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ABSTRACT
Multimodal emotion recognition techniques are increasingly essential for assessing
mental states. Image-based methods, however, tend to focus predominantly on overt
visual cues and often overlook subtler mental state changes. Psychophysiological
research has demonstrated that heart rate (HR) and skin temperature are effective in
detecting autonomic nervous system (ANS) activities, thereby revealing these subtle
changes. However, traditional HR tools are generally more costly and less portable,
while skin temperature analysis usually necessitates extensive manual processing.
Advances in remote photoplethysmography (r-PPG) and automatic thermal region
of interest (ROI) detection algorithms have been developed to address these issues,
yet their accuracy in practical applications remains limited. This study aims to bridge
this gap by integrating r-PPG with thermal imaging to enhance prediction
performance. Ninety participants completed a 20-min questionnaire to induce
cognitive stress, followed by watching a film aimed at eliciting moral elevation. The
results demonstrate that the combination of r-PPG and thermal imaging effectively
detects emotional shifts. Using r-PPG alone, the prediction accuracy was 77% for
cognitive stress and 61% for moral elevation, as determined by a support vector
machine (SVM). Thermal imaging alone achieved 79% accuracy for cognitive stress
and 78% for moral elevation, utilizing a random forest (RF) algorithm. An early
fusion strategy of these modalities significantly improved accuracies, achieving 87%
for cognitive stress and 83% for moral elevation using RF. Further analysis, which
utilized statistical metrics and explainable machine learning methods including
SHapley Additive exPlanations (SHAP), highlighted key features and clarified the
relationship between cardiac responses and facial temperature variations. Notably, it
was observed that cardiovascular features derived from r-PPG models had a more
pronounced influence in data fusion, despite thermal imaging’s higher predictive
accuracy in unimodal analysis.
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INTRODUCTION
Over the past two decades, the use of multimodal emotion recognition techniques
(MMER) in mental state assessment has gained increasing traction, offering profound
insights in fields as varied as marketing, education, and mental health (Bahreini, Nadolski
& Westera, 2016; Soleymani, Pantic & Pun, 2011). MMER primarily utilizes image-based
methodologies, analyzing facial expressions, body movements, gestures, and eye
movements to assess psychological states. These methods, leveraging only camera
technology, are cost-effective and non-intrusive, making them suitable for a wide range of
applications. Additionally, they resonate with human visual perception, producing results
that are intuitively understandable and easily explainable. However, image-based MMER
primarily detects basic emotions that significantly alter appearance or behavior, such as
anger, surprise, disgust, enjoyment, fear, and sadness (Ekman, 1992). These methods often
depend on obvious visual cues, overlooking the subtler nuances of emotional states.

Psychophysiological research, rooted in neuroscience, shows that physiological
markers, namely heart rate (HR) and skin temperature, serve as reliable indicators of
changes in mental states. These changes are reflected in autonomic balance alterations,
characterized by either activation of the sympathetic nervous system (SNS) or suppression
of the parasympathetic nervous system (PNS). Such dynamics lead to an increase in HR as
a response to perceived threats, whereas a decrease in SNS activity along with an increase
in PNS function correlates with HR reduction during relaxation phases. Given the
autonomic nervous system (ANS), which encompasses both SNS and PNS, is regulated by
the prefrontal cortex, and considering that mental exertions significantly tax cognitive
resources and affect prefrontal cortical functions, HR fluctuations have been linked to
various cognitive and affective processes. These include stress response modulation (Cho,
Julier & Bianchi-Berthouze, 2019), sustained attention (Widjaja et al., 2015), and
emotional responses to moral beauty (Piper, Saslow & Saturn, 2015).

The activation of ANS plays a crucial role in thermoregulatory responses, with SNS
activation in response to perceived threats leading to peripheral vasoconstriction. This
reaction causes a reduction in cutaneous blood flow and, consequently, a decrease in
surface body temperature (Kistler, Mariauzouls & von Berlepsch, 1998). However,
cutaneous temperature changes are not solely dependent on these factors; they are also
influenced by sudomotor activity (sweating), muscular contractions, and lacrimation.
Research has demonstrated that emotions linked to sympathetic arousal, such as fear and
anxiety, lead to a reduction in dermal temperature, particularly noticeable in the peripheral
extremities and facial regions like the cheeks and nasal tips. The nasal tips, in particular,
tend to exhibit a more pronounced response to stress (Engert et al., 2014). On the contrary,
fear and anxiety may also increase muscular activity in the forehead and periorbital
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regions, resulting in a temperature increase in these areas (Levine, Pavlidis & Cooper, 2001;
Pavlidis & Levine, 2002; Vinkers et al., 2013). Furthermore, a positive correlation exists
between sustained cognitive engagement and an increase in forehead temperature (Bando,
Oiwa & Nozawa, 2017).

Recent developments in psychophysiological research have expanded to include the
thermal effects of various emotional states. Salazar-López et al. (2015) noted that nasal
temperature typically decreases in response to negative valence stimuli, but it also increases
with positive emotions and arousal. Interestingly, these changes in nasal temperature
positively correlate with participants’ empathy scores and emotions like love. In a study
involving fifteen three-year-olds, Ioannou et al. (2013) observed that sympathetic arousal
caused by toy malfunctions led to a significant drop in nasal temperature. When the
children were comforted, nasal temperature increased, indicative of parasympathetic
activation and suggesting either distress alleviation or overcompensation. Additionally,
Ioannou et al. (2016) found that sympathetic crying induced by sad films in female subjects
resulted in increased temperatures in the forehead, periorbital region, cheeks, and chin.
Conversely, the maxillary area showed a decrease in temperature, attributed to emotional
sweating.

