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ABSTRACT
Accurate traffic prediction contributes significantly to the success of intelligent
transportation systems (ITS), which enables ITS to rationally deploy road resources
and enhance the utilization efficiency of road networks. Improvements in prediction
performance are evident by utilizing synchronized rather than stepwise components
to model spatial-temporal correlations. Some existing studies have designed graph
structures containing spatial and temporal attributes to achieve spatial-temporal
synchronous learning. However, two challenges remain due to the intricate
dynamics: (a) Accounting for the impact of external factors in spatial-temporal
synchronous modeling. (b) Multiple perspectives in constructing spatial-temporal
synchronous graphs. To address the mentioned limitations, a novel model named
dynamic multiple-graph spatial-temporal synchronous aggregation framework
(DMSTSAF) for traffic prediction is proposed. Specifically, DMSTSAF utilizes a
feature augmentation module (FAM) to adaptively incorporate traffic data with
external factors and generate fused features as inputs to subsequent modules.
Moreover, DMSTSAF introduces diverse spatial and temporal graphs according to
different spatial-temporal relationships. Based on this, two types of spatial-temporal
synchronous graphs and the corresponding synchronous aggregation modules are
designed to simultaneously extract hidden features from various aspects. Extensive
experiments constructed on four real-world datasets indicate that our model
improves by 3.68–8.54% compared to the state-of-the-art baseline.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Spatial and Geographic Information Systems, Neural Networks
Keywords Traffic prediction, Graph neural network, Spatial-temporal synchronous, Multiple-
graph, External factors

INTRODUCTION
Intelligent transportation systems (ITS) provide efficient guidance for real-time traffic
management and assist people in scheduling their travel plans in advance (Shaygan et al.,
2022). An essential function of ITS is traffic prediction, based on which it can optimize the
allocation of road network resources and reduce traffic problems such as congestion and
accidents (Kong et al., 2024). Therefore, the operation of ITS is heavily dependent on
precise traffic prediction, the core of which is modeling spatial-temporal dynamics of
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traffic features. Recent years have witnessed a widespread application of graph
convolutional network (GCN) for extracting spatial correlations, where the distribution of
traffic sensors is modeled as a series of nodes and edges in a graph (Bao et al., 2023; Kong
et al., 2022; Chen et al., 2022; Huang et al., 2022). In addition, recurrent neural network
(RNN) and its variants, also known as long short-term memory (LSTM) and gated
recurrent unit (GRU) have been extensively applied to model temporal dependency due to
their outstanding performance in processing time series (Zhao et al., 2023;Ma et al., 2023;
Afrin & Yodo, 2022; Ma, Dai & Zhou, 2022). Some studies employ convolutional neural
network (CNN) instead of RNN to learn temporal dynamics (Wen et al., 2023; Ni &
Zhang, 2022). To synchronize the extraction of spatial-temporal features, some work has
designed graph structures that contain both spatial and temporal attributes (Song et al.,
2020; Li & Zhu, 2021; Jin et al., 2022;Wei et al., 2023). In spite of the pioneering advances
in these studies, there is still a lack of sufficiently practical approaches in spatial and
temporal synchronous learning owing to the complexity of traffic dynamics.

Firstly, traffic features depend not only on their historical data but are also influenced
by external factors. As illustrated in Fig. 1A, the traffic flow varies significantly with
meteorological factors. For example, in the case of sunny weather and comfortable
temperatures, there is a significant increase in traffic flow in the tourist area. In
contrast, there is a remarkable decrease in the same area in the case of heavy rain
and cold environments. Secondly, there are multiple spatial-temporal relationships
between traffic nodes. Spatially, different nodes can be measured by neighborhood or
distance. Temporally, the traffic flow between different nodes shows the same pattern or
exhibits the same trend. As shown in Fig. 1B, nodes A and B’s traffic flow rise between
5:00 and 10:00 and fall between 17:00 and 22:00, and their rising and falling rates are
almost the same, showing a strong linear correlation, thus confirming that they have the
same pattern. The traffic flow of node C, although it has a similar variation interval, alters
more gently and shows a weaker linear correlation with the flow of node A. Therefore,
they exhibit the same trend despite their different patterns. For these reasons, two
challenges remain in learning spatial-temporal dependencies of traffic features.

(a) Accounting for the impact of external factors in spatial-temporal synchronous
modeling. Traffic features change in response to external factors, so learning the effects of
external factors in spatial-temporal synchronous modeling is necessary. Zhu et al. (2021)
introduced dynamic and static external factors and then encoded them into a graph
convolutional network to obtain predictions that take external factors into account. The
study by Qi et al. (2022) proposed an attribute feature unit to fuse weather conditions,
temperature, visibility, as well as traffic flow, and fed the fused features into temporal graph
convolutional network (T-GCN) for modeling spatial-temporal dependencies. Sun et al.
(2022) utilized interactive and internal attention mechanisms to embed traffic data and
external factors into high-dimensional sequences, which increased the accuracy of
predictions. These studies took into consideration the influence of external factors, but
they failed to accomplish spatial-temporal simultaneous modeling. In contrast, spatial-
temporal synchronous graph convolutional networks (STSGCN) (Song et al., 2020),
spatial-temporal fusion graph neural networks (STFGNN) (Li & Zhu, 2021), automated
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dilated spatio-temporal synchronous graph network (Auto-DSTSGN) (Jin et al., 2022) and
spatial-temporal graph synchronous aggregation model (STGSA) (Wei et al., 2023)
synchronously learned spatial and temporal dynamics. However, they only adopted traffic
features as inputs to the model and ignored the impact of external factors. Overlooking
external factors in spatial-temporal synchronous modeling causes obvious deficiencies in
traffic prediction.

(b) Multiple perspectives in constructing spatial-temporal synchronous graphs. Both
spatial and temporal relationships of traffic features are intricate and can be characterized
through various perspectives. Modeling spatial and temporal dependencies from a single
aspect can result in the neglect of some vital information. STSGCN (Song et al., 2020) built
localized synchronous graphs according to whether nodes are adjacent in time or space.
Based on this, STFGNN (Li & Zhu, 2021) introduced temporal graphs produced by a
dynamic time warping algorithm to model temporal dependency. Further, Auto-DSTSGN
(Jin et al., 2022) reduced the size of synchronous graphs while keeping the spatial and
temporal graphs consistent. STGSA (Wei et al., 2023) proposed heuristic spatial graphs,
but its synchronous graphs are limited to simple connections in the time dimension.
Learning spatial or temporal correlation from only one perspective limits existing models’
capabilities to extract hidden features.

