer datasets, collected from Kaggle public
repository. The predict () function provides predictions over a test set on the leader model
from the run. In the first case, predictions are made based on the ‘Biopsy’ test (i.e., 224
individual patients data out of 858), and in the second case, predictions are made based
on ca_cervix (i.e., 18 individual patients data out of 72) to find their respective classes
this can be achieved using two prediction probabilities, namely p0 and p1 (Table 4) on
the test dataset. In the above analysis, we can state that the H20 AutoML Leaderboard
Exploration significantly predicts cervical cancer in both cases. Additionally, LIME has
been implemented that delivers human-understandable context and provides greater
explainability of the H2O AutoML model, while predicting this cervical cancer dataset.
Lime generates an explanation for a particular observation bypassing the explain_instance
() function, where our data is in the form of tables, images, and text. Three different
prediction probabilities have been carried out in this project, that take different feature
values such as age, the number of sexual partners, first sexual intercourse, more specifically
the number of pregnancies, and others. Finally, we predicted the cancer class using both
the LIME explainer and H20 AutoML model on two separate datasets for three different
scenarios (i.e., idx values). The results are displayed in Figs. 8, 9 and 10 for the first
case, whereas Figs. 11, 12 and 13 for the second case. These findings show the predicted
probabilities scores for class ‘1’ as orange color and for class ‘0’ as blue color respectively.
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Figure 11 Based on the H2O AutoML-LIMEmodel prediction probabilities on 19 features for both
class ‘0’ and ‘1’ when IDX= 10 in the second case.

Full-size DOI: 10.7717/peerjcs.1916/fig-11
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Figure 12 Based on the H2O AutoML-LIMEmodel prediction probabilities on 19 features for both
class ‘0’ and ‘1’ when IDX= 12 in the second case.

Full-size DOI: 10.7717/peerjcs.1916/fig-12

Finally, a comparative analysis based on features using the prediction probabilities of class
‘0’ and ‘1’ for three different idx values on two cervical cancer datasets has been designed
in Table 6.
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Figure 13 Based on the H2O AutoML-LIMEmodel prediction probabilities for 19 features for both
classes ‘0’ and ‘1’ when IDX= 15 in the second case.

Full-size DOI: 10.7717/peerjcs.1916/fig-13

DISCUSSION
From the above analysis, we found our proposed method gives the best results in terms
of accuracy and minimal processing time with fewer errors as it trains a large number of
models at a time on training data. The H2O, on the other hand, provides a faster way to
build an ML model on a huge volume of data and also, increases the predictive analytic
capabilities. The Java application (JRE 64bit) inside H2O supports multithreading, where
the data is distributed parallels across the cluster. These clusters have been stored in an
H2O data frame in columnar format. More importantly, H2O AutoML removes the basic
steps followed in traditional ML implementation, which greatly reduces the errors and
processing time. Although, this technique provides user-friendly interfaces such as model
explainability methods to deal with individual or groups of ML models with the help of a
single function call.

Gradient boosting machines (GBMs) and balance classes were successfully chosen
here for inclusion in the predictive models using AutoML analysis on the CC dataset
without affecting prediction accuracy. The H2O AutoML trains a random grid of
GBMs, GLMs, and deep neural networks (DNNs) using hyper-parameter space and
also tunes every model using cross-validation. Twenty default models were built
specifically by AutoML on the leaderboard, and each of them had dramatically improved
performance metrics for the algorithms they were paired with. A significant benefit of
using GBM_grid_1_AutoML_1_20220110_123655_model_5 in a disease prediction test is
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Table 6 Prediction probabilities of class ‘0’ and ‘1’ using three different idx values on two cervical can-
cer dataset.