Cardiovascular data and thermal imaging are instrumental in uncovering concealed
emotions, a key aspect of psychological analysis and various applications. However, their
widespread practical application faces significant challenges. A primary obstacle is the
costly and intrusive nature of heart rate detection tools such as electrocardiograms (ECG)
and pulse oximeters. These devices also suffer from a lack of portability. Despite
technological advancements yielding more portable commercial devices, these non-image-
based methods are still not user-friendly. They necessitate the purchase of additional
equipment and the need for users to carry these devices consistently. However, while
thermal imaging offers a less intrusive alternative, the requirement for manual data
cleaning and processing, particularly in identifying regions of interest (ROI), is a tedious
and time-consuming task. This increased labor intensity and associated costs dampen
enthusiasm for both research and practical usage, thus hindering the exploration of their
full potential, such as in continuous monitoring scenarios.

The recent advancements in image-based heart rate detection and automatic thermal
ROI detection methods shed light on the aforementioned problem. Photoplethysmography
(PPG), an optical method, detects blood volume changes beneath the skin due to
heartbeats (Elgendi, 2012). As hemoglobin’s light absorption differs, blood volume changes
are identified by observing the reflected light intensities. Traditionally, the contact PPG
signal is obtained by employing finger oximeters with LED light (Takano & Ohta, 2007).
Remote PPG (r-PPG), on the other hand, detects heartbeats by recording videos of faces
and converting the facial skin color changes into waveforms. The main advantage of r-PPG
is its capacity for non-invasive, continuous vital sign monitoring. However, the difficulty in
obtaining high-quality signals curtails its acceptance both in research and in practice.
While many studies have managed to produce sufficiently accurate average HR
measurements—due to the robustness in calculating the average HR when signal quality is
low—this metric offers limited insight into autonomic nervous system (ANS) activity,
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making it less pertinent for psychological studies (Yu, Li & Zhao, 2019). Conversely, while
heart rate variability (HRV) offers a richer source of psychophysiological information (Liu,
Ni & Peng, 2020b), it is more susceptible to slight alterations in environmental lighting and
facial movements.

Encouragingly, recent advances in signal processing and machine learning have
markedly improved the precision of HRV metrics derived from r-PPG data. Huang &
Dung (2016) employed a smartphone camera and utilized continuous wavelet transform to
mitigate noise, which reduced the mean absolute error (MAE) for r-PPG with the
referencing data from 20 to 2. Similarly, Qiao et al. (2021) harnessed green light from the
cheek and nose regions and achieved an MAE of 24.33 ± 28.66 using Welch’s method. Yu,
Li & Zhao (2019) capitalized on Spatio-Temporal Networks to curtail errors, boosting the
correlation between r-PPG and ECG to 0.766 on the OBF dataset. An early exploration by
McDuff, Gontarek & Picard (2014) into emotion recognition using r-PPG yielded a 0.93
correlation for high-frequency HRV. Employing a digital camera with five color bands,
they successfully categorized three emotional states with an 85% accuracy rate.
Nevertheless, the broader application of r-PPG in producing HRV metrics for nuanced
mental state detection remains somewhat nascent.

Manual tracking of ROIs in thermal imaging processing is tedious, especially for larger
datasets or prolonged monitoring. Consequently, many prior psychological studies opted
for a simplified approach, manually analyzing temperature shifts before and after a
stimulus was applied (Ioannou et al., 2016). Many early ventures into thermal imaging, on
the other hand, navigated around obstacles by asking participants to stay still (Pavlidis &
Levine, 2002), thereby limiting its applicability in real-world scenarios. Notably,
advancements in machine learning-based ROI detection enable consistent temperature
tracking (Joshi, Bianchi-Berthouze & Cho, 2022), even with slight head movement (Cho
et al., 2019; Kuzdeuov et al., 2022). Consequently, Cruz-Albarran et al. (2017) identified
basic emotions such as joy, disgust, anger, fear, and sadness, achieving an impressive
accuracy of 89.9%. Similarly, Goulart et al. (2019) crafted a model that delivered prediction
accuracies of 89.88% for disgust, 88.22% for happiness, 86.93% for surprise, 86.57% for
fear, and 74.70% for sadness among children aged between seven and eleven.

Recent developments in r-PPG and thermal imaging show promise, yet there is a critical
need to further enhance their accuracy. The success of automatic ROI detection, pivotal in
the initial data processing stages for both r-PPG and thermal imaging, is greatly influenced
by data quality. This quality hinges on various factors, such as individual movements,
facial obstructions (like glasses or hair), camera angles, and environmental lighting and
temperature changes. Although current signal processing methods hold potential, they
typically produce satisfactory results in laboratory settings with controlled conditions. This
underscores the urgent need for more advanced signal processing techniques or machine
learning algorithms, essential for improving the reliability and accuracy of r-PPG and
thermal imaging, particularly in real-world, uncontrolled environments.

While researchers in the r-PPG and thermography fields struggle to mitigate the
inherent low signal quality issue, they often overlook the potential of combining both
methods to improve prediction accuracy further. Single-source physiological data often
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lacks accuracy (Dino et al., 2020). In contrast, data analysis across different modalities can
complement each other, reducing randomness and enhancing robustness. As a result,
MMER studies demonstrate superior performance compared to their single-modality
counterparts (Morency, Mihalcea & Doshi, 2011; Sebe et al., 2006; Wang et al., 2010; Zhao
et al., 2021). Besides, both remote PPG and thermal imaging methods can collect
physiological signals non-intrusively over long periods, and despite differing in their
physiological mechanism, their similar data collection, environmental, and equipment
requirements make them ideal for integration. As of today, only a few pioneering studies
have explored the combination of HR with thermal imaging (Cho, Julier & Bianchi-
Berthouze, 2019). However, to this best knowledge of the authors, there have been no
attempts to extend the literature to include the use of r-PPG, which is more suitable for use
with thermal imaging as a remote ANS detection tool.