To address the mentioned limitations, a novel model called dynamic multiple-graph
spatial-temporal synchronous aggregation framework (DMSTSAF) is proposed in this
article. Specifically, we design a feature augmentation module (FAM) that employs spatial
and temporal attention mechanisms to integrate traffic features and external factors. In
addition, we construct multiple spatial-temporal synchronous graphs to model various
spatial-temporal dynamics. Our main contributions to this work are as follows:

Figure 1 Examples of the impact of external factors and the multiple temporal relationships. (A) Graph showing that the traffic flow on a sunny
day is distinctly different from that on a rainy day. (B) Graph illustrating that nodes A and B, with a strong linear correlation, have the same pattern,
while nodes C and A exhibit the same trend. Full-size DOI: 10.7717/peerj-cs.1913/fig-1
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� We propose a feature augmentation module to combine traffic features with external
factors, in which spatial and temporal attention mechanisms are applied to integrate the
two inputs adaptively and generate fused features.

� We construct diverse spatial and temporal graphs, and consequently design two kinds of
dynamic spatial-temporal synchronous graphs and the corresponding synchronous
aggregation modules, which model spatial and temporal correlations simultaneously in
multiple perspectives.

� To test the performance of our model in diverse cases, we conduct extensive experiments
on four real-world datasets. The numerical results indicate that DMSTSAF improves by
3.68–8.54% in comparison to the state-of-the-art baseline, demonstrating the consistent
superiority of the proposed model.

The rest of this article is organized as follows. “Literary Review” provides the related
work on graph neural network and traffic prediction. “Preliminary” introduces the
mathematical definition of the task. “Methodology” presents the detailed process of our
methodology. In “Experiments”, extensive experiments are demonstrated, and the results
are analyzed. “Discussion” states the concluding remarks.

LITERARY REVIEW
Graph neural network
Compared to CNN, graph neural network (GNN) can handle non-Euclidean data, which
has led to its wide application in many fields such as feature extraction, node classification,
etc. The classifications of GNN are categorized into two types: spectral domain and spatial
domain. The former, also known as GCN, has undergone three important developments.
Bruna et al. (2014) implemented graph convolution operations by replacing the
convolution kernel with a learnable diagonal matrix. To overcome the problem of
excessive computation,Defferrard, Bresson & Vandergheynst (2016) introduced Chebyshev
polynomials to approximate the convolutional kernel. Kipf & Welling (2017) further
reduced Chebyshev polynomials to the first order, which greatly simplified the
computation and obtained the most common GCN expressions. The latter aims to define
GNN by iteratively updating the representation of nodes from spatial neighbor
aggregation. In order to avoid excessive nodes participating in the computation, graph
sample and aggregate (GraphSAGE) et al. (Hamilton, Ying & Leskovec, 2017) limited the
number of neighboring nodes by sampling and then achieved information aggregation
through pooling operations. Atwood & Towsley (2016) defined the weights of neighbors
using the K-hop transfer probabilities obtained after a random walk. Graph attention
network (GAT) (Velivčkovič et al., 2018) employed the attention mechanism to define the
weights for various neighbors, which allowed for a more flexible characterization of the
aggregation in different scenarios.

Traffic prediction
In recent years, neural network has been extensively utilized for traffic prediction, which
offers superior modeling performance compared to traditional methods (Guo et al., 2021).
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Most studies utilized graph convolution network to capture spatial feature (Li et al., 2022;
Wang et al., 2022; Zhu et al., 2022; Yao et al., 2023; Yang et al., 2022). GraphSAGE has also
been used to model spatial dependency for inductive learning (Liu et al., 2023; Liu, Ong &
Chen, 2022). Temporal modules based on RNN and its LSTM, as well as GRU, have been
introduced to learn temporal dependence (Pan et al., 2022; Subramaniyan et al., 2023; Bao
et al., 2022; Shu, Cai & Xiong, 2022; Wan et al., 2022). To improve computational
efficiency, some studies employed CNN instead of RNN to model temporal correlation (Ji,
Yu & Lei, 2023; Zhang et al., 2022). Li et al. (2018) designed an encoder-decoder
architecture that employed a diffusion process characterized by a bidirectional walk of a
graph to learn spatial dependency and proposed the diffusion convolutional gated
recurrent unit to model temporal dynamics. Based on this, Wu et al. (2019) further
introduced an adaptive adjacency matrix in diffusion convolution to discover hidden
spatial features and then employed dilated stacked 1D convolutions with larger receptive
fields to capture temporal trends. Yu, Yin & Zhu (2018) defined the problem on a graph
and then modeled spatial correlation by utilizing graph convolution with Chebyshev
polynomials approximation, and took advantage of gated CNN to extract temporal
features. On this foundation, Guo et al. (2019) incorporated GCN and attention
mechanisms to enhance the representation of features, then deployed three parallel sets of
components to learn different temporal trends. T-GCN (Zhao et al., 2020) integrated GCN
with GRU as a way to learn the complex dynamics of traffic features. Graph multi-
attention network (GMAN) (Zheng et al., 2020) adopted exclusively attention mechanisms
rather than convolutional network to transform input features into predictions, which had
a high computational complexity but improved the prediction accuracy.

To achieve synchronous modeling of spatial-temporal correlations, STSGCN (Song
et al., 2020) constructed localized synchronous graphs, which aggregated information from
neighbor nodes at the current time step and from themselves at adjacent time steps. Based
on this, STFGNN (Li & Zhu, 2021) further fused spatial graphs and temporal graphs to
learn the hidden correlations simultaneously. Auto-DSTSGN (Jin et al., 2022) designed an
automated dilated spatial-temporal synchronous graph module to extract the short-range
and long-range correlations by stacked layers with dilated factors. STGSA (Wei et al., 2023)
proposed a specialized graph aggregation to capture spatial-temporal dynamics.