First Case

Features Importance Idx =100 Idx=120 Idx=150

0 1 0 1 0 1

Dx: HPV 0.04 0.05 0.05
STDs: HIV 0.04 0.04 0.04
Hormonal Contraceptives (years) 0.01 0.01 0.01
STDs: Hepatitis B 0.01 0.02 0.01
Smokes (packs/year) 0.01 0.01 0.01
Dx 0.01 0.01 0.01
STDs: HPV 0.01 0.01 0.00
STDs: Number of diagnoses 0.01 0.01 0.01
STDs:vulvo-perineal condylomatosis 0.01 0.01 0.01
STDs: pelvic inflammatory disease 0.01 0.00 0.03
STDs 0.01 0.01 0.00
STDs (number) 0.00 0.00 0.01
STDs:condylomatosis 0.00 0.00 0.00
Smokes (years) 0.00 0.00 0.01
Age 0.01 0.01 0.01
IUD (years) 0.00 0.00 0.00
Num of pregnancies 0.01 0.00 0.01
STDs: vaginal condylomatosis 0.00 0.00 0.00
First sexual intercourse 0.01 0.01 0.01
Smokes 0.00 0.00 0.00
Number of sexual partners 0.00 0.01 0.00
Dx: CIN 0.00 0.00 0.00
STDs: genital herpes 0.00 0.01 0.02
IUD 0.00 0.00 0.00
STDs: syphilis 0.00 0.00 0.00
STDs:molluscum contagiosum 0.00 0.00 0.01
Hormonal Contraceptives 0.00 0.00 0.01
STDs: cervical condylomatosis 0.00 0.00 0.00
STDs: AIDS 0.00 0.00 0.00

Second Case
Features Importance Idx =10 Idx =12 Idx =15

0 1 0 1 0 1
behavior_sexualRisk 0.00 0.00 0.00
behavior_eating 0.04 0.02 0.03
behavior_personalHygine 0.02 0.01 0.01
intention_aggregation 0.13 0.13 0.10
intention_commitment 0.15 0.12 0.13
attitude_consistency 0.05 0.02 0.06
attitude_spontaneity 0.05 0.06 0.02

(continued on next page)
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Table 6 (continued)

First Case

Features Importance Idx =100 Idx=120 Idx=150

0 1 0 1 0 1

norm_significantPerson 0.20 0.18 0.21
norm_fulfillment 0.06 0.14 0.06
perception_vulnerability 0.23 0.08 0.07
perception_severity 0.42 0.44 0.23
motivation_strength 0.16 0.16 0.01
motivation_willingness 0.04 0.02
socialSupport_emotionality 0.12 0.09 0.17
socialSupport_appreciation 0.04 0.02 0.01
socialSupport_instrumental 0.03 0.05 0.03
empowerment_knowledge 0.16 0.12 0.21
empowerment_abilities 0.14 0.07 0.04
empowerment_desires 0.08 0.03 0.13

that it has a lower training_time_ms of ‘‘153’’ microseconds and a lower error of ‘‘0.0717.’’
Most importantly, illustrates the relative weights of the model’s most critical variables,
the importance contributed to each instance’s features using a SHAP summary plot, and
the marginal impact of a variable on the outcome using a partial dependence plot (PDP)
before model prediction. This, H2O AutoML requires application software such as ‘java’
to perform simultaneous ML tasks on clusters. While scaling the model, delivers greater
efficiency and flexibility. H2O is fast because of these clusters. AutoML is meant to use
as few parameters as feasible during modeling to be easily implemented in healthcare
organizations. The rest of the procedure is automated to determine the optimal model
for this cervical cancer dataset. AutoML is notable for its ability to choose and construct
high-accuracy ensemble models. H2O Driverless AI allows researchers to automate ML
procedures, allowing physicians to workmore quickly and efficiently. This model explained
the more complex model’s predictions locally by applying the explanation Throughout the
process, AutoML trains several Stacked Ensemble models. The exclude_algos option can
be used to turn off specific algorithms (or groups of algorithms).

To investigate and further analyze, the AutoML models, use the H2O Model
Explainability interface, which can help to decide which model to choose. This model
predicts the output directly on complex data. LIME visualization technique helps to
explain each prediction. The concept that every complex model is linear on a local scale
underpins LIME’s operations, as does the assertion that a simple model can be fitted
around a single observation to imitate how the global model behaves at that point. The
simplest way to interpret the results, though, is to visualize them. LIME provides several
plotting tools, more specifically for tabular data. Plot_features is the most essential that
generates a visualizationwith a separate plot for each observation. Three different prediction
probabilities have been carried out in this project, that take different feature values such as
age, the number of sexual partners, first sexual intercourse, more specifically the number
of pregnancies, and others. In the first, second, and third idx values, our model predicts
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0.04, 0.08, and 0.04 percent for class ‘1’, whereas 0.96, 0.92, and 0.96 for class ‘0’ in the
first case; 0.0 for class ‘1’ and 1.0 for class ‘0’ in the second case respectively. Besides that,
we have designed Table 7, which represents the comparative analysis of our proposed
method result with previous studies that occurred in the cervical cancer area. This shows
our proposed method outperforms with a higher ROC ROC AUC score of 0.974 than other
methods recently used in previous studies.