This research aims to bridge a significant gap in current literature by exploring the
integration of r-PPG and thermography to improve the accuracy of predicting changes in
psychological states. The study focuses on comparing early and late data fusion strategies
and employing two prevalent machine learning models: support vector machine (SVM)
and random forest (RF). The goal is to ascertain how these two modalities can be
effectively integrated to develop an enhanced predictive model.

A critical aspect of this research involves identifying key features within the predictive
model to elucidate the complex relationship between cardiovascular features, facial
expressions, and psychological states. Conducting a comprehensive examination of these
features is essential for optimizing model performance and facilitating more accurate
adjustments and interpretations (Du, Liu & Hu, 2019; Murdoch et al., 2019). Such
transparency is particularly vital in areas such as healthcare where the opacity of machine
learning models presents interpretive challenges and restricts their practical application
potential (London, 2019; Tonekaboni et al., 2019; Vellido, 2020). Moreover, an in-depth
exploration of these features yields greater insights into psychophysiology and extend the
understanding to the physiological responses of various mental state changes.

To meet these goals, the study conducts laboratory experiments to collect data from
participants experiencing cognitive stress and moral elevation. These conditions represent
the spectrum of negative and positive emotional state changes that lead to ANS-related
variations in heart rate and skin temperature. Cognitive stress, a common precursor to
psychological issues, is known to elicit various physiological responses, including changes
in HRV and skin temperature (Cho, Julier & Bianchi-Berthouze, 2019). On the other hand,
moral elevation, defined by Haidt (2000) as a positive emotional response to witnessing
acts of kindness and compassion, fosters a sense of warmth and promotes prosocial
behavior (Haidt, 2003). It intensifies the desire to help others (Han et al., 2015) and
enriches life’s purpose understanding (Oliver, Hartmann & Woolley, 2012). Previous
studies have linked moral elevation to ANS activity (Silvers & Haidt, 2008) and HRV
(Piper, Saslow & Saturn, 2015). Additionally, moral elevation can trigger physical
sensations like chest expansion, exhilaration, tearing up, goosebumps, and a warming
sensation in the chest area (Algoe & Haidt, 2009), potentially influencing facial
temperature changes.
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MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint (https://doi.org/10.
48550/arXiv.2401.09145).

Participants and experiment procedures
This research forms a part of a larger study focused on the feasibility of MMER. The
research protocol was approved by the ethics committee of the faculty of psychology at
Beijing Normal University (No. 202203070037), and written informed consent was
received from all participants. For their involvement, each participant received a
compensation of 150 RMB (approximately 20 USD).

The experimental procedure commenced with a briefing, after which participants were
instructed to remain as still as possible while completing a 20-min questionnaire. This
process, inspired by McDuff, Gontarek & Picard (2014), involved collecting r-PPG and
thermal imaging data to assess physiological responses to cognitive stress caused by
prolonged task focus (Tanaka, Ishii & Watanabe, 2014). A built-in camera on a notebook
(ThinkPad E310, Lenovo, Beijing, China) recorded participants’ facial reactions.
Concurrently, a thermal camera (One Pro, FLIR, Wilsonville, OR, USA) to their right
measured facial temperatures. ECG data (AD8232 ECG module, Sichiray, Shenzhen,
China) were also gathered using a custom Arduino system. While minimal movement was
allowed, participants were encouraged to limit it. Out of 104 participants (21% male,
average age 21.33, SD 2.45), ninety viewed a short film on firefighters’ sacrifice, aimed at
inducing moral elevation. This session’s r-PPG and thermal imaging data were used for
developing a moral elevation prediction model. Among all participants, 86 provided valid
r-PPG data, and 55 yielded valid thermal imaging data. After watching, they completed
Aquino, McFerran & Laven’s (2011)moral elevation scale, with a t-test validating the film’s
efficacy in eliciting moral elevation (p < 0.001).

R-PPG
Signal extraction
This study analyzed all data with the Python package pyMMER (available at https://github.
com/8n98324n/pyMMER), developed for this study. PyMMER integrates several publicly
available open-source Python packages to help non-technically savvy researchers process
and analyze multimodal data for research. For r-PPG data processing, adapting the code
from the Python package pyVHR (Boccignone et al., 2022), pyMMER first identifies
patches of ROIs using MediaPipe Face Mesh and continuously tracks them in all video
frames (Fig. 1). Out of the 468 facial ROI identified in MediaPipe (Google Inc, Mountain
View, CA, USA), this study deliberately used only 70 regions, excluding regions close to the
edges of the face, lips, and eyes to mitigate the potential interference from spontaneous
facial movements and to factor in participants who wore glasses.

PyMMER computes average color intensities for each patch across overlapping
windows, producing multiple time-varying RGB signals for each temporal segment.
During the signal processing phase, pyMMER utilizes the plane-orthogonal-to-skin (POS)
method, as described byWang et al. (2016), to convert these signals into a pulse waveform
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(blood volume pulse, BVP). As highlighted by Boccignone et al. (2022), this method ranks
among the top performers in their study. pyMMER then segments the BVP into
overlapping 6-s windows. For each window, pyMMER determines the HR (measured in
beats per minute, BPM) by identifying the most significant frequency in the power
spectrum of the wave, generated within the 6-s window using Fourier analysis.