To summarize, most of the studies adopted separate components to learn spatial and
temporal correlations, failing to achieve synchronous modeling. A few works implemented
simultaneous aggregation of spatial and temporal features, but their models only took into
account the hidden dependencies of traffic data itself, failing to model the impacts of
external factors. In addition, their spatial-temporal synchronous graphs represented only a
single correlation in terms of space and time, with a failure to model spatial and temporal
dynamics frommultiple perspectives, resulting in the overlook of certain dependencies. To
address these shortcomings in spatial-temporal synchronous modeling, this article
proposes a novel approach that learns the influence of external factors by fusing them with
traffic features through attention mechanisms, and constructs diverse spatial-temporal
synchronous graphs to extract spatial-temporal features in multiple ways.
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PRELIMINARY
A traffic road network containing N sensors can be described as a graph G ¼ V; Ed;ANeð Þ,
where vi 2 V denotes the i-th node in graph G, and each element of Ed denotes an
undirected edge between two nodes. The structure of G is represented by a spatial
adjacency matrix ANe 2 RN�N , which is determined by the distribution of nodes. Each
element ANe i;jð Þ of ANe denotes the connection between node vi and node vj.

The traffic features (traffic flow, speed, occupancy) of node vi at time step t are
expressed as xti , while the historical traffic features of graph G at t can be described as:

Xt
H ¼ xt1; x

t
2; . . . ; x

t
N

� �
: (1)

The task of traffic prediction is to learn a multivariant regression function f �ð Þ with
parameters h for forecasting future traffic features Ŷ based on historical traffic features XH ,
which can be defined as:

Ŷ ¼ f XH ; hð Þ; (2)

where XH ¼ Xt�Tþ1
H ;Xt�Tþ2

H ; . . . ;Xt
H

� �
;T denotes the length of historical traffic features.

The aim of this task is to obtain the optimal parameters h� to minimize the error between
the prediction and the ground truth, which can be formulated as:

h� ¼ argminL Y; Ŷ
� �

; (3)

where Y ¼ Ytþ1;Ytþ2; . . . ;YtþT 0� �
is the ground truth, T 0 denotes the length of future

traffic features, and L is the loss function.

METHODOLOGY
The overall architecture of our model is presented in Fig. 2. We design FAM to take into
account the influence of external factors on traffic prediction. Specifically, traffic features
and external factors are first concatenated, then fused through spatial and temporal
attention mechanisms, and finally mapped to a high-dimensional space and used as inputs
to the model. FAM introduces external factors as part of inputs to the model and enhances
the representation of traffic features, which addresses the first limitation mentioned in
“Introduction”. Then, we stack several dynamic multiple-graph spatial-temporal
synchronous aggregation layers (DMSTSAL) to model spatial-temporal dependencies. In
each layer, we construct two kinds of dynamic spatial-temporal synchronous graphs in
parallel: trend spatial-temporal synchronous graph and pattern spatial-temporal
synchronous graph. We then deploy a spatial-temporal synchronous aggregation module
(STSAM) for each spatial-temporal synchronous graph. The outputs of the two types of
modules are fused through a gating mechanism. The design of dynamic multiple graphs
instead of a single graph empowers the model to learn spatial-temporal correlations
comprehensively, which overcomes the second limitation mentioned in “Introduction”. In
addition, dilated gated convolution module (DGCM) is also designed to extract long-term
dependencies in each layer, and its output is integrated with the outputs of both types of
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STSAMs. We further design the output module with concatenation and fully connected
layers to transform the outputs of DMSTSALs into predictions.

In the next subsections, we describe in detail the various components of DMSTSAF,
including FAW, graph construction, STSAM, DTCM, DMSTSL, and output module. To
facilitate the understanding of this study, we explain the definitions of some notations used
throughout this article in Table 1.

Feature augmentation module
Traffic features are affected by external factors such as weather, temperature, wind, etc. In
order to integrate external factors with traffic features for accurate traffic prediction, we
design FAW, whose structure is shown in Fig. 2. The comfort of the temperature is closely
related to people’s willingness to travel, and the traffic flow in the road network shows
varying intensities under different weather conditions (e.g., sunny, rainy). In addition,
wind also affects people’s travel plans. Therefore, we take account of the effects of four
external factors that have the most impact on traffic, namely, maximum temperature,
minimum temperature, weather, and wind. The external factors matrix is denoted as

E 2 RT�N�4. The historical traffic feature matrix is denoted as XH 2 RT�N�C , where C is

Figure 2 Detailed framework of DMSTSAF, FAM, and STSAM. A DMSTSAF contains an FAW, four
DMSTSALs, and an output module. Traffic features and external factors are first concatenated, then
spatial attention and temporal attention are applied to enhance representation, and then high-dimen-
sional hidden features are obtained via a fully connected layer. Independent T-STSAMs and parallel
P-STSAMs in each DMSTSAL are designed to model spatial-temporal dependencies from multiple
perspectives. In STSAMs, stacked graph convolutions followed by the max pooling and the cropping
operation are incorporated with spatial-temporal synchronous graphs to extract spatial-temporal features
synchronously. Gated 1D convolutions with shared parameters are utilized to learn long-term correla-
tions in DGCM. Finally, the output module yields the predictions of the model.

Full-size DOI: 10.7717/peerj-cs.1913/fig-2
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the dimension of traffic features. To better illustrate the point in spatial and temporal
attention, we define a fully connected layer as:

f xð Þ ¼ ReLU xW þ bð Þ; (4)

where W and b are learnable parameters, and ReLU is the activation function.

S 2 RT�N�N represents the spatial attention matrix of N nodes in T time steps. We
consider both traffic features and external factors to measure the spatial attention of
different nodes. To be specific, we concatenate traffic features with external factors, and
calculate the spatial correlation coefficient between node vi and v at time step tj based on
the scaled dot-product, which can be formulated as:

a
tj
vi;v ¼

hfs;1ðxvi;tjk xvi;tjÞ; fs;2ðxvi;tjk xvi;tjÞiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 4

p ; (5)

where h�; �i represents the inner product, k denotes the concatenation, fs;1 �ð Þ and fs;2 �ð Þ
represent two different fully connected layers respectively, xvi;tj; xv;tj 2 XH , and

evi;tj ; ev;tj 2 E. The spatial attention coefficient is then obtained by normalizing a
tj
vi;v via

softmax:

s
tj
vi;v ¼

exp a
tj
vi;v

� �
P

v2V exp a
tj
vi;v

� � : (6)

U 2 RN�T�T denotes the temporal attention matrix of T time steps amongN nodes. We
take into consideration both traffic features and external factors to learn the temporal

Table 1 The definitions of some notations.