CONCLUSIONS
AutoML automates the majority of the preprocessing processes in an ML pipeline with
minimal human intervention and without sacrificing performance. Moreover, the H2O
platform helps physicians to experiment with a variety of methodologies and generate
models in a short amount of time.When LIME and AutoML are combined, an interpretable
representation is created that is trained on minor deviations of the cervical data. It also aids
in the discovery of the smallest set of characteristics that has the best chance of matching
the model’s prediction on this cervical cancer dataset. LIME can also be used in healthcare
companies as unstructured tabular data, with columns representing features and rows
representing specific incidents. The prediction object is a three-column data frame in this
case. The first column is a class prediction, while the remaining columns are probabilities.
LIME employs the explain_instance () method to predict the likelihood of cervical cancer
based on thirty-five variables.

H2O AutoML automates the ML processes efficiently within less time but still needs to
make quick informative decisions in healthcare firms, in finding the best predictive model.
Although AutoML is a positive step toward the widespread adoption of ML technology,
there is still a need for ML approaches to entirely replace all required preprocessing
procedures in healthcare sectors. Even though GBM is the best approach, our research
demonstrates that for three of the targets, both H2O AutoML and LIME outperformed
deep learning, and could provide a quick and user-friendly alternative to manual model
creation in the future.
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Table 7 Comparative analysis of different models in previous studies on cervical cancer research area.

Author Dataset repository Datatype Purpose Method Target Dimensions ROC AUC

Parikh & Menon (2019) UCI Machine Categorical To predict cancer based on numerous
factors

Machine Learning Biopsy 858*36 0.822

Fernandes et al. (2018) UCI Machine Categorical To implement fully supervised opti-
mization of dimensionality reduction
and classification models

Machine Learning Biopsy 858*36 0.687

Singh & Sharma (2019) UCI Machine Categorical To classify cancer class M6 and Decision Tree Biopsy 858*36 0.779

Liu, Lu & Lu (2021) Kaggle Categorical H2O to help in identifying the most
predictive ML pipeline

Pharm-AutoML Biopsy 858*34 0.959

Suguna & Balamurugan (2022) Herlev dataset Image To provide an efficient water strider al-
gorithm with autoencoder for cervical
cancer diagnosis

WSAAE-CCD Pap Smear 917*7 0.947

Hou et al. (2022) – Image To discuss how AI can be used in cer-
vical cancer screening and diagnosis,
particularly to improve the accuracy of
early diagnosis

T2WI and Decision Tree Biopsy 137*5 0.847

Lilhore et al. (2022) China health center dataset Categorical To determine the importance of cervical
cancer screening factors for classifying
high-risk patients

Boruta analysis Biopsy 858*36 0.534

Ratul et al. (2022) UCI Machine Learning Categorical To predict early jeopardies of cervical
cancer

Machine Learning Biopsy 72*19 0.933

Kruczkowski et al. (2022) Interferograms Histological To provide suitable decisions for doc-
tors in diagnosing cervical cancer

ML and CNN Cervical
intraepithelial
neoplasia (CIN)

210*18 0.950

Chadaga et al. (2022) University of California, Irvine Histological To produce reliable predictions CNN MRI 1500*8 0.950

Kaushik et al. (2022) Cervical Cancer (2020) Categorical To predict cervical cancer ML Biopsy 858*36 0.965

Proposed Method UCI Machine Learning Categorical To design a user-friendly application,
for enhancing ML model such as auto-
matic training and tuning of multiple
models within a specified timeframe

H2O AutoML-LIME Biopsy 858*30 0.974
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