HRV data processing
After obtaining BPM data, pyMMER identifies problematic HR points that change by
more than 25 beats per minute from the previous points. It then removes either the current
or the previous data point that is further from the median HR of the dataset. Subsequently,
pyMMER utilizes the R language package RHRV (Martínez et al., 2017) to calculate HRV
measures. If HR or HRV exceeds a predefined threshold, the RHRV package is unable to
produce HRV measures, and such data are considered outliers in this study.

There are two main types of HRV measures: time-domain and frequency-domain. The
time-domain indices of HRV quantify variability in the beat-to-beat interval (BBI). This
study included three commonly used time-domain measures for comparison: Root Mean
Square of Successive Differences (rMSSD), Standard Deviation of NN Intervals (SDNN),
and the percentage of NN interval changes larger than 50 ms (pNN50). The frequency-
domain components of HRV consist of four frequency bands: high frequency (HF), low
frequency (LF), very low frequency (VLF), and ultra-low frequency (ULF). Given that this
study only recorded 5-min videos and used 2-min segments for analysis, the ULF and VLF
bands do not apply (Shaffer & Ginsberg, 2017). The HF and LF values were then log-

Figure 1 The signal processing flow. Full-size DOI: 10.7717/peerj-cs.1912/fig-1
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transformed because they were not distributed normally (Chalmers et al., 2016; Laborde,
Mosley & Thayer, 2017).

ECG referencing
To ascertain the accuracy of r-PPG, this study compared HRV measurements from the r-
PPG against a reference ECG. This study employed the Python package py-ecg-detectors
(Howell & Porr, 2023) to transform raw ECG signals into heart rate data, utilizing the QRS
detection algorithm proposed by Elgendi, Jonkman & De Boer (2010). This study collected
383 samples with both valid r-PPG and valid ECG data from all participants. Data from
three participants were then manually excluded because the data collected from r-PPG and
ECG were significantly different, possibly due to collection error. In order to achieve
acceptable signal quality, previous studies have argued the importance of using a quality
index to filter out potentially corrupted data (Liu, Ni & Peng, 2020a). Since there are no
established quality criteria for remote PPG results generated from multiple ROIs, this
study suggested using the MAE of the HR over HR (MAE/HR) obtained from all ROIs as
the quality index. This study then compared the correlation coefficient and p-value of the
HR and HRV measures.

Thermal imaging
Feature extraction
For thermal imaging processing, ‘pyMMER’ integrates the open-source Python code
provided by Abdrakhmanova et al. (2021) and Kuzdeuov et al. (2022) (https://GitHub.com/
IS2AI/thermal-facial-landmarks-detection). Their project trained a ROI detection model
based on the Histogram of Oriented Gradients (HOG) and SVM methods. The dataset
contained 2,556 facial thermal images of 142 subjects with manually annotated face
bounding boxes and 54 facial landmarks. In cases where the trained model could not
identify boxes of faces, these instances were also classified as outliers in this study. Besides,
as many participants wore glasses, this study avoided the orbital region, focusing
exclusively on twenty-two ROIs (Table 1).

RESULTS
Equipment accuracy analysis
ECG referencing
The ECG referencing analysis showed that the correlation coefficients for HR and all time-
domain HRV measures increased almost monotonously when MAE/HR decreased,
suggesting that MAE/HR was a robust and effective quality criterion (Table 2). Based on
these results, this study selected MAE/HR = 0.42 as a balanced point for comparison to
achieve higher correlation coefficients without losing too many data points. The
comparative results indicated that HR and time-domain HRV measures obtained from r-
PPG closely corresponded with those derived from ECG, as illustrated in Fig. 2.
Specifically, the correlation coefficient for average HR was 0.86, 0.32 for SDNN, 0.24 for
rMSSD, and 0.25 for pNN50—all achieving statistical significance (p < 0.001). The effect
sizes were small for the rMSSD, pNN50, and ln(LF), medium for SDNN and large for HR
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according to Cohen (1992)’s criteria. However, the congruence between ln(HF) produced
by r-PPG and those from the reference ECG was not statistically significant.

Machine learning prediction
This study validated the proposed method by constructing two of the frequently used
machine learning models, RF and SVM, to predict mental state changes using the facial
temperature and HRV measures generated by thermal imaging and r-PPG respectively.
After optimizing parameters through a grid search, the prediction accuracy for attention

Table 1 The definition of thermal imaging ROIs.

POI Description POI Description

Eyebrow (E) Lip (L)

18 Left side of left eyebrow 48 Left side of lip

21 Right side of left eyebrow 49 Outside of upper ip

22 Left side of right eyebrow 50 Right side of lip

25 Right side of right eyebrow 51 Outside of lower lip

Forehead (F) 52 Upper lip

58 Forehead 53 Lower lip

Nose (N) Cheek (C)

28 Upper part of the nose 54* Left cheek away from nose

29 Middle part of the nose 55 Left cheek closer to nose

30 Nose tip 56 Right cheek away from nose

Nostril (S) 57 Right cheek closer to nose

32 Left nostril Chin area (CA)

34 Right nostril 59 Chin

Throat area (TA)

60 Throat

Note:
*POI 18 to 53 were adapted from Kuzdeuov et al. (2022) and POI 54 to 60 were defined by this study.

Table 2 The correlation coefficients of the HRV measures generated by r-PPG and the referencing ECG.