Notations Explanations

XH Historical traffic features

E External factors

S Spatial attention matrix

U Temporal attention matrix

X Fused feature

GTN Trend spatial-temporal synchronous graph

GPD Pattern spatial-temporal synchronous graph

ATN Dynamic adjacency matrix of GTN

APD Dynamic adjacency matrix of GPD

OTN Output of T-STSAM

OPD Output of P-STSAM

OF Output of gated fusion

OGC Output of gated 1D convolution

Ml Number of step pairs in the l-th DMSTSAL

Xl Output of the l-th DMSTSAL
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attention of various time steps. Specifically, we first concatenate traffic features with
external factors, and then employ the scaled dot-product to compute the temporal
correlation coefficient. After that, the temporal attention coefficient is obtained by softmax,
which can be described as:

bvitj;t ¼
hfu;1ðxvi;tjk evi;tjÞ; fu;2ðxvi;tk evi;tÞiffiffiffiffiffiffiffiffiffiffiffiffi

C þ 4
p ;

uvitj;t ¼
expðbvitj;tÞP
t2T expðbvitj;tÞ

;

(7)

where bvitj;t denotes the temporal correlation coefficient of node vi between time step tj and

t, uvitj;t is the temporal attention coefficient, fu;1 �ð Þ; fu;2 �ð Þ represent two independent fully

connected layers respectively.
After obtaining the spatial attention matrix S and the temporal attention matrix U,

traffic features and external factors are fused and mapped to the high-dimensional space,
and the mathematical expression can be defined as:

X ¼ fx U � ðS � ðXHkEÞÞT
� �T

	 

(8)

where X 2 RT�N�D is the fused feature.

Dynamic spatial-temporal synchronous graph construction
Traffic features are related in multiple ways over time and space. On the one hand, nodes
in different locations have adjacency and distance relationships. On the other hand,
different traffic features may have the same temporal pattern or trend. A single spatial or
temporal graph can only focus on one aspect of spatial-temporal dependencies while
ignoring others. Aiming to model spatial-temporal correlations from multiple
perspectives, we first propose two spatial graphs, i.e., the neighbor graph GNe and the
distance graph GDi, as well as two temporal graphs, i.e., the trend graph GTr and the pattern
graph GPa, and then design two dynamic spatial-temporal synchronous graphs based on
them, i.e., the trend spatial-temporal synchronous graph GTN and the pattern spatial-
temporal synchronous graph GPD.

Neighbor graph. GNe denotes the spatial adjacency of nodes, and the elements of its
adjacency matrix ANe are defined as:

ANe
ij ¼ 1; if vi connects to vj;

0; else:

�
(9)

Distance graph.GDi represents the distance relationship between nodes, the elements of

ADi are fomulated as:

ADi
ij ¼ exp � d2ij

r2

� �
; if dij � eD;

0; else;

(
(10)
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where dij denotes the Euclidean distance between node vi and vj, r denotes the standard
deviation of Euclidean distance, eD is hyperparameters used to control the sparsity of ADi.

Trend graph. In order to capture the trend similarity between traffic features, we
propose the trend graph GTr based on dynamic time warping (DTW) algorithm. Given two
sequences P ¼ p1; p2; . . . ; pm½ � and Q ¼ q1; q2; . . . ; qn½ �, the element M i; jð Þ of distance
matrix Mm�n can be calculated by jpi � qjj (Li & Zhu, 2021), and the DTW distance
between P and Q can be obtained by the iteration of the following equations:

MD i; jð Þ ¼ M i; jð Þ þMmin i; jð Þ;
Mmin i; jð Þ ¼ min MD i� 1; jð Þ;MD i; j� 1ð Þ;MD i� 1; j� 1ð Þð Þ: (11)

The adjacency matrix ATr can be formulated as:

ATr
ij ¼ 1; if MD i; jð Þ � eT ;

0; else;

�
(12)

where MD i; jð Þ come from (11), eT denotes the hyperparameter to control the sparsity of

ATr .
Pattern graph. Some traffic nodes exhibit strong linear correlation in their features

because they are located in the same functional area (e.g., residential area, commercial area,
etc.), as shown in Fig. 1B. For the purpose of extracting pattern similarity, we design the
pattern graph GPa by Pearson correlation coefficient. The traffic feature series of nodes vi
and vj are denoted as Xi ¼ x1i ; x

2
i ; . . . ; x

T
i

� �
;Xj ¼ x1j ; x

2
j ; . . . ; x

T
j

h i
, respectively. The

Pearson correlation coefficient between vi and vj can be defined as:

qij ¼
PT

t¼1 xti � xi
� �

xtj � xj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 xti � xið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 xtj � xj

� �2
r ; (13)

and the adjacency matrix APa of GPa can be formulated as:

APa
ij ¼ qij; if qij 	 eP;

0; else;

�
: (14)

where eP denotes the hyperparameter to manipulate the sparsity of APa.
Dynamic spatial-temporal synchronous graphs. The spatial and temporal correlations

of traffic features exist simultaneously, and to model this intricate spatial-temporal
dependencies synchronously from multiple perspectives, we propose the trend spatial-
temporal synchronous graphs GTN and the pattern spatial-temporal synchronous graphs

GPD inspired by STSGCN (Song et al., 2020) and STFGNN (Li & Zhu, 2021). First, we
design two predefined spatial-temporal synchronous graphs GTN

Pre as well as G
PD
Pre, each of

which contains two time steps, and the adjacency matrices are denoted as ATN
Pre 2 R2N�2N

and APD
Pre 2 R2N�2N , respectively. The structure of ATN

Pre and APD
Pre is illustrated in Fig. 3A.