MAE/HR Correlation coefficient p-Value n

HR rMSSD pNN50 SDNN ln(HF) ln(LF) HR rMSSD pNN50 SDNN ln(HF) ln(LF)

0.3 0.97 0.49 0.47 0.6 0.18 0.11 <0.001 <0.001 <0.001 <0.001 0.158 0.404 61

0.32 0.96 0.43 0.41 0.47 0.18 0.08 <0.001 <0.001 <0.001 <0.001 0.099 0.462 87

0.34 0.94 0.39 0.28 0.55 0.06 0.14 <0.001 <0.001 0.003 <0.001 0.487 0.135 118

0.36 0.91 0.26 0.2 0.43 0.05 0.14 <0.001 0.001 0.012 <0.001 0.541 0.083 160

0.38 0.86 0.26 0.25 0.35 0.05 0.14 <0.001 <0.001 <0.001 <0.001 0.441 0.051 199

0.4 0.85 0.25 0.26 0.32 0.06 0.15 <0.001 <0.001 <0.001 <0.001 0.308 0.02 251

0.42 0.86 0.24 0.25 0.32 0.03 0.14 <0.001 <0.001 <0.001 <0.001 0.627 0.017 285

0.44 0.85 0.21 0.21 0.32 0 0.16 <0.001 <0.001 <0.001 <0.001 0.938 0.005 311

0.46 0.84 0.2 0.19 0.31 −0.01 0.15 <0.001 <0.001 <0.001 <0.001 0.863 0.006 331

0.48 0.84 0.2 0.19 0.3 −0.01 0.15 <0.001 <0.001 <0.001 <0.001 0.877 0.006 337
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using r-PPG data with RF was 0.75 and with SVM was 0.77 (Table 3). In contrast, for
moral elevation, the RF and SVM models achieved accuracies of 0.58 and 0.61,
respectively, using r-PPG. Using thermal imaging data, RF and SVM models predicted
cognitive stress with accuracies of 0.79 and 0.72, respectively. For moral elevation, the
accuracies were 0.78 with RF and 0.75 with SVM using thermal imaging.

This study then considered two different multimodal fusion strategies to combine the
data. The early fusion strategy directly employed SVM and RF models to analyze the
combined features extracted by both r-PPG and thermal imaging (Zhang et al., 2021). This
approach sought to capitalize on the inherent interdependencies between the data types by
integrating them at an early stage before applying machine learning algorithms.
Conversely, the late fusion strategy took a sequential approach and applied a decision tree
using the Gini index to fuse the independent predictions generated by machine learning
models based on two sources. This strategy banked on the strengths of individual

Figure 2 Comparison of HRV measures generated by r-PPG and the reference ECG. r, correlation coefficient; MAE, mean absolute error; n,
number of valid data after removing outliers. MAD/HR = 0.42. Full-size DOI: 10.7717/peerj-cs.1912/fig-2
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modalities before combining them in a unified framework. In the data, the early fusion
strategy outperformed the late fusion strategy and the single modal predictions with
prediction accuracy of 0.87 and 0.83 using RF for cognitive stress and moral elevation
respectively.

Feature importance analysis
Correlation analysis
The t-test, heatmap, and correlation coefficient analysis were frequently used tools in the
feature engineering process (Rawat & Khemchandani, 2017). This study performed a t-test
on the changes in the HR and HRV measures between the last 120 s to the first 120 s
(Fig. 3). The results indicated that HR increased and HRV measures decreased in both the
cognitive stress and moral elevation conditions. However, the differences were statistically
significant only in the cognitive stress condition.

For the thermal imaging data, this study analyzed the difference between the average of
the last 120 s and the average of the first 120 s. The results showed that the temperatures of
the lip and cheek increased significantly when people were paying attention to the given
task, and the temperatures of the nose, nostril, lip, cheek, and chin increased when the
moral elevation was triggered by films (Fig. 4A). Since this study observed the temperature
of different areas tended to change simultaneously, this study further investigated the
relative temperature changes between different ROIs (the rows were subtracted from the
column) (Figs. 4B and 4C). Since the temperature of the forehead is one of the most stable
temperatures in the body (Ioannou, Gallese & Merla, 2014), this study followed (Genno
et al., 1997) to choose forehead as the main comparison area. This comparison revealed
that cognitive stress caused a significant relative increase only in the temperature of the lip
areas. The absolute temperature change of cheek was significant but the relative

Table 3 Prediction accuracy of single-modal and multimodal machine learning models.

Study Mode Model Avg accuracy Avg f1

Cognitive stress rPPG SVM 0.77 0.86

RF 0.75 0.85

Thermal SVM 0.72 0.83

RF 0.79 0.87

Early fusion SVM 0.83 0.90

RF 0.87 0.91

Late fusion Decision tree 0.81 0.88

Moral elevation rPPG SVM 0.61 0.68

RF 0.58 0.63

Thermal SVM 0.75 0.79

RF 0.78 0.80

Early fusion SVM 0.64 0.70

RF 0.83 0.85

Late fusion Decision tree 0.75 0.77
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temperature changes were not. The decrease of temperature in the nose area became much
more obvious, but the values did not reach statistical significance level. On the other hand,
the conclusion of the relative temperature change of the moral elevation was the same as
the absolute changes.