The main diagonals are ATr;ATr½ � and APa;APa½ �, separately, denoting that each node has
connectivity to nodes with the same trend or pattern at the same time step, while the
counter-diagonal are ANe;ANe½ � and ADi;ADi½ �, respectively, indicating that nodes are
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connected to their neighboring nodes or proximity nodes at the adjacent time step. Then,
the two predefined adjacency matrices are multiplied by the learnable parameters of the
same shape to obtain the adjacency matrices of the dynamic spatial-temporal synchronous
graphs as follows:

ATN ¼ WTN 
 ATN
Pre 2 R2N�2N ;APD ¼ WPD 
 APD

Pre 2 R2N�2N ; (15)

where ATN ;APD denote the adjacency matrices of GTN and GPD respectively, 
 is element-
wise product, WTN ;WPD are learnable parameters.

Spatial-temporal synchronous aggregation module
Aiming to learn the hidden spatial and temporal correlations synchronously, we build
spatial-temporal synchronous aggregation modules corresponding to ATN and APD, that is,
the trend spatial-temporal synchronous aggregation module (T-STSAM) and the pattern
spatial-temporal synchronous aggregation module (P-STSAM), which have the same
architecture but with different adjacency matrices, as shown in Fig. 2. Multiple gated graph
convolutions are stacked in each STSAM to learn spatial-temporal correlations
simultaneously, and each gated graph convolution can be formulated as:

GGC hð Þ ¼ tanh hWh
1 þ bh1

� �
 r hWh
2 þ bh2

� �
; (16)

where h denotes the input, tanh �ð Þ denotes the tanh activation function, r �ð Þ denotes the
sigmoid activation function, and Wh

1 ;W
h
2 2 RD�D; bh1; b

h
2 2 RD are learnable parameters.

The output of the previous gated graph convolution is used as the input of the next one. In
addition, max pooling and a cropping operation are also included in a STSAM.

The gated graph convolution in T-STSAM allows simultaneous aggregation of
information from nodes with similar temporal trends and nodes with spatial adjacencies,
the mathematical equation can be formulated as:

hTNm ¼ GGC ATNhTNm�1

� �
; (17)

where hTNm�1; h
TN
m 2 R2N�D denote the input and output of the m-th gated graph

convolution in T-STSAM, respectively.

Figure 3 The structures of the two predefined adjacency matrices and the dilated step sizes in four
layers. Full-size DOI: 10.7717/peerj-cs.1913/fig-3
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The gated graph convolution in P-STSAM implements synchronous modeling of
dependencies from nodes with the same temporal pattern and nodes with short spatial
distances, and the computational formula is defined as:

hPDm ¼ GGC APDhPDm�1

� �
; (18)

where hPDm�1; h
PD
m 2 R2N�D denote the input and output of the m-th gated graph

convolution in P-STSAM, respectively.
In each STSAM, we take advantage of jump knowledge network (JK-Net) to aggregate

the outputs of various gated graph convolutions and then retain the most potent
representation by max pooling, which can be described as:

hTNmax ¼ MaxPooling hTN1 ; hTN2 ; . . . ; hTNM
� �

;

hPDmax ¼ MaxPooling hPD1 ; hPD2 ; . . . ; hPDM
� �

;
(19)

where hTNmax; h
PD
max 2 R2N�D denote the outputs of max pooling in T-STSAM and P-STSAM,

respectively, M denotes the number of gated graph convolutions.
The cropping operation is performed after the max pooling to reduce the hidden

features from 2N dimensions to N dimensions, leading to the output of STSAM, which can
be expressed as:

OTN ¼ hTNmax N : 2N; :½ � 2 RN�D;

OPD ¼ hPDmax N : 2N; :½ � 2 RN�D;
(20)

where OTN ;OPD denote the outputs of T-STSAM and P-STSAM, respectively.

Dilated gated convolution module
Regarding time dimension, parallel STSAMs are conducive to extracting short-term
dependencies due to their independent parameters while still lacking in modeling long-
term correlations. To address this limitation, gated 1D convolution with shared parameters
is utilized to extract long-term temporal features, which can be formulated as:

OGC ¼ tanhð�1 � Xl�1 þ b1Þ 
 rð�2 � Xl�1 þ b2Þ; (21)

where OGC denotes the output of gated 1D convolution, Xl�1 denotes the input of l-th
layer, �1;�2 denote two 1D convolution respectively, and b1; b2 are learnable parameters.

Inspired by Graph WaveNet (Wu et al., 2019), dilated instead of fixed step sizes are
introduced to �1 and �2 for expanding the receptive fields of 1D convolutions. However,
the three-layer convolutions with step sizes of [1,2,4] in Graph WaveNet only cover eight
historical time steps, while the length of the input sequences in our model is 12. Therefore,
we deploy four layers in which the step sizes of 1D convolutions are set as [1,2,4,4]
respectively, while the kernel size of 1D convolution in each layer is fixed as 2, as shown in
Fig. 3B. With this set of mechanisms, the receptive field of four-layer 1D convolutions can
be expanded to the length of the input time series in our model.
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Dynamic multiple-graph spatial-temporal synchronous aggregation
layer
T-STSAMs and P-STSAMs with gated fusion, as well as a DGCM, compose a DMSTSAL,
four DMSTSALs are stacked in a DMSTSAF, and the output of the previous layer is used as
the input to the next layer, which is presented in Fig. 2. In each DMSTSAL, we first slide
from the input sequence to obtain the time step pairs, and then construct two kinds of
dynamic spatial-temporal synchronous graphs for every time step pair. In order to expand
the receptive field and reduce the number of layers, the distances between two time steps in
four layers are set to be dilated with the same step sizes as in DGCMs, which are [1,2,4,4],
as shown in Fig. 3B.

Denoting the input of the l-th DMSTSAL as Xl�1 ¼ x1; x2; . . . ; xTl½ � and the distance of
the two time steps as dl 2 1; 2; 4; 4½ �, the time step pairs generated by its sliding in the l-th
layer can be described as x1; x1þdlð Þ; x2; x2þdlð Þ; . . . ; xTl�dl ; xTlð Þ½ �, then the number of time
step pairs can be formulated as:

Ml ¼ Tl � dl: (22)

To achieve simultaneous learning of spatial-temporal dependencies from multiple
perspectives, we construct a trend spatial-temporal synchronous graph GTN and a pattern
spatial-temporal synchronization graph GPD for each time step pair. The number of each
type of dynamic spatial-temporal graph is the same as the number of time step pairs, which
can be obtained from (22).

Traffic features are heterogeneous across time, and to capture hidden features more
accurately, we design parallel rather than shared STSMs to extract spatial-temporal
dependencies. Specifically, a T-STSAM is deployed for each GTN , and a P-STSAM is
allocated for each GPD. Thus, Ml T-STSAMs and Ml P-STSAMs are laid out in the l-th
DMSTSL.

Both T-STSAMs and P-STSAMs are able to represent spatial-temporal correlations in
some way, so it is necessary to fuse the outputs of two types of STSAMs. To achieve this
goal, we start by aggregating the outputs of each kind of STSAM into a sequence, which
can be defined as:

OTN
AG ¼ OTN

1 ;OTN
2 ; . . . ;OTN

Ml

� � 2 RMl�N�D;

OPD
AG ¼ OPD

1 ;OPD
2 ; . . . ;OPD

Ml

� � 2 RMl�N�D;
(23)

where OTN
AG;O

PD
AG denote the outputs of T-STSAMs and P-STSAMs, respectively, they

represent the results of spatial-temporal synchronous aggregation, which is the core
component that forms the prediction of our model. Their elementsOTN

m ;OPD
m ; 1 � m � Ml

can be obtained from (20). Then, the gating mechanism is applied to incorporate the
outputs of two concatenation operations, which can be formulated as:

OF ¼ z 
 OTN
AG þ 1� zð Þ 
 OPD

AG 2 RMl�N�D; (24)

where OF is one of the two parts that compose the output of the current layer, z is
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employed to manipulate the proportion of information in the fusion, whose mathematical
equation can be defined as:

z ¼ r OTN
AGW

z
1 þ OPD

AGW
z
2 þ bz

� �
; (25)

whereWz
1 ;W

z
2 ; b

z are learnable parameters. Another part of the current layer’s outcome is
the result OGC of the DGCM, which can be obtained from (21). The outcome OF of the
fusion operation and the outputOGC of the DGCM are added together to form the result of
the l-th DMSTSAL, which can be formulated as:

Xl ¼ OF þ OGC 2 RMl�N�D; (26)

The results of the four DMSTSALs are the inputs to the output module.

Output module
The output module is responsible for generating the final predictions of our model, in
which a concatenation that aggregates the outputs of four layers is first employed to
capture comprehensive spatial-temporal correlations, which can be defined as:

XCAT ¼ ðX1kX2kX3kX4Þ 2 RðM1;M2;M3;M4Þ�N�D; (27)

where Xl; 1 � l � 4 can be obtained from (26). A series of fully connected layers are then
utilized to produce the final predictions of T 0 time steps. Specifically, we design two-fully-
connected-layers to produce the prediction of time step t, which can be formulated as:

ŷt ¼ ReLU XCATW
t
1 þ bt1

� �
Wt

2 þ bt2
� � 2 R1�N�C; (28)

whereWt
1; b

t
1;W

t
2; b

t
2 are learnable parameters. Finally, the results of (28) repeated T 0 times

compose the final predictions of our model, which can be described as:

Ŷ ¼ ŷ1; ŷ2; . . . ; ŷT 0
� � 2 RT 0�N�C: (29)

Smooth L1 loss rather than L1 loss is chosen as the loss function, which deals with the
unsmooth disadvantage at the zero-point and can be defined as:

LðY ; ŶÞ ¼
1
2 Y � Ŷ
� �2

=d; if Y � Ŷ
�� �� � d;

Y � Ŷ
�� ��� 1

2 d; otherwise

(
; (30)

where Y ; Ŷ denote the true value and the predicted value, respectively, and d denotes a
threshold parameter to determine the sensitivity.

EXPERIMENTS
Datasets
Four public datasets are chosen for evaluating the prediction performance of DMSTSAF:
PEMS03, PEMS04, PEMS07, and PEMS08. All datasets are generated by Caltrans
Performance Measurement System (PeMS). Concretely, traffic features in these datasets
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are collected by sensors located on California highways at 5-min intervals, which means
there are 12 time steps in an hour. Spatial graphs are constructed from the distribution of
sensors. The distinctions among the datasets are the geographic locations of sensors and
the temporal ranges of data. The detailed information of four datasets can be found in
Table 2.

Experiment settings and evaluation metrics
In our experimental implementation, each dataset is partitioned for training, validation,
and testing in a ratio of 60%, 20%, and 20%. We employ the traffic flow of 12 historical
time steps (1 h) to predict the traffic flow of 12 future time steps. The traffic flow in each
dataset is standardized using Z-score normalization.

DMSTSAF is performed by Pytorch using a PC with NVIDIA RTX 3080. We chose
hyperparameters of our model experimentally to ensure superior performance. The
sparsity of the adjacency matrices for the distance graph, the trend graph, and the pattern
graph are set as 0.01. Each STSAM consists of two graph convolutions, and the output
dimension of the fully connected layer in FAW and the hidden dimensions of graph
convolutions in STSAM are set as D ¼ 64. The hidden representations of two fully-
connected layers to generate predictions are tuned as [128,1], respectively. The optimizer
in experiments is set as Adam. The batch sizes for four datasets are tuned as [32,32,8,64],
respectively. The initial learning rate is set as 0.003 and scaled down to 0.3 times every 30
epochs to shorten the training time. Enroll up to 200 epochs in each training.

We take three metrics to evaluate the performance of models, which are mean absolute
error (MAE), mean absolute percentage error (MAPE), and root mean square error
(RMSE). Smaller values indicate better performance for these metrics, and their
mathematical equation can be formulated as:

MAE yi; byið Þ ¼ 1
N � T 0

XN�T 0

i¼1
yi � byij j;

MAPE yi; byið Þ ¼ 1
N � T 0

XN�T 0

i¼1

yi � byij j
yi

;

RMSE yi; byið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � T 0

XN�T 0

i¼1
yi � byið Þ2

r
;

(31)

where yi, byi denote the true value and the predicted value, respectively.

Table 2 Detailed information of datasets.

Datasets Samples Number of nodes Traffic features Time span

PEMS03 26,208 358 Flow 09/01/2018–11/30/2018

PEMS04 16,992 307 Flow, Speed, Occupancy 01/01/2018–02/28/2018

PEMS07 28,224 883 Flow, Speed, Occupancy 05/01/2017–08/31/2017

PEMS08 17,856 170 Flow 07/01/2016–08/31/2016
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Baseline methods
We compare DMSTSAF with the following seven models for traffic flow prediction:

� FC-LSTM (Sutskever, Vinyals & Le, 2014): Long short-term memory network with fully
connected layers, a variant of the recurrent neural network, which consists of the forget
gate, the input gate, and the output gate.