SHAP analysis
To delve deeper into how various features impact the outcomes of black-box machine
learning models, this study employed SHapley Additive exPlanations (SHAP) analysis
using the Python ‘shap’ package (Lundberg & Lee, 2017). The data analysis revealed that
both the RF and SVM models predominantly relied on SDNN and rMSSD features when
distinguishing participants under cognitive stress caused by attention, as illustrated in
Fig. 5. Additionally, the pNN50 feature emerged as a pivotal determinant in distinguishing
individuals experiencing moral elevation. For thermal imaging, this study compared the
top 10 features in SHAP analysis. The nasal area (ROI 28, 29, 30), the eyebrow area (ROI
18, 25), the cheeks (ROI 55, 56, 57), and the area between the nose and lip (ROI 34, 49)
were essential features for thermal imaging-based mental state prediction. This study
subsequently conducted SHAP analysis for the early fusion analysis. Contrary to
expectations, despite thermal imaging outperforming r-PPG in single-modal prediction
analysis, features generated by r-PPG dominated the early fusion analysis when variables
from both modalities were combined. The important features from thermal imaging
appeared to differ in the early fusion analysis compared to those in the single-modal
thermal analysis.

Linking r-PPG to thermal imaging
Generally, facial temperature was more closely related to HR than HRV in both cognitive
stress and moral elevation conditions (Fig. 6). HR was negatively correlated to the
temperature changes of the left eyebrow area and was positively correlated to the changes
of the temperature of the cheek and outside of the lip area during the cognitive stress
condition. On the other hand, HR was negatively correlated to most ROI when people were
morally elevated. The HRV measures generally were less correlated to the temperature
changes of the facial areas. Given that most of the correlation coefficients between facial
ROIs and both HR and ln(LF)—commonly used as indicators of SNS activation—were

Figure 3 Heat map of HRV measurement changes induced under both cognitive stress and moral
elevation conditions. Full-size DOI: 10.7717/peerj-cs.1912/fig-3
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Figure 4 Heat maps depicting changes in thermal imaging induced under both cognitive stress and
moral elevation conditions. Full-size DOI: 10.7717/peerj-cs.1912/fig-4
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negative, it appears that SNS activation tends to reduce facial temperature in the majority
of facial areas during the moral elevation condition.

DISCUSSION
Principal findings
The findings of this study align with the objectives and support the use of r-PPG and
thermal imaging in hidden mental state detection based on only facial skin color and
temperature changes. More specifically, the results of this study can be summarized in the
following aspects:

First, this study evaluated the efficacy of the multimodal approach that integrates both
either r-PPG and thermal imaging to enhance prediction performance for hidden mental
state changes. The accuracy of using r-PPG alone to predict mental states stood at 0.77
(SVM) for cognitive stress and 0.61 (SVM) for moral elevation. Using thermal imaging
alone to predict cognitive stress and moral elevation yielded accuracies of 0.79 (RF) and

Figure 5 Comparison of feature importance based on SHAP analysis. Full-size DOI: 10.7717/peerj-cs.1912/fig-5
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0.78 (RF), respectively. Remarkably, the early fusion approach elevated these predictive
accuracies to 0.87 (RF) for cognitive stress and 0.83 (RF) for moral elevation. These results
echoed the results of Cho, Julier & Bianchi-Berthouze (2019), which indicated predictive
accuracies for cognitive stress at 68.53% with contact PPG alone, 58.82% using only
thermal imaging, and 78.33% when combining both modalities. Furthermore, compared to
late fusion strategies, the findings of this study were consistent with findings from several
preceding studies (Gadzicki, Khamsehashari & Zetzsche, 2020; Gunes & Piccardi, 2005)
and demonstrated the superior performance of the early fusion method.

Figure 6 Correlation coefficients between HRV measurement changes and regional facial temperature changes. The numbers on the vertical
axis represent HRV measures, while those on the horizontal axis indicate the ROI number of the face. The numbers within the boxes denote
correlation coefficients. Dark blue colors signify that the p-values are less than 0.05 for the correlation coefficient test.

Full-size DOI: 10.7717/peerj-cs.1912/fig-6
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It is noteworthy that SVM and RF models are often used in the same study; however, it
is difficult to explain why one model sometimes outperforms the other (Statnikov, Wang &
Aliferis, 2008). Fernández-Delgado et al. (2014) reviewed 179 classifiers across 17
categories, concluding that RF was the top performer in their extensive dataset analysis.
Contrarily, studies by Ogutu, Piepho & Schulz-Streeck (2011) and Wainberg, Alipanahi &
Frey (2016) observed superior performances from SVM. Boateng, Otoo & Abaye (2020)
argued that RF performs better when data is scarce, while Grinsztajn, Oyallon &
Varoquaux (2022) found that tree-like models seem to be more robust to uninformative
and non-smoothing features. The debate is further complicated by the complexity of
parameter optimization; RF’s performance is highly sensitive to parameter selection, as
found by Statnikov, Wang & Aliferis (2008), whereas SVM is less sensitive.

In this study, the unimodal analysis for predicting cognitive stress using both r-PPG and
thermal imaging showed accuracies ranging from 0.72 to 0.79. For moral elevation
prediction, r-PPG achieved 0.58 to 0.61, while thermal imaging attained 0.75 to 0.78. This
indicates comparable SVM and RF performances, though moral elevation is less
identifiable through cardiovascular features. In early fusion, integrating all variables,
SVM’s accuracy is more influenced by lower-accuracy variables, unlike RF, which
efficiently utilizes informative features. This conclusion, drawn from a single dataset,
necessitates further research for comprehensive understanding.

The SHAP analysis in this study revealed that in data fusion, cardiovascular features
from r-PPG models are more influential than thermal imaging features, despite the latter’s
superior predictive accuracy as a single modality. This highlights two key insights: first, it
underscores the enhanced predictive accuracy and benefits of multimodal fusion,
combining diverse data types to overcome individual modality limitations and leveraging
their combined strengths for more accurate psychological state predictions. Second, it
shows that integrating multiple variables, even those with minor individual impact,
significantly improves model performance, emphasizing the importance of considering a
broad range of features for a comprehensive and nuanced analysis, rather than focusing
only on the most dominant features.