� GRU (Fu, Zhang & Li, 2016): Gate recurrent unit, a variant of LSTM, which simplifies
the three gates in LSTM to two, i.e., the reset gate and the update gate.

� T-GCN (Zhao et al., 2020): Temporal graph convolutional network, which incorporates
GCN with GRU to extract spatial-temporal features.

� DCRNN (Li et al., 2018): Diffusion convolution recurrent neural network, in which
random walks of a graph are utilized to model spatial dependence, GRU is employed to
learn temporal correlation.

� STGCN (Yu, Yin & Zhu, 2018): Spatio-temporal graph convolution network, which
takes advantage of GCN to extract spatial features, and makes use of 1D convolution
rather than recurrent neural network to model temporal dependency.

� STSGCN (Song et al., 2020): Spatial-temporal graph convolutional network, which
constructs localized spatial-temporal graphs based on spatial and temporal adjacencies,
and designs spatial-temporal synchronous graph convolutional modules to learn spatial-
temporal correlations synchronously.

� STFGNN (Li & Zhu, 2021): Spatial-temporal fusion graph neural network, an improved
study based on STSGCN, which designs temporal graphs with dynamic time warping
algorithm and proposes spatial-temporal fusion graphs to model localized spatial-
temporal dependencies, and then designs gated CNN to extract long-range
dependencies.

Experimental results
The experiments of traffic flow prediction are performed on four datasets, and a
comparison of the results for all models is shown in Table 3. DMSTSAF obtains the
smallest metrics on all four datasets, demonstrating the consistent superiority of
DMSTSAF over the baselines. Compared to the state-of-the-art baseline STFGNN,
DMSTSAF improves 4.27%, 3.72%, 8.54%, and 7.89% in terms of MAE on PEMS03,
PEMS04, PEMS07, and PEMS08 respectively, while the improvements of MAPE are
6.63%, 7.49%, 7.95%, and 7.85%. In addition, our model also achieves 3.68%, 4.23%, 8.38%,
and 7.65% improvements in terms of RMSE.

Moreover, for the purpose of evaluating the ability of models on multi-step prediction,
we conduct prediction experiments for 12 future time steps on PEMS03. In comparison to
STFGNN, our model shows 1.11–8.89% improvement in terms of MAE, 1.81–13.19%
improvement for MAPE, and 1.38–7.48% improvement for RMSE. To achieve a more
intuitive comparison, we illustrate the results of each model with a line plot, as shown in
Fig. 4, which verifies that DMSTSAF overwhelmingly outperforms all the baselines.
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To further demonstrate the prediction performances of DMSTSAF and the best
baselines, we visualize the ground-truth and predictions of STSGCN, STFGNN, and
DMSTSAF on PEMS03 test set for both sunny and rainy days, as presented in Fig. 5. It can
be seen that compared to the best baselines, our proposed DMSTSAF can fit the ground-
truth more accurately in different weather conditions.

Ablation study
To evaluate the validity of different modules in DMSTSAF, ablation studies are
implemented on PEMS04 and PEMS08. We design six variants, a short illustration is
introduced as follows:

� -FAW, which uses only traffic features as the input to the model, and utilizes an FC
rather than a feature augmentation module to transform the input from C dimensions to
D dimensions.

� -GTN , which removes trend spatial-temporal synchronous graphs GTN and the
corresponding T-STSAM, and retains only pattern spatial-temporal synchronous
graphs GPD as well as P-STSAM.

� -GPD, which is the opposite of -GTN , removing GPD and P-STSAM, while retaining GTN

as well as T-STSAM.

� -Dilation, the step sizes of 1D convolutions in DGCM and the distance between two
time steps to construct dynamic spatial-temporal synchronous graphs are fixed to 1.

� -Concatenation, which removes the concatenation on the outputs of four DMSTSALs,
and treats the output of the 4-th DMSTSAL as the input to the output module.

� -DGCM, which removes dilated gated convolution modules from four DMSTSALs.

Table 4 demonstrates the results of ablation studies, which illustrates that DMSTSAF
outperforms variants on PEMS04 as well as PEMS08. Compared to the three indicators of

Table 3 Results of DMSTSAF and baselines on four datasets.

Datasets Metric FC-LSTM GRU T-GCN DCRNN STGCN STSGCN STFGNN DMSTSAF

PEMS03 MAE 27.35 27.19 20.83 21.07 20.29 18.30 17.33 16.59

MAPE (%) 25.16 24.92 21.58 20.43 18.98 17.58 16.90 15.78

RMSE 42.32 42.24 31.18 33.23 33.08 30.20 29.04 27.97

PEMS04 MAE 34.33 34.13 26.02 27.57 25.37 22.38 20.14 19.39

MAPE (%) 21.72 21.53 17.08 18.29 15.50 15.03 13.76 12.73

RMSE 50.01 49.98 38.19 42.07 39.11 35.33 32.62 31.24

PEMS07 MAE 38.33 37.79 30.37 31.29 30.91 25.15 23.76 21.73

MAPE (%) 16.71 16.83 13.83 15.09 14.49 10.74 9.96 9.17

RMSE 57.56 56.72 43.39 47.21 47.12 40.79 38.48 35.25

PEMS08 MAE 28.90 28.12 21.37 21.21 21.39 17.72 16.99 15.65

MAPE (%) 17.77 16.92 13.66 13.08 13.13 11.61 10.96 10.10

RMSE 41.83 41.85 30.69 31.43 31.42 27.21 26.80 24.75
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-FAW, our model achieves 1.92%, 2.60% as well as 1.67% improvement on PEMS04.
Furthermore, it improves by 3.04%, 2.79%, and 1.39% on PEMS08. These improvements
indicate the effectiveness of fusing traffic features and external factors in learning spatial-
temporal correlations. In contrast with -GTN , DMSTSAF achieves 1.02%, 1.53%, 1.01%
improvements on PEMS04, as well as 1.39%, 2.23%, 0.88% improvements on PEMS08. In
comparison to -GPD, improvements of 0.6%, 0.94%, 0.54% on PEMS04 are obtained by our
model, while improvements of 0.70%, 1.56%, 0.52% are achieved on PEMS08. These
achievements verify the validity of dynamic multiple-graph in modeling spatial-temporal
dependencies. Compared to -DGCM, our model achieves 1.87%, 2.68%, as well as 2.74%
improvement on PEMS04. Furthermore, it improves 2.49%, 4.54%, and 1.67% on