Second, this study extends the literature on the relationship between emotions and facial
temperature, applying this approach for the first time to the study of moral elevation. The
data from this study showed that during experiences of moral elevation, individuals
showed increased temperatures in the nose, nostrils, lips, cheeks, and chin areas—these
physiological responses are clearly related to the vagus nerve system of the parasympathetic
nervous system (Haidt, 2003). The links between cardiovascular features and mental state
changes, on the other hand, are less evident, aligning with Nhan & Chau’s (2009) assertion
that facial thermal imaging is more significant than HR (not HRV) and respiration. The
findings also underscore Ioannou et al.’s (2016) emphasis on the importance of further
exploring thermal imaging for ANS analysis, which they claimed traditionally relies heavily
on HRV.

Moreover, the correlation coefficient analysis in this study revealed significant
temperature increases in the lips and cheeks under cognitive stress, contrasting with
previous research indicating that stress typically causes a general decrease in facial
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temperature, particularly at the nose tip. However, the SHAP analysis, when using the RF
model, pinpointed the nose tip as the most predictive variable. This discrepancy can be
attributed to two factors. First, the relationship between stress and facial temperature
might be nonlinear, meaning it may not be evident in simple correlation analyses but can
become apparent in more complex, tree-structured models like RF. Second, the effects of
stress on skin temperature could vary based on the stressor. While many studies have
induced cognitive stress through social pressure (Vinkers et al., 2013), Engert et al. (2014)
found inconsistent facial temperature responses under stress caused by physical pain and
social pressure. In this study, the cognitive stress, derived from sustained attention, differs
from the stress induced by physical pain or social pressure. The increased temperature
around the lips and cheeks echoed the finding of Diaz-Piedra, Gomez-Milan & Di Stasi
(2019), who observed that sustained attention influenced arousal levels, initially raising
nasal temperatures. However, sinceWang et al. (2019) did not find a significant correlation
between cognitive load and facial expressions in their EEG and thermal imaging study, the
link between cognitive stress and facial temperature changes is still inconclusive and
warrants further analysis.

Third, this study investigated the direct relationship between HR and facial
thermography. Given the impact of SNS activity on HR, HRV, and facial temperature, this
study hypothesized a direct link between these two aspects. Yet, this association has seldom
been directly studied. The results of this study showed no significant relationship between
cardiac features and facial temperature under cognitive stress. However, during moral
elevation, a notable negative correlation emerged between HR and the temperature of the
eyebrows, nose, cheeks, chin, and throat. Despite the lack of significant changes in HR
during moral elevation (Fig. 3) and in the temperatures of the eyebrows and certain cheek
areas (Fig. 4), a distinct correlation was observed between HR and these temperature areas
(Fig. 6). This suggests concealed relationships between HR and facial temperature,
necessitating additional research for a more comprehensive understanding.

Last, the data corroborated prior research, establishing that r-PPG accurately generates
HR and HRV for mental state detection, with correlation coefficients of HR and SDNN
between r-PPG and reference ECG at 0.86 and 0.32, respectively. Prediction accuracy for
cognitive stress and moral elevation was 0.77 and 0.61. Previous studies indicate HR
predictions via r-PPG are superior to HRV, especially in time-domain measures compared
to frequency-domain HRV (Kuss et al., 2008). This study echoes these findings, showing
HR and time-domain HRV measures as more effective. Additionally, predictive accuracy
for moral elevation was lower than for cognitive stress, suggesting moral elevation may
invoke subtler or more complex ANS responses, posing challenges in correlating this
emotion with physiological data.

This study reinforces prior findings on the link between psychological states and HR,
particularly in understanding the physiological aspects of moral elevation. Echoing ECG-
based (Eisenberg et al., 1988) and r-PPG studies (McDuff, Gontarek & Picard, 2014), it
observed HR increases under cognitive stress and HRV decreases due to SNS activation.
However, moral elevation research is less developed. Piper, Saslow & Saturn (2015)
observed that moral elevation might activate both sympathetic and parasympathetic
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systems, affecting both HF-HRV and LF-HRV, but supporting literature is limited. This
study contributes by showing no significant correlation between HR, HRV, and moral
elevation. This could be due to moral elevation’s complex nature, often considered a
bittersweet emotion (Oliver et al., 2018), and its interaction with HR and HRV. Previous
research shows mixed results in HR and HRV responses to emotions—for instance,
sadness correlates positively with HRV and negatively with HR (Eisenberg et al., 1988;
Goetz, Keltner & Simon-Thomas, 2010), while other studies note reduced HRV in sadness
compared to happier states (Goetz, Keltner & Simon-Thomas, 2010; Shi et al., 2017). The
inconsistent results in moral elevation are thus expected. Future research should more
precisely classify moral elevation induction methods to clarify its relationship with the
ANS.

LIMITATIONS
While this study achieved most of its objectives, some data lacked statistical significance,
indicating areas for methodological refinement.