Figure 5 Prediction results of STSGCN, STFGNN, DMSTSAF. Full-size DOI: 10.7717/peerj-cs.1913/fig-5

Figure 4 Results of multi-step prediction on PEMS03. Full-size DOI: 10.7717/peerj-cs.1913/fig-4
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PEMS08. These improvements illustrate the positive role of DGCM in capturing long-term
correlations. In addition, there are also different levels of improvement in our model
compared to other variants, which demonstrates the efficiencies of the corresponding
components.

Parameters study
In order to further validate our model, parameters study are implemented on PEMS04 and
PEMS08. The number of graph convolutions and the hidden dimensions D in STSAM are
under consideration, Fig. 6 presents the results of experiments. Our model achieves
minimal errors as each STSAM consists of two graph convolutions. As for the hidden
dimensions, it can be found in Fig. 6 that our model obtains optimal metrics whenD equals
to 64.

DISCUSSION
By means of the results in “Experimental Results”, it can be inferred that our proposed
model outperforms the seven baselines. FC-LSTM and GRU are not satisfactory since they
only take into account temporal dependency and ignore spatial relationships. T-GCN,
DCRNN, and STGCN utilize graph convolution network to model spatial dependence and
further employ temporal components to extract temporal features, leading to improved
performance than models only applicable for time sequences. However, their separate
modules for spatial and temporal modeling limit the efficiency of feature extraction.
STSGCN designs synchronous graphs to characterize spatial-temporal correlations
simultaneously. Further, STFGNN proposes temporal graphs generated by a dynamic time
warping algorithm, and then designs spatial-temporal fusion graphs. Although they both
achieve synchronous learning compared to previous work, their performances are still
insufficient. First, neither of them takes account of the impact of external factors, which
weakens the ability of models to extract comprehensive dependencies. Second, their single
spatial-temporal graph structures result in overlooking certain potential correlations. Our
model integrates maximum temperature, minimum temperature, weather, as well as wind
with traffic features by spatial and temporal attention, and then feeds the fused features
into subsequent modules. Therefore the influence of external factors is taken into

Table 4 Results of ablation studies.

Model & Variants PEMS04 PEMS08

MAE MAPE (%) RMSE MAE MAPE (%) RMSE

DMSTSAF 19.39 12.73 31.24 15.65 10.10 24.75

-FAW 19.77 13.07 31.77 16.14 10.39 25.10

-ATN 19.59 12.93 31.56 15.87 10.33 24.97

-APD 19.46 12.85 31.41 15.76 10.26 24.88

-Dilation 19.62 13.05 31.61 15.95 10.37 25.05

-Concatenation 20.12 13.35 32.52 17.01 10.89 26.67

-DGCM 19.76 13.08 32.12 16.05 10.58 25.17
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consideration in spatial-temporal modeling. In addition, we introduce four graphs that
lead to two dynamic spatial-temporal synchronous graphs, bringing about multi-
perspective spatial-temporal simultaneous modeling of hidden features, enhancing the
proposed model’s performance for learning spatial and temporal dependencies.

Ablation studies in “Ablation Study” illustrate the effectiveness of various components
in our model. FAW is effective for feature extraction because traffic features vary
significantly with different external factors. Both GTN and GPD contribute noticeably to the
improved performance of DMSTSAF due to their capacity for learning spatial-temporal
correlations from different perspectives. Other components are also beneficial to
strengthening the model’s performance. Specifically, dilated step sizes expand the receptive
fields of stacked layers, the concatenate operation on outputs of four layers retains more
useful hidden information, and DGCM captures long-term temporal dependence.

Figure 6 Experimental results of parameters on PEMS04 and PEMS08.
Full-size DOI: 10.7717/peerj-cs.1913/fig-6

Yu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1913 20/25

http://dx.doi.org/10.7717/peerj-cs.1913/fig-6
http://dx.doi.org/10.7717/peerj-cs.1913
https://peerj.com/computer-science/


Furthermore, the excellent performance of DMSTSAF benefits from the appropriate
number of graph convolutions and the suitable hidden dimensions D in STSAM, which is
indicated in “Parameters Study”. When each STSAM comprises only one graph
convolution, this leads to the inefficient representation of hidden dimensions, while three
or four graph convolutions consisting of one STSAM result in over-smoothing. If we tuned
hidden dimensions in STSAM to 16 or 32, the inability to obtain efficient deep
representations restricts the capacity to model dependencies, but tuning hidden
dimensions to 128 results in over-fitting.

Although diverse experiments confirm the effectiveness of our model, there are still
some shortcomings. First, the proposed method cannot efficiently deal with the missing
data in datasets. Second, the external factors only include meteorological conditions, and
further extensions are yet to be made. In future work, we plan to introduce processing
algorithms for missing data and incorporate additional external factors to improve our
model further.

CONCLUSION
In this article, a novel dynamic multiple-graph spatial-temporal synchronous aggregation
framework is proposed for traffic prediction, which incorporates traffic features with
external factors via spatial-temporal attention as the input, thus modeling the impact of
external factors on traffic features. Meanwhile, it characterizes spatial-temporal
dependencies from multiple perspectives through two kinds of dynamic spatial-temporal
synchronous graphs. In addition, two types of spatial-temporal synchronous aggregation
modules empower the model to extract spatial-temporal features synchronously, and the
dilated step sizes expand the receptive field. Finally, the many-to-one mechanism in the
output module transforms hidden features into accurate predictions. Extensive
experiments are implemented on four real-world datasets, and numerical results
demonstrate that the proposed model consistently outperforms all baselines, achieving
average improvements ranging from 5.99–7.48% on three metrics compared to the state-
of-the-art study. In the future, we will attempt to deal with missing data in datasets and
take into account additional external factors, such as traffic accidents, to improve our
model’s performance further.
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