First, the r-PPG data showed notable noise levels. Although signal processing has
advanced, its reliability in real-world applications is still debatable. In this study, the
correlation coefficient between r-PPG and ECG for HR reached 0.86 while for HRV
measures was found to be only between 0.25 and 0.33, and for MAE accounted more than
20% of the mean values. The agreement with referencing devices and predictive accuracy
was below several previous studies. For instance, McDuff, Gontarek & Picard (2014)
reported a correlation coefficient between r-PPG and the reference contacted HR device
for HR and HF of 1.00 and 0.93, respectively. Their research also achieved a 0.85 predictive
accuracy for cognitive stress when using an SVMmodel on the r-PPG signal. One possible
explanation for the low signal quality was the participants’movement freedom during this
experiment. To maintain external validity, this study allowed participant movement,
complicating data collection due to r-PPG and thermal imaging’s sensitivity to motion.
Despite advancements, current facial recognition algorithms, primarily designed for static
images, struggled with accuracy during spontaneous movements. Furthermore, following
Pavlidis & Levine (2002)’s methodology, participants were not required to change their
hairstyles, resulting in instances where hair bangs obscured thermal signals from the
forehead. Additionally, the frequent use of eyeglasses led to the exclusion of periorbital
thermal imaging, omitting potential insights from areas like the supraorbital muscle, as
noted by Puri et al. (2005). Future research should consider adjusting experimental
conditions to enhance signal quality.

Additionally, the HRV measures in this study systematically underestimated HRV in
comparison to the reference ECG. This could be due to the 6-s window Fourier Analysis
approach to compute HR, a method which provided similar results to the average HR in
the 6-s window and inherently lowers the values of the variation of the HR. Future research
should weigh the balance between noise reduction and HRV deflation. Furthermore,
videos were divided into 120-s segments to monitor HRV changes per experimental phase.
While some studies supported ultra-short-term HRV analysis, there is no consensus in the
literature (Pecchia et al., 2018). This less-than-five-minute measuring period might partly
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explain r-PPG’s reduced predictive accuracy as previously mentioned (Laborde, Mosley &
Thayer, 2017).

Second, the thermal imaging signal processing algorithm also requires additional
refinement. In the analysis, only 55 out of 90 participants provided valid thermal imaging
data, mainly due to ineffective ROI identification. The current model uses histogram of
oriented gradients (HOG) and SVM techniques in a two-stage ROI identification process:
initially locating the face and then pinpointing specific features. However, it often
misinterprets partial facial areas as complete faces in the first stage. This could be due to
the limited size and diversity of its training dataset, failing to recognize a variety of face
shapes or cases with obscured faces like those with bangs, glasses, or not facing the camera
directly. Head movements of participants may exacerbate this issue. The lack of established
quality criteria for thermal imaging makes it challenging to filter out compromised data
(Liu, Ni & Peng, 2020a). Future studies should consider these limitations.

Third this study explored only a limited number of data fusion methods. The
exploration was confined to two techniques: early fusion, which overlooks the temporal
specifics of thermal imaging, and late fusion, using a straightforward voting method. In
early fusion, this study employed a simple strategy of averaging the temperature of each
ROI over a 2-min recording to align thermal imaging data with r-PPG results, which
represented properties over several minutes. However, this approach potentially lost
detailed information. Considering the myriad data fusion strategies available (Gandhi
et al., 2023), future research could benefit from experimenting with alternative
methodologies beyond the singular approach used in this study.

Finally, this study did not sufficiently address the time delay in skin temperature
changes. While HR can fluctuate within seconds, Nakayama et al. (2005) noted it took
220–280 s for nose temperature to revert to baseline. Rodent studies indicated varying
return times based on regions: the back, head, and body took around 60–75 min, while the
eyes, tails, and paws took 14, 10, and 15 min respectively (Vianna & Carrive, 2005). Future
research should consider these delays, especially when there’s a minimal gap between
stimulus application and data recording.

CONCLUSIONS
R-PPG and thermal imaging are increasingly recognized as effective tools for remotely
detecting mental states. They are particularly adept at identifying subtle cognitive and
emotional shifts that are less obvious in facial expressions and often missed by traditional
analysis techniques. This study contributes to the academic community by validating the
performance of multimodal data fusion of r-PPG and thermal imaging. It also investigates
important features using both statistical analysis and explainable machine learning tools,
and explores the interplay between cardiac responses and facial temperature changes in
response to ANS activations. The results further corroborate the findings of previous
studies regarding the effectiveness of r-PPG and thermal imaging in detecting moral
elevation, a relatively understudied area. Additionally, this study has developed the
‘pyMMER’ package, enhancing tools available to the research community. While still in its
initial stages and facing certain challenges, this study highlights the considerable potential
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of these methods and the importance of their ongoing refinement and optimization.
However, the statistical significance of many results fell short of the expected level,
highlighting the difficulty in acquiring high-quality real-world data and the challenge in
ROI detection for both r-PPG and thermal imaging in more realistic settings. Future
studies should compare and explore other techniques for improving prediction accuracy,
including state-of-the-art machine learning models (Lu, Han & Zhou, 2021; Yu et al.,
2023). This would make the proposed method more practically useful.

LIST OF ABBREVIATIONS
ANS autonomic nervous system

BBI beat-to-beat interval

BVP blood volume pulse

ECG electrocardiogram

HF absolute power of the high-frequency band (0.15–0.4 Hz)

HOG histogram of oriented gradients

HR heart rate

HRV heart rate variability

LF absolute power of the low-frequency band (0.04–0.15 Hz)

ln(HF) the log transformation of HF

ln(LF) the log transformation of LF

MAE mean absolute error

MMER multimodal emotion recognition techniques

pNN50 percentage of successive NN intervals differ by more than 50 ms

PNS parasympathetic nervous system

PPG photoplethysmography

ROI region of interest

rMSSD root mean square of successive NN interval differences

r-PPG remote photoplethysmography

SDNN standard deviation of the avg. normal-to-normal (NN) intervals

SNS sympathetic nervous system

SHAP Shapley additive explanations

SVM support vector machines
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